/* SPDX-License-Identifier: BSD-3-Clause * * Copyright(c) 2019-2020 Xilinx, Inc. * Copyright(c) 2016-2019 Solarflare Communications Inc. * * This software was jointly developed between OKTET Labs (under contract * for Solarflare) and Solarflare Communications, Inc. */ #include #include #include #include #include #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_regs_ef10.h" #include "sfc_dp_tx.h" #include "sfc_tweak.h" #include "sfc_kvargs.h" #include "sfc_ef10.h" #include "sfc_tso.h" #define sfc_ef10_tx_err(dpq, ...) \ SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__) /** Maximum length of the DMA descriptor data */ #define SFC_EF10_TX_DMA_DESC_LEN_MAX \ ((1u << ESF_DZ_TX_KER_BYTE_CNT_WIDTH) - 1) /** * Maximum number of descriptors/buffers in the Tx ring. * It should guarantee that corresponding event queue never overfill. * EF10 native datapath uses event queue of the same size as Tx queue. * Maximum number of events on datapath can be estimated as number of * Tx queue entries (one event per Tx buffer in the worst case) plus * Tx error and flush events. */ #define SFC_EF10_TXQ_LIMIT(_ndesc) \ ((_ndesc) - 1 /* head must not step on tail */ - \ (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \ 1 /* Rx error */ - 1 /* flush */) struct sfc_ef10_tx_sw_desc { struct rte_mbuf *mbuf; }; struct sfc_ef10_txq { unsigned int flags; #define SFC_EF10_TXQ_STARTED 0x1 #define SFC_EF10_TXQ_NOT_RUNNING 0x2 #define SFC_EF10_TXQ_EXCEPTION 0x4 unsigned int ptr_mask; unsigned int added; unsigned int completed; unsigned int max_fill_level; unsigned int free_thresh; unsigned int evq_read_ptr; struct sfc_ef10_tx_sw_desc *sw_ring; efx_qword_t *txq_hw_ring; volatile void *doorbell; efx_qword_t *evq_hw_ring; uint8_t *tsoh; rte_iova_t tsoh_iova; uint16_t tso_tcp_header_offset_limit; /* Datapath transmit queue anchor */ struct sfc_dp_txq dp; }; static inline struct sfc_ef10_txq * sfc_ef10_txq_by_dp_txq(struct sfc_dp_txq *dp_txq) { return container_of(dp_txq, struct sfc_ef10_txq, dp); } static bool sfc_ef10_tx_get_event(struct sfc_ef10_txq *txq, efx_qword_t *tx_ev) { volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring; /* * Exception flag is set when reap is done. * It is never done twice per packet burst get and absence of * the flag is checked on burst get entry. */ SFC_ASSERT((txq->flags & SFC_EF10_TXQ_EXCEPTION) == 0); *tx_ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask]; if (!sfc_ef10_ev_present(*tx_ev)) return false; if (unlikely(EFX_QWORD_FIELD(*tx_ev, FSF_AZ_EV_CODE) != FSE_AZ_EV_CODE_TX_EV)) { /* * Do not move read_ptr to keep the event for exception * handling by the control path. */ txq->flags |= SFC_EF10_TXQ_EXCEPTION; sfc_ef10_tx_err(&txq->dp.dpq, "TxQ exception at EvQ read ptr %#x", txq->evq_read_ptr); return false; } txq->evq_read_ptr++; return true; } static unsigned int sfc_ef10_tx_process_events(struct sfc_ef10_txq *txq) { const unsigned int curr_done = txq->completed - 1; unsigned int anew_done = curr_done; efx_qword_t tx_ev; while (sfc_ef10_tx_get_event(txq, &tx_ev)) { /* * DROP_EVENT is an internal to the NIC, software should * never see it and, therefore, may ignore it. */ /* Update the latest done descriptor */ anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX); } return (anew_done - curr_done) & txq->ptr_mask; } static void sfc_ef10_tx_reap(struct sfc_ef10_txq *txq) { const unsigned int old_read_ptr = txq->evq_read_ptr; const unsigned int ptr_mask = txq->ptr_mask; unsigned int completed = txq->completed; unsigned int pending = completed; pending += sfc_ef10_tx_process_events(txq); if (pending != completed) { struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE]; unsigned int nb = 0; do { struct sfc_ef10_tx_sw_desc *txd; struct rte_mbuf *m; txd = &txq->sw_ring[completed & ptr_mask]; if (txd->mbuf == NULL) continue; m = rte_pktmbuf_prefree_seg(txd->mbuf); txd->mbuf = NULL; if (m == NULL) continue; if ((nb == RTE_DIM(bulk)) || ((nb != 0) && (m->pool != bulk[0]->pool))) { rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb); nb = 0; } bulk[nb++] = m; } while (++completed != pending); if (nb != 0) rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb); txq->completed = completed; } sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr, txq->evq_read_ptr); } static void sfc_ef10_tx_qdesc_dma_create(rte_iova_t addr, uint16_t size, bool eop, efx_qword_t *edp) { EFX_POPULATE_QWORD_4(*edp, ESF_DZ_TX_KER_TYPE, 0, ESF_DZ_TX_KER_CONT, !eop, ESF_DZ_TX_KER_BYTE_CNT, size, ESF_DZ_TX_KER_BUF_ADDR, addr); } static void sfc_ef10_tx_qdesc_tso2_create(struct sfc_ef10_txq * const txq, unsigned int added, uint16_t ipv4_id, uint16_t outer_ipv4_id, uint32_t tcp_seq, uint16_t tcp_mss) { EFX_POPULATE_QWORD_5(txq->txq_hw_ring[added & txq->ptr_mask], ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, ESF_DZ_TX_TSO_IP_ID, ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq); EFX_POPULATE_QWORD_5(txq->txq_hw_ring[(added + 1) & txq->ptr_mask], ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, ESF_DZ_TX_TSO_TCP_MSS, tcp_mss, ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id); } static inline void sfc_ef10_tx_qpush(struct sfc_ef10_txq *txq, unsigned int added, unsigned int pushed) { efx_qword_t desc; efx_oword_t oword; /* * This improves performance by pushing a TX descriptor at the same * time as the doorbell. The descriptor must be added to the TXQ, * so that can be used if the hardware decides not to use the pushed * descriptor. */ desc.eq_u64[0] = txq->txq_hw_ring[pushed & txq->ptr_mask].eq_u64[0]; EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, added & txq->ptr_mask, ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1), ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0)); /* DMA sync to device is not required */ /* * rte_io_wmb() which guarantees that the STORE operations * (i.e. Tx and event descriptor updates) that precede * the rte_io_wmb() call are visible to NIC before the STORE * operations that follow it (i.e. doorbell write). */ rte_io_wmb(); *(volatile __m128i *)txq->doorbell = oword.eo_u128[0]; } static unsigned int sfc_ef10_tx_pkt_descs_max(const struct rte_mbuf *m) { unsigned int extra_descs_per_seg; unsigned int extra_descs_per_pkt; /* * VLAN offload is not supported yet, so no extra descriptors * are required for VLAN option descriptor. */ /** Maximum length of the mbuf segment data */ #define SFC_MBUF_SEG_LEN_MAX UINT16_MAX RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2); /* * Each segment is already counted once below. So, calculate * how many extra DMA descriptors may be required per segment in * the worst case because of maximum DMA descriptor length limit. * If maximum segment length is less or equal to maximum DMA * descriptor length, no extra DMA descriptors are required. */ extra_descs_per_seg = (SFC_MBUF_SEG_LEN_MAX - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX; /** Maximum