/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/nvme.h" #include "spdk/env.h" #include "spdk/string.h" #include "spdk/nvme_intel.h" struct ctrlr_entry { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_intel_rw_latency_page latency_page; struct ctrlr_entry *next; char name[1024]; }; struct ns_entry { struct { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; } nvme; struct ns_entry *next; uint32_t io_size_blocks; uint64_t size_in_ios; char name[1024]; }; struct ns_worker_ctx { struct ns_entry *entry; uint64_t io_completed; uint64_t current_queue_depth; uint64_t offset_in_ios; bool is_draining; struct spdk_nvme_qpair *qpair; struct ns_worker_ctx *next; }; struct arb_task { struct ns_worker_ctx *ns_ctx; void *buf; }; struct worker_thread { struct ns_worker_ctx *ns_ctx; struct worker_thread *next; unsigned lcore; enum spdk_nvme_qprio qprio; }; struct arb_context { int shm_id; int outstanding_commands; int num_namespaces; int num_workers; int rw_percentage; int is_random; int queue_depth; int time_in_sec; int io_count; uint8_t latency_tracking_enable; uint8_t arbitration_mechanism; uint8_t arbitration_config; uint32_t io_size_bytes; uint32_t max_completions; uint64_t tsc_rate; const char *core_mask; const char *workload_type; }; struct feature { uint32_t result; bool valid; }; static struct spdk_mempool *task_pool = NULL; static struct ctrlr_entry *g_controllers = NULL; static struct ns_entry *g_namespaces = NULL; static struct worker_thread *g_workers = NULL; static struct feature features[SPDK_NVME_FEAT_ARBITRATION + 1] = {}; static struct arb_context g_arbitration = { .shm_id = -1, .outstanding_commands = 0, .num_workers = 0, .num_namespaces = 0, .rw_percentage = 50, .queue_depth = 64, .time_in_sec = 60, .io_count = 100000, .latency_tracking_enable = 0, .arbitration_mechanism = SPDK_NVME_CC_AMS_RR, .arbitration_config = 0, .io_size_bytes = 131072, .max_completions = 0, /* Default 4 cores for urgent/high/medium/low */ .core_mask = "0xf", .workload_type = "randrw", }; /* * For weighted round robin arbitration mechanism, the smaller value between * weight and burst will be picked to execute the commands in one queue. */ #define USER_SPECIFIED_HIGH_PRIORITY_WEIGHT 32 #define USER_SPECIFIED_MEDIUM_PRIORITY_WEIGHT 16 #define USER_SPECIFIED_LOW_PRIORITY_WEIGHT 8 static void task_complete(struct arb_task *task); static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion); static void get_arb_feature(struct spdk_nvme_ctrlr *ctrlr); static int set_arb_feature(struct spdk_nvme_ctrlr *ctrlr); static const char *print_qprio(enum spdk_nvme_qprio); static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (spdk_nvme_ns_get_size(ns) < g_arbitration.io_size_bytes || spdk_nvme_ns_get_extended_sector_size(ns) > g_arbitration.io_size_bytes || g_arbitration.io_size_bytes % spdk_nvme_ns_get_extended_sector_size(ns)) { printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_extended_sector_size(ns), g_arbitration.io_size_bytes); return; } entry = malloc(sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } entry->nvme.ctrlr = ctrlr; entry->nvme.ns = ns; entry->size_in_ios = spdk_nvme_ns_get_size(ns) / g_arbitration.io_size_bytes; entry->io_size_blocks = g_arbitration.io_size_bytes / spdk_nvme_ns_get_sector_size(ns); snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); g_arbitration.num_namespaces++; entry->next = g_namespaces; g_namespaces = entry; } static void enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl) { if (spdk_nvme_cpl_is_error(cpl)) { printf("enable_latency_tracking_complete failed\n"); } g_arbitration.outstanding_commands--; } static void set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable) { int res; union spdk_nvme_intel_feat_latency_tracking latency_tracking; if (enable) { latency_tracking.bits.enable = 0x01; } else { latency_tracking.bits.enable = 0x00; } res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING, latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL); if (res) { printf("fail to allocate nvme request.