/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/thread.h" #include "spdk/env.h" #include "spdk/event.h" #include "spdk/log.h" #include "spdk/string.h" #include "spdk/accel_engine.h" #include "spdk/crc32.h" #include "spdk/util.h" #define DATA_PATTERN 0x5a #define ALIGN_4K 0x1000 static uint64_t g_tsc_rate; static uint64_t g_tsc_us_rate; static uint64_t g_tsc_end; static int g_xfer_size_bytes = 4096; static int g_queue_depth = 32; static int g_time_in_sec = 5; static uint32_t g_crc32c_seed = 0; static int g_fail_percent_goal = 0; static uint8_t g_fill_pattern = 255; static bool g_verify = false; static const char *g_workload_type = NULL; static enum accel_capability g_workload_selection; static struct worker_thread *g_workers = NULL; static int g_num_workers = 0; static pthread_mutex_t g_workers_lock = PTHREAD_MUTEX_INITIALIZER; uint64_t g_capabilites; struct ap_task; struct worker_thread { struct spdk_io_channel *ch; uint64_t xfer_completed; uint64_t xfer_failed; uint64_t injected_miscompares; uint64_t current_queue_depth; TAILQ_HEAD(, ap_task) tasks; struct worker_thread *next; unsigned core; struct spdk_thread *thread; bool is_draining; struct spdk_poller *is_draining_poller; struct spdk_poller *stop_poller; }; struct ap_task { void *src; void *dst; void *dst2; struct worker_thread *worker; int status; int expected_status; /* used for compare */ TAILQ_ENTRY(ap_task) link; }; static void dump_user_config(struct spdk_app_opts *opts) { printf("SPDK Configuration:\n"); printf("Core mask: %s\n\n", opts->reactor_mask); printf("Accel Perf Configuration:\n"); printf("Workload Type: %s\n", g_workload_type); if (g_workload_selection == ACCEL_CRC32C) { printf("CRC-32C seed: %u\n", g_crc32c_seed); } else if (g_workload_selection == ACCEL_FILL) { printf("Fill pattern: 0x%x\n", g_fill_pattern); } else if ((g_workload_selection == ACCEL_COMPARE) && g_fail_percent_goal > 0) { printf("Failure inject: %u percent\n", g_fail_percent_goal); } printf("Transfer size: %u bytes\n", g_xfer_size_bytes); printf("Queue depth: %u\n", g_queue_depth); printf("Run time: %u seconds\n", g_time_in_sec); printf("Verify: %s\n\n", g_verify ? "Yes" : "No"); } static void usage(void) { printf("accel_perf options:\n"); printf("\t[-h help message]\n"); printf("\t[-q queue depth]\n"); printf("\t[-n number of channels]\n"); printf("\t[-o transfer size in bytes]\n"); printf("\t[-t time in seconds]\n"); printf("\t[-w workload type must be one of these: copy, fill, crc32c, compare, dualcast\n"); printf("\t[-s for crc32c workload, use this seed value (default 0)\n"); printf("\t[-P for compare workload, percentage of operations that should miscompare (percent, default 0)\n"); printf("\t[-f for fill workload, use this BYTE value (default 255)\n"); printf("\t[-y verify result if this switch is on]\n"); } static int parse_args(int argc, char *argv) { switch (argc) { case 'f': g_fill_pattern = (uint8_t)spdk_strtol(optarg, 10); break; case 'o': g_xfer_size_bytes = spdk_strtol(optarg, 10); break; case 'P': g_fail_percent_goal = spdk_strtol(optarg, 10); break; case 'q': g_queue_depth = spdk_strtol(optarg, 10); break; case 's': g_crc32c_seed = spdk_strtol(optarg, 10); break; case 't': g_time_in_sec = spdk_strtol(optarg, 10); break; case 'y': g_verify = true; break; case 'w': g_workload_type = optarg; if (!strcmp(g_workload_type, "copy")) { g_workload_selection = ACCEL_COPY; } else if (!strcmp(g_workload_type, "fill")) { g_workload_selection = ACCEL_FILL; } else if (!strcmp(g_workload_type, "crc32c")) { g_workload_selection = ACCEL_CRC32C; } else if (!strcmp(g_workload_type, "compare")) { g_workload_selection = ACCEL_COMPARE; } else if (!strcmp(g_workload_type, "dualcast")) { g_workload_selection = ACCEL_DUALCAST; } break; default: usage(); return 1; } return 0; } static void unregister_worker(void *arg1) { struct worker_thread *worker = arg1; struct ap_task *task; while (!TAILQ_EMPTY(&worker->tasks)) { task = TAILQ_FIRST(&worker->tasks); TAILQ_REMOVE(&worker->tasks, task, link); free(task); } spdk_put_io_channel(worker->ch); pthread_mutex_lock(&g_workers_lock); assert(g_num_workers >= 1); if (--g_num_workers == 0) { pthread_mutex_unlock(&g_workers_lock); spdk_app_stop(0); } pthread_mutex_unlock(&g_workers_lock); } static void accel_done(void *ref, int status); static void _submit_single(void *arg1, void *arg2) { struct worker_thread *worker = arg1; struct ap_task *task = arg2; int random_num; int rc = 0; assert(worker); task->worker = worker; task->worker->current_queue_depth++; switch (g_workload_selection) { case ACCEL_COPY: rc = spdk_accel_submit_copy(worker->ch, task->dst, task->src, g_xfer_size_bytes, accel_done, task); break; case ACCEL_FILL: /* For fill use the first byte of the task->dst buffer */ rc = spdk_accel_submit_fill(worker->ch, task->dst, *(uint8_t *)task->src, g_xfer_size_bytes, accel_done, task); break; case ACCEL_CRC32C: rc = spdk_accel_submit_crc32c(worker->ch, (uint32_t *)task->dst, task->src, g_crc32c_seed, g_xfer_size_bytes, accel_done, task); break; case ACCEL_COMPARE: random_num = rand() % 100; if (random_num < g_fail_percent_goal) { task->expected_status = -EILSEQ; *(uint8_t *)task->dst = ~DATA_PATTERN; } else { task->expected_status = 0; *(uint8_t *)task->dst = DATA_PATTERN; } rc = spdk_accel_submit_compare(worker->ch, task->dst, task->src, g_xfer_size_bytes, accel_done, task); break; case ACCEL_DUALCAST: rc = spdk_accel_submit_dualcast(worker->ch, task->dst, task->dst2, task->src, g_xfer_size_bytes, accel_done, task); break; default: assert(false); break; } if (rc) { accel_done(task, rc); } } static void _accel_done(void *arg1) { struct ap_task *task = arg1; struct worker_thread *worker = task->worker; uint32_t sw_crc32c; assert(worker); assert(worker->current_queue_depth > 0); if (g_verify && task->status == 0) { switch (g_workload_selection) { case ACCEL_CRC32C: /* calculate sw CRC-32C and compare to sw aceel result. */ sw_crc32c = spdk_crc32c_update(task->src, g_xfer_size_bytes, ~g_crc32c_seed); if (*(uint32_t *)task->dst != sw_crc32c) { SPDK_NOTICELOG("CRC-32C miscompare\n"); worker->xfer_failed++; } break; case ACCEL_COPY: if (memcmp(task->src, task->dst, g_xfer_size_bytes)) { SPDK_NOTICELOG("Data miscompare\n"); worker->xfer_failed++; } break; case ACCEL_DUALCAST: if (memcmp(task->src, task->dst, g_xfer_size_bytes)) { SPDK_NOTICELOG("Data miscompare, first destination\n"); worker->xfer_failed++; } if (memcmp(task->src, task->dst2, g_xfer_size_bytes)) { SPDK_NOTICELOG("Data miscompare, second destination\n"); worker->xfer_failed++; } break; case ACCEL_FILL: if (memcmp(task->dst, task->src, g_xfer_size_bytes)) { SPDK_NOTICELOG("Data miscompare\n"); worker->xfer_failed++; } break; case ACCEL_COMPARE: break; default: assert(false); break; } } if (task->expected_status == -EILSEQ) { assert(task->status != 0); worker->injected_miscompares++; } else if (task->status) { /* Expected to pass but API reported error. */ worker->xfer_failed++; } worker->xfer_completed++; worker->current_queue_depth--; if (!worker->is_draining) { _submit_single(worker, task); } else { spdk_free(task->src); spdk_free(task->dst); if (g_workload_selection == ACCEL_DUALCAST) { spdk_free(task->dst2); } TAILQ_INSERT_TAIL(&worker->tasks, task, link); } } static void batch_done(void *cb_arg, int status) { struct ap_task *task = (struct ap_task *)cb_arg; struct worker_thread *worker = task->worker; worker->current_queue_depth--; TAILQ_INSERT_TAIL(&worker->tasks, task, link); } static int dump_result(void) { uint64_t total_completed = 0; uint64_t total_failed = 0; uint64_t total_miscompared = 0; uint64_t total_xfer_per_sec, total_bw_in_MiBps; struct worker_thread *worker = g_workers; printf("\nCore Transfers Bandwidth Failed Miscompares\n"); printf("-----------------------------------------------------------------\n"); while (worker != NULL) { uint64_t xfer_per_sec = worker->xfer_completed / g_time_in_sec; uint64_t bw_in_MiBps = (worker->xfer_completed * g_xfer_size_bytes) / (g_time_in_sec * 1024 * 1024); total_completed += worker->xfer_completed; total_failed += worker->xfer_failed; total_miscompared += worker->injected_miscompares; if (xfer_per_sec) { printf("%10d%12" PRIu64 "/s%8" PRIu64 " MiB/s%11" PRIu64 " %11" PRIu64 "\n", worker->core, xfer_per_sec, bw_in_MiBps, worker->xfer_failed, worker->injected_miscompares); } worker = worker->next; } total_xfer_per_sec = total_completed / g_time_in_sec; total_bw_in_MiBps = (total_completed * g_xfer_size_bytes) / (g_time_in_sec * 1024 * 1024); printf("==================================================================\n"); printf("Total:%16" PRIu64 "/s%8" PRIu64 " MiB/s%11" PRIu64 " %11" PRIu64"\n\n", total_xfer_per_sec, total_bw_in_MiBps, total_failed, total_miscompared); return total_failed ? 1 : 0; } static int _check_draining(void *arg) { struct worker_thread *worker = arg; assert(worker); if (worker->current_queue_depth == 0) { spdk_poller_unregister(&worker->is_draining_poller); unregister_worker(worker); } return -1; } static int _worker_stop(void *arg) { struct worker_thread *worker = arg; assert(worker); spdk_poller_unregister(&worker->stop_poller); /* now let the worker drain and check it's outstanding IO with a poller */ worker->is_draining = true; worker->is_draining_poller = SPDK_POLLER_REGISTER(_check_draining, worker, 0); return 0; } static void _init_thread_done(void *ctx) { } static int _get_task_data_bufs(struct ap_task *task) { uint32_t align = 0; /* For dualcast, the DSA HW requires 4K alignment on destination addresses but * we do this for all engines to keep it simple. */ if (g_workload_selection == ACCEL_DUALCAST) { align = ALIGN_4K; } task->src = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL); if (task->src == NULL) { fprintf(stderr, "Unable to alloc src buffer\n"); return -ENOMEM; } memset(task->src, DATA_PATTERN, g_xfer_size_bytes); task->dst = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL); if (task->dst == NULL) { fprintf(stderr, "Unable to alloc dst buffer\n"); return -ENOMEM; } /* For compare we want the buffers to match, otherwise not. */ if (g_workload_selection == ACCEL_COMPARE) { memset(task->dst, DATA_PATTERN, g_xfer_size_bytes); } else { memset(task->dst, ~DATA_PATTERN, g_xfer_size_bytes); } /* For fill, set the entire src buffer so we can check if verify is enabled. */ if (g_workload_selection == ACCEL_FILL) { memset(task->src, g_fill_pattern, g_xfer_size_bytes); } if (g_workload_selection == ACCEL_DUALCAST) { task->dst2 = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL); if (task->dst2 == NULL) { fprintf(stderr, "Unable to alloc dst buffer\n"); return -ENOMEM; } memset(task->dst2, ~DATA_PATTERN, g_xfer_size_bytes); } return 0; } static int _batch_prep_cmd(struct worker_thread *worker, struct ap_task *task, struct spdk_accel_batch *batch) { int rc = 0; switch (g_workload_selection) { case ACCEL_COPY: rc = spdk_accel_batch_prep_copy(worker->ch, batch, task->dst, task->src, g_xfer_size_bytes, accel_done, task); break; case ACCEL_DUALCAST: rc = spdk_accel_batch_prep_dualcast(worker->ch, batch, task->dst, task->dst2, task->src, g_xfer_size_bytes, accel_done, task); break; case ACCEL_COMPARE: rc = spdk_accel_batch_prep_compare(worker->ch, batch, task->dst, task->src, g_xfer_size_bytes, accel_done, task); break; case ACCEL_FILL: rc = spdk_accel_batch_prep_fill(worker->ch, batch, task->dst, *(uint8_t *)task->src, g_xfer_size_bytes, accel_done, task); break; case ACCEL_CRC32C: rc = spdk_accel_batch_prep_crc32c(worker->ch, batch, (uint32_t *)task->dst, task->src, g_crc32c_seed, g_xfer_size_bytes, accel_done, task); break; default: assert(false); break; } return rc; } static void _init_thread(void *arg1) { struct worker_thread *worker; struct ap_task *task; int i, rc, max_per_batch, batch_count, num_tasks; int remaining = g_queue_depth; struct spdk_accel_batch *batch, *new_batch; worker = calloc(1, sizeof(*worker)); if (worker == NULL) { fprintf(stderr, "Unable to allocate worker\n"); return; } worker->core = spdk_env_get_current_core(); worker->thread = spdk_get_thread(); worker->next = g_workers; worker->ch = spdk_accel_engine_get_io_channel(); max_per_batch = spdk_accel_batch_get_max(worker->ch); assert(max_per_batch > 0); num_tasks = g_queue_depth + spdk_divide_round_up(g_queue_depth, max_per_batch); TAILQ_INIT(&worker->tasks); for (i = 0; i < num_tasks; i++) { task = calloc(1, sizeof(struct ap_task)); if (task == NULL) { fprintf(stderr, "Could not allocate task.\n"); return; /* TODO cleanup */ } TAILQ_INSERT_TAIL(&worker->tasks, task, link); } /* Register a poller that will stop the worker at time elapsed */ worker->stop_poller = SPDK_POLLER_REGISTER(_worker_stop, worker, g_time_in_sec * 1000000ULL); g_workers = worker; pthread_mutex_lock(&g_workers_lock); g_num_workers++; pthread_mutex_unlock(&g_workers_lock); /* Batching is only possible if there is at least 2 operations. */ if (g_queue_depth > 1) { /* Outter loop sets up each batch command, inner loop populates the * batch descriptors. */ do { new_batch = spdk_accel_batch_create(worker->ch); if (new_batch == NULL) { break; } batch = new_batch; batch_count = 0; do { if (!TAILQ_EMPTY(&worker->tasks)) { task = TAILQ_FIRST(&worker->tasks); TAILQ_REMOVE(&worker->tasks, task, link); } else { fprintf(stderr, "Unable to get accel_task\n"); goto error; } task->worker = worker; task->worker->current_queue_depth++; if (_get_task_data_bufs(task)) { fprintf(stderr, "Unable to get data