length of the packet */ #define SFC_MBUF_PKT_LEN_MAX UINT32_MAX RTE_BUILD_BUG_ON(sizeof(m->pkt_len) != 4); /* * One more limitation on maximum number of extra DMA descriptors * comes from slicing entire packet because of DMA descriptor length * limit taking into account that there is at least one segment * which is already counted below (so division of the maximum * packet length minus one with round down). * TSO is not supported yet, so packet length is limited by * maximum PDU size. */ extra_descs_per_pkt = (RTE_MIN((unsigned int)EFX_MAC_PDU_MAX, SFC_MBUF_PKT_LEN_MAX) - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX; return m->nb_segs + RTE_MIN(m->nb_segs * extra_descs_per_seg, extra_descs_per_pkt); } static bool sfc_ef10_try_reap(struct sfc_ef10_txq * const txq, unsigned int added, unsigned int needed_desc, unsigned int *dma_desc_space, bool *reap_done) { if (*reap_done) return false; if (added != txq->added) { sfc_ef10_tx_qpush(txq, added, txq->added); txq->added = added; } sfc_ef10_tx_reap(txq); *reap_done = true; /* * Recalculate DMA descriptor space since Tx reap may change * the number of completed descriptors */ *dma_desc_space = txq->max_fill_level - (added - txq->completed); return (needed_desc <= *dma_desc_space); } static uint16_t sfc_ef10_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue); uint16_t i; for (i = 0; i < nb_pkts; i++) { struct rte_mbuf *m = tx_pkts[i]; int ret; #ifdef RTE_LIBRTE_SFC_EFX_DEBUG /* * In non-TSO case, check that a packet segments do not exceed * the size limit. Perform the check in debug mode since MTU * more than 9k is not supported, but the limit here is 16k-1. */ if (!(m->ol_flags & PKT_TX_TCP_SEG)) { struct rte_mbuf *m_seg; for (m_seg = m; m_seg != NULL; m_seg = m_seg->next) { if (m_seg->data_len > SFC_EF10_TX_DMA_DESC_LEN_MAX) { rte_errno = EINVAL; break; } } } #endif ret = sfc_dp_tx_prepare_pkt(m, txq->tso_tcp_header_offset_limit, txq->max_fill_level, SFC_EF10_TSO_OPT_DESCS_NUM, 0); if (unlikely(ret != 0)) { rte_errno = ret; break; } } return i; } static int sfc_ef10_xmit_tso_pkt(struct sfc_ef10_txq * const txq, struct rte_mbuf *m_seg, unsigned int *added, unsigned int *dma_desc_space, bool *reap_done) { size_t iph_off = ((m_seg->ol_flags & PKT_TX_TUNNEL_MASK) ? m_seg->outer_l2_len + m_seg->outer_l3_len : 0) + m_seg->l2_len; size_t tcph_off = iph_off + m_seg->l3_len; size_t header_len = tcph_off + m_seg->l4_len; /* Offset of the payload in the last segment that contains the header */ size_t in_off = 0; const struct rte_tcp_hdr *th; uint16_t packet_id = 0; uint16_t outer_packet_id = 0; uint32_t sent_seq; uint8_t *hdr_addr; rte_iova_t hdr_iova; struct rte_mbuf *first_m_seg = m_seg; unsigned int pkt_start = *added; unsigned int needed_desc; struct rte_mbuf *m_seg_to_free_up_to = first_m_seg; bool eop; /* * Preliminary estimation of required DMA descriptors, including extra * descriptor for TSO header that is needed when the header is * separated from payload in one segment. It does not include * extra descriptors that may appear when a big segment is split across * several descriptors. */ needed_desc = m_seg->nb_segs + (unsigned int)SFC_EF10_TSO_OPT_DESCS_NUM + (unsigned int)SFC_EF10_TSO_HDR_DESCS_NUM; if (needed_desc > *dma_desc_space && !sfc_ef10_try_reap(txq, pkt_start, needed_desc, dma_desc_space, reap_done)) { /* * If a future Tx reap may increase available DMA descriptor * space, do not try to send the packet. */ if (txq->completed != pkt_start) return ENOSPC; /* * Do not allow to send packet if the maximum DMA * descriptor space is not sufficient to hold TSO * descriptors, header descriptor and at least 1 * segment descriptor. */ if (*dma_desc_space < SFC_EF10_TSO_OPT_DESCS_NUM + SFC_EF10_TSO_HDR_DESCS_NUM + 1) return EMSGSIZE; } /* Check if the header is not fragmented */ if (rte_pktmbuf_data_len(m_seg) >= header_len) { hdr_addr = rte_pktmbuf_mtod(m_seg, uint8_t *); hdr_iova = rte_mbuf_data_iova(m_seg); if (rte_pktmbuf_data_len(m_seg) == header_len) { /* Cannot send a packet that consists only of header */ if (unlikely(m_seg->next == NULL)) return EMSGSIZE; /* * Associate header mbuf with header descriptor * which is located after TSO descriptors. */ txq->sw_ring[(pkt_start + SFC_EF10_TSO_OPT_DESCS_NUM) & txq->ptr_mask].mbuf = m_seg; m_seg = m_seg->next; in_off = 0; /* * If there is no payload offset (payload starts at the * beginning of a segment) then an extra descriptor for * separated header is not needed. */ needed_desc--; } else { in_off = header_len; } } else { unsigned int copied_segs; unsigned int hdr_addr_off = (*added & txq->ptr_mask) * SFC_TSOH_STD_LEN; /* * Discard a packet if header linearization is needed but * the header is too big. * Duplicate Tx prepare check here to avoid spoil of * memory if Tx prepare is skipped. */ if (unlikely(header_len > SFC_TSOH_STD_LEN)) return EMSGSIZE; hdr_addr = txq->tsoh + hdr_addr_off; hdr_iova = txq->tsoh_iova + hdr_addr_off; copied_segs = sfc_tso_prepare_header(hdr_addr, header_len, &m_seg, &in_off); /* Cannot send a packet that consists only of header */ if (unlikely(m_seg == NULL)) return EMSGSIZE; m_seg_to_free_up_to = m_seg; /* * Reduce the number of needed descriptors by the number of * segments that entirely consist of header data. */ needed_desc -= copied_segs; /* Extra descriptor for separated header is not needed */ if (in_off == 0) needed_desc--; } /* * Tx prepare has debug-only checks that offload flags are correctly * filled in in TSO mbuf. Use zero IPID if there is no IPv4 flag. * If the packet is still IPv4, HW will simply start from zero IPID. */ if (first_m_seg->ol_flags & PKT_TX_IPV4) packet_id = sfc_tso_ip4_get_ipid(hdr_addr, iph_off); if (first_m_seg->ol_flags & PKT_TX_OUTER_IPV4) outer_packet_id = sfc_tso_ip4_get_ipid(hdr_addr, first_m_seg->outer_l2_len); th = (const struct rte_tcp_hdr *)(hdr_addr + tcph_off); rte_memcpy(&sent_seq, &th->sent_seq, sizeof(uint32_t)); sent_seq = rte_be_to_cpu_32(sent_seq); sfc_ef10_tx_qdesc_tso2_create(txq, *added, packet_id, outer_packet_id, sent_seq, first_m_seg->tso_segsz); (*added) += SFC_EF10_TSO_OPT_DESCS_NUM; sfc_ef10_tx_qdesc_dma_create(hdr_iova, header_len, false, &txq->txq_hw_ring[(*added) & txq->ptr_mask]); (*added)++; do { rte_iova_t next_frag = rte_mbuf_data_iova(m_seg); unsigned int seg_len = rte_pktmbuf_data_len(m_seg); unsigned int id; next_frag += in_off; seg_len -= in_off; in_off = 0; do { rte_iova_t frag_addr = next_frag; size_t frag_len; frag_len = RTE_MIN(seg_len, SFC_EF10_TX_DMA_DESC_LEN_MAX); next_frag += frag_len; seg_len -= frag_len; eop = (seg_len == 0 && m_seg->next == NULL); id = (*added) & txq->ptr_mask; (*added)++; /* * Initially we assume that one DMA descriptor is needed * for every segment. When the segment is split across * several DMA descriptors, increase the estimation. */ needed_desc += (seg_len != 0); /* * When no more descriptors can be added, but not all * segments are processed. */ if (*added - pkt_start == *dma_desc_space && !eop && !sfc_ef10_try_reap(txq, pkt_start, needed_desc, dma_desc_space, reap_done)) { struct rte_mbuf *m; struct rte_mbuf *m_next; if (txq->completed != pkt_start) { unsigned int i; /* * Reset mbuf associations with added * descriptors. */ for (i = pkt_start; i != *added; i++) { id = i & txq->ptr_mask; txq->sw_ring[id].mbuf = NULL; } return ENOSPC; } /* Free the segments that cannot be sent */ for (m = m_seg->next; m != NULL; m = m_next) { m_next = m->next; rte_pktmbuf_free_seg(m); } eop = true; /* Ignore the rest of the segment */ seg_len = 0; } sfc_ef10_tx_qdesc_dma_create(frag_addr, frag_len, eop, &txq->txq_hw_ring[id]); } while (seg_len != 0); txq->sw_ring[id].mbuf = m_seg; m_seg = m_seg->next; } while (!eop); /* * Free segments which content was entirely copied to the TSO header * memory space of Tx queue */ for (m_seg = first_m_seg; m_seg != m_seg_to_free_up_to;) { struct rte_mbuf *seg_to_free = m_seg; m_seg = m_seg->next; rte_pktmbuf_free_seg(seg_to_free); } return 0; } static uint16_t sfc_ef10_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue); unsigned int added; unsigned int dma_desc_space; bool reap_done; struct rte_mbuf **pktp; struct rte_mbuf **pktp_end; if (unlikely(txq->flags & (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION))) return 0; added = txq->added; dma_desc_space = txq->max_fill_level - (added - txq->completed); reap_done = (dma_desc_space < txq->free_thresh); if (reap_done) { sfc_ef10_tx_reap(txq); dma_desc_space = txq->max_fill_level - (added - txq->completed); } for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts]; pktp != pktp_end; ++pktp) { struct rte_mbuf *m_seg = *pktp; unsigned int pkt_start = added; uint32_t pkt_len; if (likely(pktp + 1 != pktp_end)) rte_mbuf_prefetch_part1(pktp[1]); if (m_seg->ol_flags & PKT_TX_TCP_SEG) { int rc; rc = sfc_ef10_xmit_tso_pkt(txq, m_seg, &added, &dma_desc_space, &reap_done); if (rc != 0) { added = pkt_start; /* Packet can be sent in following xmit calls */ if (likely(rc == ENOSPC)) break; /* * Packet cannot be sent, tell RTE that * it is sent, but actually drop it and * continue with another packet */ rte_pktmbuf_free(*pktp); continue; } goto dma_desc_space_update; } if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) { if (reap_done) break; /* Push already prepared descriptors before polling */ if (added != txq->added) { sfc_ef10_tx_qpush(txq, added, txq->added); txq->added = added; } sfc_ef10_tx_reap(txq); reap_done = true; dma_desc_space = txq->max_fill_level - (added - txq->completed); if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) break; } pkt_len = m_seg->pkt_len; do { rte_iova_t seg_addr = rte_mbuf_data_iova(m_seg); unsigned int seg_len = rte_pktmbuf_data_len(m_seg); unsigned int id = added & txq->ptr_mask; SFC_ASSERT(seg_len <= SFC_EF10_TX_DMA_DESC_LEN_MAX); pkt_len -= seg_len; sfc_ef10_tx_qdesc_dma_create(seg_addr, seg_len, (pkt_len == 0), &txq->txq_hw_ring[id]); /* * rte_pktmbuf_free() is commonly used in DPDK for * recycling packets - the function checks every * segment's reference counter and returns the * buffer to its pool whenever possible; * nevertheless, freeing mbuf segments one by one * may entail some performance decline; * from this point, sfc_efx_tx_reap() does the same job * on its own and frees buffers in bulks (all mbufs * within a bulk belong to the same pool); * from this perspective, individual