\n"); return; } g_arbitration.outstanding_commands++; while (g_arbitration.outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { uint32_t nsid; struct spdk_nvme_ns *ns; struct ctrlr_entry *entry = calloc(1, sizeof(struct ctrlr_entry)); union spdk_nvme_cap_register cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr); const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); entry->ctrlr = ctrlr; entry->next = g_controllers; g_controllers = entry; if ((g_arbitration.latency_tracking_enable != 0) && spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) { set_latency_tracking_feature(ctrlr, true); } for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); if (ns == NULL) { continue; } register_ns(ctrlr, ns); } if (g_arbitration.arbitration_mechanism == SPDK_NVME_CAP_AMS_WRR && (cap.bits.ams & SPDK_NVME_CAP_AMS_WRR)) { get_arb_feature(ctrlr); if (g_arbitration.arbitration_config != 0) { set_arb_feature(ctrlr); get_arb_feature(ctrlr); } } } static __thread unsigned int seed = 0; static void submit_single_io(struct ns_worker_ctx *ns_ctx) { struct arb_task *task = NULL; uint64_t offset_in_ios; int rc; struct ns_entry *entry = ns_ctx->entry; task = spdk_mempool_get(task_pool); if (!task) { fprintf(stderr, "Failed to get task from task_pool\n"); exit(1); } task->buf = spdk_dma_zmalloc(g_arbitration.io_size_bytes, 0x200, NULL); if (!task->buf) { spdk_mempool_put(task_pool, task); fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n"); exit(1); } task->ns_ctx = ns_ctx; if (g_arbitration.is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = ns_ctx->offset_in_ios++; if (ns_ctx->offset_in_ios == entry->size_in_ios) { ns_ctx->offset_in_ios = 0; } } if ((g_arbitration.rw_percentage == 100) || (g_arbitration.rw_percentage != 0 && ((rand_r(&seed) % 100) < g_arbitration.rw_percentage))) { rc = spdk_nvme_ns_cmd_read(entry->nvme.ns, ns_ctx->qpair, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task, 0); } else { rc = spdk_nvme_ns_cmd_write(entry->nvme.ns, ns_ctx->qpair, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task, 0); } if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); } else { ns_ctx->current_queue_depth++; } } static void task_complete(struct arb_task *task) { struct ns_worker_ctx *ns_ctx; ns_ctx = task->ns_ctx; ns_ctx->current_queue_depth--; ns_ctx->io_completed++; spdk_dma_free(task->buf); spdk_mempool_put(task_pool, task); /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (!ns_ctx->is_draining) { submit_single_io(ns_ctx); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion) { task_complete((struct arb_task *)ctx); } static void check_io(struct ns_worker_ctx *ns_ctx) { spdk_nvme_qpair_process_completions(ns_ctx->qpair, g_arbitration.max_completions); } static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) { while (queue_depth-- > 0) { submit_single_io(ns_ctx); } } static void drain_io(struct ns_worker_ctx *ns_ctx) { ns_ctx->is_draining = true; while (ns_ctx->current_queue_depth > 0) { check_io(ns_ctx); } } static int init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx, enum spdk_nvme_qprio qprio) { struct spdk_nvme_ctrlr *ctrlr = ns_ctx->entry->nvme.ctrlr; struct spdk_nvme_io_qpair_opts opts; spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); opts.qprio = qprio; ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, &opts, sizeof(opts)); if (!ns_ctx->qpair) { printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n"); return 1; } return 0; } static void cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair); } static void cleanup(uint32_t task_count) { struct ns_entry *entry = g_namespaces; struct ns_entry *next_entry = NULL; struct worker_thread *worker = g_workers; struct worker_thread *next_worker = NULL; while (entry) { next_entry = entry->next; free(entry); entry = next_entry; }; while (worker) { struct ns_worker_ctx *ns_ctx = worker->ns_ctx; /* ns_worker_ctx is a list in the worker */ while (ns_ctx) { struct