bufs\n"); goto error; } rc = _batch_prep_cmd(worker, task, batch); if (rc) { fprintf(stderr, "error preping command\n"); goto error; } remaining--; batch_count++; } while (batch_count < max_per_batch && remaining > 0); /* Now send the batch command. */ if (!TAILQ_EMPTY(&worker->tasks)) { task = TAILQ_FIRST(&worker->tasks); TAILQ_REMOVE(&worker->tasks, task, link); } else { fprintf(stderr, "Unable to get accel_task\n"); goto error; } task->worker = worker; task->worker->current_queue_depth++; rc = spdk_accel_batch_submit(worker->ch, batch, batch_done, task); if (rc) { fprintf(stderr, "error ending batch %d\n", rc); goto error; } /* We can't build a batch unless it has 2 descriptors (per spec). */ } while (remaining > 1); /* If there are no more left, we're done. */ if (remaining == 0) { return; } } /* For engines that don't support batch or for the odd event that * a batch ends with only one descriptor left. */ for (i = 0; i < remaining; i++) { if (!TAILQ_EMPTY(&worker->tasks)) { task = TAILQ_FIRST(&worker->tasks); TAILQ_REMOVE(&worker->tasks, task, link); } else { fprintf(stderr, "Unable to get accel_task\n"); goto error; } if (_get_task_data_bufs(task)) { fprintf(stderr, "Unable to get data bufs\n"); goto error; } _submit_single(worker, task); } return; error: /* TODO clean exit */ raise(SIGINT); while (!TAILQ_EMPTY(&worker->tasks)) { task = TAILQ_FIRST(&worker->tasks); TAILQ_REMOVE(&worker->tasks, task, link); free(task); } free(worker); spdk_app_stop(-1); } static void accel_done(void *cb_arg, int status) { struct ap_task *task = (struct ap_task *)cb_arg; struct worker_thread *worker = task->worker; assert(worker); task->status = status; spdk_thread_send_msg(worker->thread, _accel_done, task); } static void accel_perf_start(void *arg1) { struct spdk_io_channel *accel_ch; accel_ch = spdk_accel_engine_get_io_channel(); g_capabilites = spdk_accel_get_capabilities(accel_ch); spdk_put_io_channel(accel_ch); if ((g_capabilites & g_workload_selection) != g_workload_selection) { SPDK_WARNLOG("The selected workload is not natively supported by the current engine\n"); SPDK_WARNLOG("The software engine will be used instead.\n\n"); } g_tsc_rate = spdk_get_ticks_hz(); g_tsc_us_rate = g_tsc_rate / (1000 * 1000); g_tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; printf("Running for %d seconds...\n", g_time_in_sec); fflush(stdout); spdk_for_each_thread(_init_thread, NULL, _init_thread_done); } int main(int argc, char **argv) { struct spdk_app_opts opts = {}; struct worker_thread *worker, *tmp; int rc = 0; pthread_mutex_init(&g_workers_lock, NULL); spdk_app_opts_init(&opts); opts.reactor_mask = "0x1"; if ((rc = spdk_app_parse_args(argc, argv, &opts, "o:q:t:yw:P:f:", NULL, parse_args, usage)) != SPDK_APP_PARSE_ARGS_SUCCESS) { rc = -1; goto cleanup; } if ((g_workload_selection != ACCEL_COPY) && (g_workload_selection != ACCEL_FILL) && (g_workload_selection != ACCEL_CRC32C) && (g_workload_selection != ACCEL_COMPARE) && (g_workload_selection != ACCEL_DUALCAST)) { usage(); rc = -1; goto cleanup; } dump_user_config(&opts); rc = spdk_app_start(&opts, accel_perf_start, NULL); if (rc) { SPDK_ERRLOG("ERROR starting application\n"); } else { dump_result(); } pthread_mutex_destroy(&g_workers_lock); worker = g_workers; while (worker) { tmp = worker->next; free(worker); worker = tmp; } cleanup: spdk_app_fini(); return rc; }