segment pointers * must be associated with the corresponding SW * descriptors independently so that only one loop * is sufficient on reap to inspect all the buffers */ txq->sw_ring[id].mbuf = m_seg; ++added; } while ((m_seg = m_seg->next) != 0); dma_desc_space_update: dma_desc_space -= (added - pkt_start); } if (likely(added != txq->added)) { sfc_ef10_tx_qpush(txq, added, txq->added); txq->added = added; } #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE if (!reap_done) sfc_ef10_tx_reap(txq); #endif return pktp - &tx_pkts[0]; } static void sfc_ef10_simple_tx_reap(struct sfc_ef10_txq *txq) { const unsigned int old_read_ptr = txq->evq_read_ptr; const unsigned int ptr_mask = txq->ptr_mask; unsigned int completed = txq->completed; unsigned int pending = completed; pending += sfc_ef10_tx_process_events(txq); if (pending != completed) { struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE]; unsigned int nb = 0; do { struct sfc_ef10_tx_sw_desc *txd; txd = &txq->sw_ring[completed & ptr_mask]; if (nb == RTE_DIM(bulk)) { rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb); nb = 0; } bulk[nb++] = txd->mbuf; } while (++completed != pending); rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb); txq->completed = completed; } sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr, txq->evq_read_ptr); } #ifdef RTE_LIBRTE_SFC_EFX_DEBUG static uint16_t sfc_ef10_simple_prepare_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { uint16_t i; for (i = 0; i < nb_pkts; i++) { struct rte_mbuf *m = tx_pkts[i]; int ret; ret = rte_validate_tx_offload(m); if (unlikely(ret != 0)) { /* * Negative error code is returned by * rte_validate_tx_offload(), but positive are used * inside net/sfc PMD. */ SFC_ASSERT(ret < 0); rte_errno = -ret; break; } /* ef10_simple does not support TSO and VLAN insertion */ if (unlikely(m->ol_flags & (PKT_TX_TCP_SEG | PKT_TX_VLAN_PKT))) { rte_errno = ENOTSUP; break; } /* ef10_simple does not support scattered packets */ if (unlikely(m->nb_segs != 1)) { rte_errno = ENOTSUP; break; } /* * ef10_simple requires fast-free which ignores reference * counters */ if (unlikely(rte_mbuf_refcnt_read(m) != 1)) { rte_errno = ENOTSUP; break; } /* ef10_simple requires single pool for all packets */ if (unlikely(m->pool != tx_pkts[0]->pool)) { rte_errno = ENOTSUP; break; } } return i; } #endif static uint16_t sfc_ef10_simple_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue); unsigned int ptr_mask; unsigned int added; unsigned int dma_desc_space; bool reap_done; struct rte_mbuf **pktp; struct rte_mbuf **pktp_end; if (unlikely(txq->flags & (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION))) return 0; ptr_mask = txq->ptr_mask; added = txq->added; dma_desc_space = txq->max_fill_level - (added - txq->completed); reap_done = (dma_desc_space < RTE_MAX(txq->free_thresh, nb_pkts)); if (reap_done) { sfc_ef10_simple_tx_reap(txq); dma_desc_space = txq->max_fill_level - (added - txq->completed); } pktp_end = &tx_pkts[MIN(nb_pkts, dma_desc_space)]; for (pktp = &tx_pkts[0]; pktp != pktp_end; ++pktp) { struct rte_mbuf *pkt = *pktp; unsigned int id = added & ptr_mask; SFC_ASSERT(rte_pktmbuf_data_len(pkt) <= SFC_EF10_TX_DMA_DESC_LEN_MAX); sfc_ef10_tx_qdesc_dma_create(rte_mbuf_data_iova(pkt), rte_pktmbuf_data_len(pkt), true, &txq->txq_hw_ring[id]); txq->sw_ring[id].mbuf = pkt; ++added; } if (likely(added != txq->added)) { sfc_ef10_tx_qpush(txq, added, txq->added); txq->added = added; } #if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE if (!reap_done) sfc_ef10_simple_tx_reap(txq); #endif return pktp - &tx_pkts[0]; } static sfc_dp_tx_get_dev_info_t sfc_ef10_get_dev_info; static void sfc_ef10_get_dev_info(struct rte_eth_dev_info *dev_info) { /* * Number of descriptors just defines maximum number of pushed * descriptors (fill level). */ dev_info->tx_desc_lim.nb_min = 1; dev_info->tx_desc_lim.nb_align = 1; } static sfc_dp_tx_qsize_up_rings_t sfc_ef10_tx_qsize_up_rings; static int sfc_ef10_tx_qsize_up_rings(uint16_t nb_tx_desc, struct sfc_dp_tx_hw_limits *limits, unsigned int *txq_entries, unsigned int *evq_entries, unsigned int *txq_max_fill_level) { /* * rte_ethdev API guarantees that the number meets min, max and * alignment requirements. */ if (nb_tx_desc <= limits->txq_min_entries) *txq_entries = limits->txq_min_entries; else *txq_entries = rte_align32pow2(nb_tx_desc); *evq_entries = *txq_entries; *txq_max_fill_level = RTE_MIN(nb_tx_desc, SFC_EF10_TXQ_LIMIT(*evq_entries)); return 0; } static sfc_dp_tx_qcreate_t sfc_ef10_tx_qcreate; static int sfc_ef10_tx_qcreate(uint16_t port_id, uint16_t queue_id, const struct rte_pci_addr *pci_addr, int socket_id, const struct sfc_dp_tx_qcreate_info *info, struct sfc_dp_txq **dp_txqp) { struct sfc_ef10_txq *txq; int rc; rc = EINVAL; if (info->txq_entries != info->evq_entries) goto fail_bad_args; rc = ENOMEM; txq = rte_zmalloc_socket("sfc-ef10-txq", sizeof(*txq), RTE_CACHE_LINE_SIZE, socket_id); if (txq == NULL) goto fail_txq_alloc; sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr); rc = ENOMEM; txq->sw_ring = rte_calloc_socket("sfc-ef10-txq-sw_ring", info->txq_entries, sizeof(*txq->sw_ring), RTE_CACHE_LINE_SIZE, socket_id); if (txq->sw_ring == NULL) goto fail_sw_ring_alloc; if (info->offloads & (DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO)) { txq->tsoh = rte_calloc_socket("sfc-ef10-txq-tsoh", info->txq_entries, SFC_TSOH_STD_LEN, RTE_CACHE_LINE_SIZE, socket_id); if (txq->tsoh == NULL) goto fail_tsoh_alloc; txq->tsoh_iova = rte_malloc_virt2iova(txq->tsoh); } txq->flags = SFC_EF10_TXQ_NOT_RUNNING; txq->ptr_mask = info->txq_entries - 1; txq->max_fill_level = info->max_fill_level; txq->free_thresh = info->free_thresh; txq->txq_hw_ring = info->txq_hw_ring; txq->doorbell = (volatile uint8_t *)info->mem_bar + ER_DZ_TX_DESC_UPD_REG_OFST + (info->hw_index << info->vi_window_shift); txq->evq_hw_ring = info->evq_hw_ring; txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit; *dp_txqp = &txq->dp; return 0; fail_tsoh_alloc: rte_free(txq->sw_ring); fail_sw_ring_alloc: rte_free(txq); fail_txq_alloc: fail_bad_args: return rc; } static sfc_dp_tx_qdestroy_t sfc_ef10_tx_qdestroy; static void sfc_ef10_tx_qdestroy(struct sfc_dp_txq *dp_txq) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); rte_free(txq->tsoh); rte_free(txq->sw_ring); rte_free(txq); } static sfc_dp_tx_qstart_t sfc_ef10_tx_qstart; static int sfc_ef10_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr, unsigned int txq_desc_index) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); txq->evq_read_ptr = evq_read_ptr; txq->added = txq->completed = txq_desc_index; txq->flags |= SFC_EF10_TXQ_STARTED; txq->flags &= ~(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION); return 0; } static sfc_dp_tx_qstop_t sfc_ef10_tx_qstop; static void sfc_ef10_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); txq->flags |= SFC_EF10_TXQ_NOT_RUNNING; *evq_read_ptr = txq->evq_read_ptr; } static sfc_dp_tx_qtx_ev_t sfc_ef10_tx_qtx_ev; static bool sfc_ef10_tx_qtx_ev(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int id) { __rte_unused struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); SFC_ASSERT(txq->flags & SFC_EF10_TXQ_NOT_RUNNING); /* * It is safe to ignore Tx event since we reap all mbufs on * queue purge anyway. */ return false; } static sfc_dp_tx_qreap_t sfc_ef10_tx_qreap; static void sfc_ef10_tx_qreap(struct sfc_dp_txq *dp_txq) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); unsigned int completed; for (completed = txq->completed; completed != txq->added; ++completed) { struct sfc_ef10_tx_sw_desc *txd; txd = &txq->sw_ring[completed & txq->ptr_mask]; if (txd->mbuf != NULL) { rte_pktmbuf_free_seg(txd->mbuf); txd->mbuf = NULL; } } txq->flags &= ~SFC_EF10_TXQ_STARTED; } static unsigned int sfc_ef10_tx_qdesc_npending(struct sfc_ef10_txq *txq) { const unsigned int curr_done = txq->completed - 1; unsigned int anew_done = curr_done; efx_qword_t tx_ev; const unsigned int evq_old_read_ptr = txq->evq_read_ptr; if (unlikely(txq->flags & (SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION))) return 0; while (sfc_ef10_tx_get_event(txq, &tx_ev)) anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX); /* * The function does not process events, so return event queue read * pointer to the original position to allow the events that were * read to be processed later */ txq->evq_read_ptr = evq_old_read_ptr; return (anew_done - curr_done) & txq->ptr_mask; } static sfc_dp_tx_qdesc_status_t sfc_ef10_tx_qdesc_status; static int sfc_ef10_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset) { struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq); unsigned int npending = sfc_ef10_tx_qdesc_npending(txq); if (unlikely(offset > txq->ptr_mask)) return -EINVAL; if (unlikely(offset >= txq->max_fill_level)) return RTE_ETH_TX_DESC_UNAVAIL; if (unlikely(offset < npending)) return RTE_ETH_TX_DESC_FULL; return RTE_ETH_TX_DESC_DONE; } struct sfc_dp_tx sfc_ef10_tx = { .dp = { .name = SFC_KVARG_DATAPATH_EF10, .type = SFC_DP_TX, .hw_fw_caps = SFC_DP_HW_FW_CAP_EF10, }, .features = SFC_DP_TX_FEAT_MULTI_PROCESS, .dev_offload_capa = DEV_TX_OFFLOAD_MULTI_SEGS, .queue_offload_capa = DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO, .get_dev_info = sfc_ef10_get_dev_info, .qsize_up_rings = sfc_ef10_tx_qsize_up_rings, .qcreate = sfc_ef10_tx_qcreate, .qdestroy = sfc_ef10_tx_qdestroy, .qstart = sfc_ef10_tx_qstart, .qtx_ev = sfc_ef10_tx_qtx_ev, .qstop = sfc_ef10_tx_qstop, .qreap = sfc_ef10_tx_qreap, .qdesc_status = sfc_ef10_tx_qdesc_status, .pkt_prepare = sfc_ef10_prepare_pkts, .pkt_burst = sfc_ef10_xmit_pkts, }; struct sfc_dp_tx sfc_ef10_simple_tx = { .dp = { .name = SFC_KVARG_DATAPATH_EF10_SIMPLE, .type = SFC_DP_TX, }, .features = SFC_DP_TX_FEAT_MULTI_PROCESS, .dev_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE, .queue_offload_capa = DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM, .get_dev_info = sfc_ef10_get_dev_info, .qsize_up_rings = sfc_ef10_tx_qsize_up_rings, .qcreate = sfc_ef10_tx_qcreate, .qdestroy = sfc_ef10_tx_qdestroy, .qstart = sfc_ef10_tx_qstart, .qtx_ev = sfc_ef10_tx_qtx_ev, .qstop = sfc_ef10_tx_qstop, .qreap = sfc_ef10_tx_qreap, .qdesc_status = sfc_ef10_tx_qdesc_status, #ifdef RTE_LIBRTE_SFC_EFX_DEBUG .pkt_prepare = sfc_ef10_simple_prepare_pkts, #endif .pkt_burst = sfc_ef10_simple_xmit_pkts, };