ns_worker_ctx *next_ns_ctx = ns_ctx->next; free(ns_ctx); ns_ctx = next_ns_ctx; } next_worker = worker->next; free(worker); worker = next_worker; }; if (spdk_mempool_count(task_pool) != (size_t)task_count) { fprintf(stderr, "task_pool count is %zu but should be %u\n", spdk_mempool_count(task_pool), task_count); } spdk_mempool_free(task_pool); } static int work_fn(void *arg) { uint64_t tsc_end; struct worker_thread *worker = (struct worker_thread *)arg; struct ns_worker_ctx *ns_ctx = NULL; printf("Starting thread on core %u with %s\n", worker->lcore, print_qprio(worker->qprio)); /* Allocate a queue pair for each namespace. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { if (init_ns_worker_ctx(ns_ctx, worker->qprio) != 0) { printf("ERROR: init_ns_worker_ctx() failed\n"); return 1; } ns_ctx = ns_ctx->next; } tsc_end = spdk_get_ticks() + g_arbitration.time_in_sec * g_arbitration.tsc_rate; /* Submit initial I/O for each namespace. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { submit_io(ns_ctx, g_arbitration.queue_depth); ns_ctx = ns_ctx->next; } while (1) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { check_io(ns_ctx); ns_ctx = ns_ctx->next; } if (spdk_get_ticks() > tsc_end) { break; } } ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { drain_io(ns_ctx); cleanup_ns_worker_ctx(ns_ctx); ns_ctx = ns_ctx->next; } return 0; } static void usage(char *program_name) { printf("%s options", program_name); printf("\n"); printf("\t[-q io depth]\n"); printf("\t[-s io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-l enable latency tracking, default: disabled]\n"); printf("\t\t(0 - disabled; 1 - enabled)\n"); printf("\t[-t time in seconds]\n"); printf("\t[-c core mask for I/O submission/completion.]\n"); printf("\t\t(default: 0xf - 4 cores)]\n"); printf("\t[-m max completions per poll]\n"); printf("\t\t(default: 0 - unlimited)\n"); printf("\t[-a arbitration mechanism, must be one of below]\n"); printf("\t\t(0, 1, 2)]\n"); printf("\t\t(0: default round robin mechanism)]\n"); printf("\t\t(1: weighted round robin mechanism)]\n"); printf("\t\t(2: vendor specific mechanism)]\n"); printf("\t[-b enable arbitration user configuration, default: disabled]\n"); printf("\t\t(0 - disabled; 1 - enabled)\n"); printf("\t[-n subjected IOs for performance comparison]\n"); printf("\t[-i shared memory group ID]\n"); } static const char * print_qprio(enum spdk_nvme_qprio qprio) { switch (qprio) { case SPDK_NVME_QPRIO_URGENT: return "urgent priority queue"; case SPDK_NVME_QPRIO_HIGH: return "high priority queue"; case SPDK_NVME_QPRIO_MEDIUM: return "medium priority queue"; case SPDK_NVME_QPRIO_LOW: return "low priority queue"; default: return "invalid priority queue"; } } static void print_configuration(char *program_name) { printf("%s run with configuration:\n", program_name); printf("%s -q %d -s %d -w %s -M %d -l %d -t %d -c %s -m %d -a %d -b %d -n %d -i %d\n", program_name, g_arbitration.queue_depth, g_arbitration.io_size_bytes, g_arbitration.workload_type, g_arbitration.rw_percentage, g_arbitration.latency_tracking_enable, g_arbitration.time_in_sec, g_arbitration.core_mask, g_arbitration.max_completions, g_arbitration.arbitration_mechanism, g_arbitration.arbitration_config, g_arbitration.io_count, g_arbitration.shm_id); } static void print_performance(void) { float io_per_second, sent_all_io_in_secs; struct worker_thread *worker; struct ns_worker_ctx *ns_ctx; worker = g_workers; while (worker) { ns_ctx = worker->ns_ctx; while (ns_ctx) { io_per_second = (float)ns_ctx->io_completed / g_arbitration.time_in_sec; sent_all_io_in_secs = g_arbitration.io_count / io_per_second; printf("%-43.43s core %u: %8.2f IO/s %8.2f secs/%d ios\n", ns_ctx->entry->name, worker->lcore, io_per_second, sent_all_io_in_secs, g_arbitration.io_count); ns_ctx = ns_ctx->next; } worker = worker->next; } printf("========================================================\n"); printf("\n"); } static void print_latency_page(struct ctrlr_entry *entry) { int i; printf("\n"); printf("%s\n", entry->name); printf("--------------------------------------------------------\n"); for (i = 0; i < 32; i++) { if (entry->latency_page.buckets_32us[i]) printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page.buckets_32us[i]); } for (i = 0; i < 31; i++) { if (entry->latency_page.buckets_1ms[i]) printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page.buckets_1ms[i]); } for (i = 0; i < 31; i++) { if (entry->latency_page.buckets_32ms[i]) printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32, entry->latency_page.buckets_32ms[i]); } } static void print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page) { struct ctrlr_entry *ctrlr; printf("%s Latency Statistics:\n", op_name); printf("========================================================\n"); ctrlr = g_controllers; while (ctrlr) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { if (spdk_nvme_ctrlr_cmd_get_log_page( ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG, &ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page), 0, enable_latency_tracking_complete, NULL)) { printf("nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } g_arbitration.outstanding_commands++; } else { printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name); } ctrlr = ctrlr->next; } while (g_arbitration.outstanding_commands) { ctrlr = g_controllers; while (ctrlr) { spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr); ctrlr = ctrlr->next; } } ctrlr = g_controllers; while (ctrlr) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { print_latency_page(ctrlr); } ctrlr = ctrlr->next; } printf("\n"); } static void print_stats(void) { print_performance(); if (g_arbitration.latency_tracking_enable) { if (g_arbitration.rw_percentage != 0) { print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); } if (g_arbitration.rw_percentage != 100) { print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY); } } } static int parse_args(int argc, char **argv) { const char *workload_type = NULL; int op = 0; bool mix_specified = false; long int val; while ((op = getopt(argc, argv, "c:l:i:m:q:s:t:w:M:a:b:n:h")) != -1) { switch (op) { case 'c': g_arbitration.core_mask = optarg; break; case 'w': g_arbitration.workload_type = optarg; break; case 'h': case '?': usage(argv[0]); return 1; default: val = spdk_strtol(optarg, 10); if (val < 0) { fprintf(stderr, "Converting a string to integer failed\n"); return val; } switch (op) { case 'i': g_arbitration.shm_id = val; break; case 'l': g_arbitration.latency_tracking_enable = val; break; case 'm': g_arbitration.max_completions = val; break; case 'q': g_arbitration.queue_depth = val; break; case 's': g_arbitration.io_size_bytes = val; break; case 't': g_arbitration.time_in_sec = val; break; case 'M': g_arbitration.rw_percentage = val; mix_specified = true; break; case 'a': g_arbitration.arbitration_mechanism = val; break; case 'b': g_arbitration.arbitration_config = val; break; case 'n': g_arbitration.io_count = val; break; default: usage(argv[0]); return -EINVAL; } } } workload_type = g_arbitration.workload_type; if (strcmp(workload_type, "read") && strcmp(workload_type, "write") && strcmp(workload_type, "randread") && strcmp(workload_type, "randwrite") && strcmp(workload_type, "rw") && strcmp(workload_type, "randrw")) { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread")) { g_arbitration.rw_percentage = 100; } if (!strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { g_arbitration.rw_percentage = 0; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread") || !strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { if (mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } if (!strcmp(workload_type, "rw") || !strcmp(workload_type, "randrw")) { if (g_arbitration.rw_percentage < 0 || g_arbitration.rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "write") || !strcmp(workload_type, "rw")) { g_arbitration.is_random = 0; } else { g_arbitration.is_random = 1; } if (g_arbitration.latency_tracking_enable != 0 && g_arbitration.latency_tracking_enable != 1) { fprintf(stderr, "-l must be specified to value 0 or 1.\n"); return 1; } switch (g_arbitration.arbitration_mechanism) { case SPDK_NVME_CC_AMS_RR: case SPDK_NVME_CC_AMS_WRR: case SPDK_NVME_CC_AMS_VS: break; default: fprintf(stderr, "-a must be specified to value 0, 1, or 7.\n"); return 1; } if (g_arbitration.arbitration_config != 0 && g_arbitration.arbitration_config != 1) { fprintf(stderr, "-b must be specified to value 0 or 1.\n"); return 1; } else if (g_arbitration.arbitration_config == 1 && g_arbitration.arbitration_mechanism != SPDK_NVME_CC_AMS_WRR) { fprintf(stderr, "-a must be specified to 1 (WRR) together.\n"); return 1; } return 0; } static int register_workers(void) { uint32_t i; struct worker_thread *worker; enum spdk_nvme_qprio qprio = SPDK_NVME_QPRIO_URGENT; g_workers = NULL; g_arbitration.num_workers = 0; SPDK_ENV_FOREACH_CORE(i) { worker = calloc(1, sizeof(*worker)); if (worker == NULL) { fprintf(stderr, "Unable to allocate worker\n"); return -1; } worker->lcore = i; worker->next = g_workers; g_workers = worker; g_arbitration.num_workers++; if (g_arbitration.arbitration_mechanism == SPDK_NVME_CAP_AMS_WRR) { qprio++; } worker->qprio = qprio & SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK; } return 0; } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { /* Update with user specified arbitration configuration */ opts->arb_mechanism = g_arbitration.arbitration_mechanism; printf("Attaching to %s\n", trid->traddr); return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { printf("Attached to %s\n", trid->traddr); /* Update with actual arbitration configuration in use */ g_arbitration.arbitration_mechanism = opts->arb_mechanism; register_ctrlr(ctrlr); } static int register_controllers(void) { printf("Initializing NVMe Controllers\n"); if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); return 1; } if (g_arbitration.num_namespaces == 0) { fprintf(stderr, "No valid namespaces to continue IO testing\n"); return 1; } return 0; } static void unregister_controllers(void) { struct ctrlr_entry *entry = g_controllers; while (entry) { struct ctrlr_entry *next = entry->next; if (g_arbitration.latency_tracking_enable && spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) { set_latency_tracking_feature(entry->ctrlr, false); } spdk_nvme_detach(entry->ctrlr); free(entry); entry = next; } } static int associate_workers_with_ns(void) { struct ns_entry *entry = g_namespaces; struct worker_thread *worker = g_workers; struct ns_worker_ctx *ns_ctx; int i, count; count = g_arbitration.num_namespaces > g_arbitration.num_workers ? g_arbitration.num_namespaces : g_arbitration.num_workers; for (i = 0; i < count; i++) { if (entry == NULL) { break; } ns_ctx = malloc(sizeof(struct ns_worker_ctx)); if (!ns_ctx) { return 1; } memset(ns_ctx, 0, sizeof(*ns_ctx)); printf("Associating %s with lcore %d\n", entry->name, worker->lcore); ns_ctx->entry = entry; ns_ctx->next = worker->ns_ctx; worker->ns_ctx = ns_ctx; worker = worker->next; if (worker == NULL) { worker = g_workers; } entry = entry->next; if (entry == NULL) { entry = g_namespaces; } } return 0; } static void get_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl) { struct feature *feature = cb_arg; int fid = feature - features; if (spdk_nvme_cpl_is_error(cpl)) { printf("get_feature(0x%02X) failed\n", fid); } else { feature->result = cpl->cdw0; feature->valid = true; } g_arbitration.outstanding_commands--; } static int get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t fid) { struct spdk_nvme_cmd cmd = {}; struct feature *feature = &features[fid]; feature->valid = false; cmd.opc = SPDK_NVME_OPC_GET_FEATURES; cmd.cdw10_bits.get_features.fid = fid; return spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0, get_feature_completion, feature); } static void get_arb_feature(struct spdk_nvme_ctrlr *ctrlr) { get_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION); g_arbitration.outstanding_commands++; while (g_arbitration.outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } if (features[SPDK_NVME_FEAT_ARBITRATION].valid) { union spdk_nvme_cmd_cdw11 arb; arb.feat_arbitration.raw = features[SPDK_NVME_FEAT_ARBITRATION].result; printf("Current Arbitration Configuration\n"); printf("===========\n"); printf("Arbitration Burst: "); if (arb.feat_arbitration.bits.ab == SPDK_NVME_ARBITRATION_BURST_UNLIMITED) { printf("no limit\n"); } else { printf("%u\n", 1u << arb.feat_arbitration.bits.ab); } printf("Low Priority Weight: %u\n", arb.feat_arbitration.bits.lpw + 1); printf("Medium Priority Weight: %u\n", arb.feat_arbitration.bits.mpw + 1); printf("High Priority Weight: %u\n", arb.feat_arbitration.bits.hpw + 1); printf("\n"); } } static void set_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl) { struct feature *feature = cb_arg; int fid = feature - features; if (spdk_nvme_cpl_is_error(cpl)) { printf("set_feature(0x%02X) failed\n", fid); feature->valid = false; } else { printf("Set Arbitration Feature Successfully\n"); } g_arbitration.outstanding_commands--; } static int set_arb_feature(struct spdk_nvme_ctrlr *ctrlr) { int ret; struct spdk_nvme_cmd cmd = {}; cmd.opc = SPDK_NVME_OPC_SET_FEATURES; cmd.cdw10_bits.set_features.fid = SPDK_NVME_FEAT_ARBITRATION; g_arbitration.outstanding_commands = 0; if (features[SPDK_NVME_FEAT_ARBITRATION].valid) { cmd.cdw11_bits.feat_arbitration.bits.ab = SPDK_NVME_ARBITRATION_BURST_UNLIMITED; cmd.cdw11_bits.feat_arbitration.bits.lpw = USER_SPECIFIED_LOW_PRIORITY_WEIGHT; cmd.cdw11_bits.feat_arbitration.bits.mpw = USER_SPECIFIED_MEDIUM_PRIORITY_WEIGHT; cmd.cdw11_bits.feat_arbitration.bits.hpw = USER_SPECIFIED_HIGH_PRIORITY_WEIGHT; } ret = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0, set_feature_completion, &features[SPDK_NVME_FEAT_ARBITRATION]); if (ret) { printf("Set Arbitration Feature: Failed 0x%x\n", ret); return 1; } g_arbitration.outstanding_commands++; while (g_arbitration.outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } if (!features[SPDK_NVME_FEAT_ARBITRATION].valid) { printf("Set Arbitration Feature failed and use default configuration\n"); } return 0; } int main(int argc, char **argv) { int rc; struct worker_thread *worker, *master_worker; unsigned master_core; char task_pool_name[30]; uint32_t task_count; struct spdk_env_opts opts; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "arb"; opts.core_mask = g_arbitration.core_mask; opts.shm_id = g_arbitration.shm_id; if (spdk_env_init(&opts) < 0) { return 1; } g_arbitration.tsc_rate = spdk_get_ticks_hz(); if (register_workers() != 0) { return 1; } if (register_controllers() != 0) { return 1; } if (associate_workers_with_ns() != 0) { return 1; } snprintf(task_pool_name, sizeof(task_pool_name), "task_pool_%d", getpid()); /* * The task_count will be dynamically calculated based on the * number of attached active namespaces, queue depth and number * of cores (workers) involved in the IO perations. */ task_count = g_arbitration.num_namespaces > g_arbitration.num_workers ? g_arbitration.num_namespaces : g_arbitration.num_workers; task_count *= g_arbitration.queue_depth; task_pool = spdk_mempool_create(task_pool_name, task_count, sizeof(struct arb_task), 0, SPDK_ENV_SOCKET_ID_ANY); if (task_pool == NULL) { fprintf(stderr, "could not initialize task pool\n"); return 1; } print_configuration(argv[0]); printf("Initialization complete. Launching workers.\n"); /* Launch all of the slave workers */ master_core = spdk_env_get_current_core(); master_worker = NULL; worker = g_workers; while (worker != NULL) { if (worker->lcore != master_core) { spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker); } else { assert(master_worker == NULL); master_worker = worker; } worker = worker->next; } assert(master_worker != NULL); rc = work_fn(master_worker); spdk_env_thread_wait_all(); print_stats(); unregister_controllers(); cleanup(task_count); if (rc != 0) { fprintf(stderr, "%s: errors occured\n", argv[0]); } return rc; }