;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2019 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; Authors: ; Erdinc Ozturk ; Vinodh Gopal ; James Guilford ; ; ; References: ; This code was derived and highly optimized from the code described in paper: ; Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on Intel Architecture Processors. August, 2010 ; ; For the shift-based reductions used in this code, we used the method described in paper: ; Shay Gueron, Michael E. Kounavis. Intel Carry-Less Multiplication Instruction and its Usage for Computing the GCM Mode. January, 2010. ; ; ; ; ; Assumptions: ; ; ; ; iv: ; 0 1 2 3 ; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | Salt (From the SA) | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | Initialization Vector | ; | (This is the sequence number from IPSec header) | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | 0x1 | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; ; ; ; AAD: ; AAD will be padded with 0 to the next 16byte multiple ; for example, assume AAD is a u32 vector ; ; if AAD is 8 bytes: ; AAD[3] = {A0, A1}; ; padded AAD in xmm register = {A1 A0 0 0} ; ; 0 1 2 3 ; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | SPI (A1) | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | 32-bit Sequence Number (A0) | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | 0x0 | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; ; AAD Format with 32-bit Sequence Number ; ; if AAD is 12 bytes: ; AAD[3] = {A0, A1, A2}; ; padded AAD in xmm register = {A2 A1 A0 0} ; ; 0 1 2 3 ; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | SPI (A2) | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | 64-bit Extended Sequence Number {A1,A0} | ; | | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; | 0x0 | ; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ; ; AAD Format with 64-bit Extended Sequence Number ; ; ; aadLen: ; Must be a multiple of 4 bytes and from the definition of the spec. ; The code additionally supports any aadLen length. ; ; TLen: ; from the definition of the spec, TLen can only be 8, 12 or 16 bytes. ; ; poly = x^128 + x^127 + x^126 + x^121 + 1 ; throughout the code, one tab and two tab indentations are used. one tab is for GHASH part, two tabs is for AES part. ; %include "include/os.asm" %include "include/reg_sizes.asm" %include "include/clear_regs.asm" %include "include/gcm_defines.asm" %include "include/gcm_keys_sse_avx.asm" %include "include/memcpy.asm" %ifndef GCM128_MODE %ifndef GCM192_MODE %ifndef GCM256_MODE %error "No GCM mode selected for gcm_avx_gen2.asm!" %endif %endif %endif %ifdef GCM128_MODE %define FN_NAME(x,y) aes_gcm_ %+ x %+ _128 %+ y %+ avx_gen2 %define NROUNDS 9 %endif %ifdef GCM192_MODE %define FN_NAME(x,y) aes_gcm_ %+ x %+ _192 %+ y %+ avx_gen2 %define NROUNDS 11 %endif %ifdef GCM256_MODE %define FN_NAME(x,y) aes_gcm_ %+ x %+ _256 %+ y %+ avx_gen2 %define NROUNDS 13 %endif default rel ; need to push 4 registers into stack to maintain %define STACK_OFFSET 8*4 %define TMP2 16*0 ; Temporary storage for AES State 2 (State 1 is stored in an XMM register) %define TMP3 16*1 ; Temporary storage for AES State 3 %define TMP4 16*2 ; Temporary storage for AES State 4 %define TMP5 16*3 ; Temporary storage for AES State 5 %define TMP6 16*4 ; Temporary storage for AES State 6 %define TMP7 16*5 ; Temporary storage for AES State 7 %define TMP8 16*6 ; Temporary storage for AES State 8 %define LOCAL_STORAGE 16*7 %ifidn __OUTPUT_FORMAT__, win64 %define XMM_STORAGE 16*10 %else %define XMM_STORAGE 0 %endif %define VARIABLE_OFFSET LOCAL_STORAGE + XMM_STORAGE section .text ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Utility Macros ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0) ; Input: A and B (128-bits each, bit-reflected) ; Output: C = A*B*x mod poly, (i.e. >>1 ) ; To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input ; GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %macro GHASH_MUL 7 %define %%GH %1 ; 16 Bytes %define %%HK %2 ; 16 Bytes %define %%T1 %3 %define %%T2 %4 %define %%T3 %5 %define %%T4 %6 %define %%T5 %7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Karatsuba vpshufd %%T2, %%GH, 01001110b vpshufd %%T3, %%HK, 01001110b vpxor %%T2, %%T2, %%GH ; %%T2 = (a1+a0) vpxor %%T3, %%T3, %%HK ; %%T3 = (b1+b0) vpclmulqdq %%T1, %%GH, %%HK, 0x11 ; %%T1 = a1*b1 vpclmulqdq %%GH, %%HK, 0x00 ; %%GH = a0*b0 vpclmulqdq %%T2, %%T3, 0x00 ; %%T2 = (a1+a0)*(b1+b0) vpxor %%T2, %%T2, %%GH vpxor %%T2, %%T2, %%T1 ; %%T2 = a0*b1+a1*b0 vpslldq %%T3, %%T2, 8 ; shift-L %%T3 2 DWs vpsrldq %%T2, %%T2, 8 ; shift-R %%T2 2 DWs vpxor %%GH, %%GH, %%T3 vpxor %%T1, %%T1, %%T2 ; <%%T1:%%GH> = %%GH x %%HK ;first phase of the reduction vpslld %%T2, %%GH, 31 ; packed right shifting << 31 vpslld %%T3, %%GH, 30 ; packed right shifting shift << 30 vpslld %%T4, %%GH, 25 ; packed right shifting shift << 25 vpxor %%T2, %%T2, %%T3 ; xor the shifted versions vpxor %%T2, %%T2, %%T4 vpsrldq %%T5, %%T2, 4 ; shift-R %%T5 1 DW vpslldq %%T2, %%T2, 12 ; shift-L %%T2 3 DWs vpxor %%GH, %%GH, %%T2 ; first phase of the reduction complete ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;second phase of the reduction vpsrld %%T2,%%GH,1 ; packed left shifting >> 1 vpsrld %%T3,%%GH,2 ; packed left shifting >> 2 vpsrld %%T4,%%GH,7 ; packed left shifting >> 7 vpxor %%T2, %%T2, %%T3 ; xor the shifted versions vpxor %%T2, %%T2, %%T4 vpxor %%T2, %%T2, %%T5 vpxor %%GH, %%GH, %%T2 vpxor %%GH, %%GH, %%T1 ; the result is in %%GH %endmacro %macro PRECOMPUTE 8 %define %%GDATA %1 %define %%HK %2 %define %%T1 %3 %define %%T2 %4 %define %%T3 %5 %define %%T4 %6 %define %%T5 %7 %define %%T6 %8 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Haskey_i_k holds XORed values of the low and high parts of the Haskey_i vmovdqa %%T5, %%HK vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_k], %%T1 GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^2<<1 mod poly vmovdqu [%%GDATA + HashKey_2], %%T5 ; [HashKey_2] = HashKey^2<<1 mod poly vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_2_k], %%T1 GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^3<<1 mod poly vmovdqu [%%GDATA + HashKey_3], %%T5 vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_3_k], %%T1 GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^4<<1 mod poly vmovdqu [%%GDATA + HashKey_4], %%T5 vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_4_k], %%T1 GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^5<<1 mod poly vmovdqu [%%GDATA + HashKey_5], %%T5 vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_5_k], %%T1 GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^6<<1 mod poly vmovdqu [%%GDATA + HashKey_6], %%T5 vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_6_k], %%T1 GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^7<<1 mod poly vmovdqu [%%GDATA + HashKey_7], %%T5 vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_7_k], %%T1 GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^8<<1 mod poly vmovdqu [%%GDATA + HashKey_8], %%T5 vpshufd %%T1, %%T5, 01001110b vpxor %%T1, %%T5 vmovdqu [%%GDATA + HashKey_8_k], %%T1 %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; READ_SMALL_DATA_INPUT: Packs xmm register with data when data input is less than 16 bytes. ; Returns 0 if data has length 0. ; Input: The input data (INPUT), that data's length (LENGTH). ; Output: The packed xmm register (OUTPUT). ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %macro READ_SMALL_DATA_INPUT 6 %define %%OUTPUT %1 ; %%OUTPUT is an xmm register %define %%INPUT %2 %define %%LENGTH %3 %define %%END_READ_LOCATION %4 ; All this and the lower inputs are temp registers %define %%COUNTER %5 %define %%TMP1 %6 vpxor %%OUTPUT, %%OUTPUT mov %%COUNTER, %%LENGTH mov %%END_READ_LOCATION, %%INPUT add %%END_READ_LOCATION, %%LENGTH xor %%TMP1, %%TMP1 cmp %%COUNTER, 8 jl %%_byte_loop_2 vpinsrq %%OUTPUT, [%%INPUT],0 ;Read in 8 bytes if they exists je %%_done sub %%COUNTER, 8 %%_byte_loop_1: ;Read in data 1 byte at a time while data is left shl %%TMP1, 8 ;This loop handles when 8 bytes were already read in dec %%END_READ_LOCATION mov BYTE(%%TMP1), BYTE [%%END_READ_LOCATION] dec %%COUNTER jg %%_byte_loop_1 vpinsrq %%OUTPUT, %%TMP1, 1 jmp %%_done %%_byte_loop_2: ;Read in data 1 byte at a time while data is left cmp %%COUNTER, 0 je %%_done shl %%TMP1, 8 ;This loop handles when no bytes were already read in dec %%END_READ_LOCATION mov BYTE(%%TMP1), BYTE [%%END_READ_LOCATION] dec %%COUNTER jg %%_byte_loop_2 vpinsrq %%OUTPUT, %%TMP1, 0 %%_done: %endmacro ; READ_SMALL_DATA_INPUT ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted. ; Input: The input data (A_IN), that data's length (A_LEN), and the hash key (HASH_KEY). ; Output: The hash of the data (AAD_HASH). ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %macro CALC_AAD_HASH 15 %define %%A_IN %1 %define %%A_LEN %2 %define %%AAD_HASH %3 %define %%GDATA_KEY %4 %define %%XTMP0 %5 ; xmm temp reg 5 %define %%XTMP1 %6 ; xmm temp reg 5 %define %%XTMP2 %7 %define %%XTMP3 %8 %define %%XTMP4 %9 %define %%XTMP5 %10 ; xmm temp reg 5 %define %%T1 %11 ; temp reg 1 %define %%T2 %12 %define %%T3 %13 %define %%T4 %14 %define %%T5 %15 ; temp reg 5 mov %%T1, %%A_IN ; T1 = AAD mov %%T2, %%A_LEN ; T2 = aadLen vpxor %%AAD_HASH, %%AAD_HASH %%_get_AAD_loop128: cmp %%T2, 128 jl %%_exit_AAD_loop128 vmovdqu %%XTMP0, [%%T1 + 16*0] vpshufb %%XTMP0, [rel SHUF_MASK] vpxor %%XTMP0, %%AAD_HASH vmovdqu %%XTMP5, [%%GDATA_KEY + HashKey_8] vpclmulqdq %%XTMP1, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = a1*b1 vpclmulqdq %%XTMP2, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = a0*b0 vpclmulqdq %%XTMP3, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = a1*b0 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10 ; %%T4 = a0*b1 vpxor %%XTMP3, %%XTMP3, %%XTMP4 ; %%T3 = a1*b0 + a0*b1 %assign i 1 %assign j 7 %rep 7 vmovdqu %%XTMP0, [%%T1 + 16*i] vpshufb %%XTMP0, [rel SHUF_MASK] vmovdqu %%XTMP5, [%%GDATA_KEY + HashKey_ %+ j] vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = T1 + a1*b1 vpxor %%XTMP1, %%XTMP1, %%XTMP4 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = T2 + a0*b0 vpxor %%XTMP2, %%XTMP2, %%XTMP4 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = T3 + a1*b0 + a0*b1 vpxor %%XTMP3, %%XTMP3, %%XTMP4 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10 vpxor %%XTMP3, %%XTMP3, %%XTMP4 %assign i (i + 1) %assign j (j - 1) %endrep vpslldq %%XTMP4, %%XTMP3, 8 ; shift-L 2 DWs vpsrldq %%XTMP3, %%XTMP3, 8 ; shift-R 2 DWs vpxor %%XTMP2, %%XTMP2, %%XTMP4 vpxor %%XTMP1, %%XTMP1, %%XTMP3 ; accumulate the results in %%T1(M):%%T2(L) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;first phase of the reduction vmovdqa %%XTMP5, [rel POLY2] vpclmulqdq %%XTMP0, %%XTMP5, %%XTMP2, 0x01 vpslldq %%XTMP0, %%XTMP0, 8 ; shift-L xmm2 2 DWs vpxor %%XTMP2, %%XTMP2, %%XTMP0 ; first phase of the reduction complete ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;second phase of the reduction vpclmulqdq %%XTMP3, %%XTMP5, %%XTMP2, 0x00 vpsrldq %%XTMP3, %%XTMP3, 4 ; shift-R 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq %%XTMP4, %%XTMP5, %%XTMP2, 0x10 vpslldq %%XTMP4, %%XTMP4, 4 ; shift-L 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor %%XTMP4, %%XTMP4, %%XTMP3 ; second phase of the reduction complete ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vpxor %%AAD_HASH, %%XTMP1, %%XTMP4 ; the result is in %%T1 sub %%T2, 128 je %%_CALC_AAD_done add %%T1, 128 jmp %%_get_AAD_loop128 %%_exit_AAD_loop128: cmp %%T2, 16 jl %%_get_small_AAD_block ;; calculate hash_key position to start with mov %%T3, %%T2 and %%T3, -16 ; 1 to 7 blocks possible here neg %%T3 add %%T3, HashKey_1 + 16 lea %%T3, [%%GDATA_KEY + %%T3] vmovdqu %%XTMP0, [%%T1] vpshufb %%XTMP0, [rel SHUF_MASK] vpxor %%XTMP0, %%AAD_HASH vmovdqu %%XTMP5, [%%T3] vpclmulqdq %%XTMP1, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = a1*b1 vpclmulqdq %%XTMP2, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = a0*b0 vpclmulqdq %%XTMP3, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = a1*b0 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10 ; %%T4 = a0*b1 vpxor %%XTMP3, %%XTMP3, %%XTMP4 ; %%T3 = a1*b0 + a0*b1 add %%T3, 16 ; move to next hashkey add %%T1, 16 ; move to next data block sub %%T2, 16 cmp %%T2, 16 jl %%_AAD_reduce %%_AAD_blocks: vmovdqu %%XTMP0, [%%T1] vpshufb %%XTMP0, [rel SHUF_MASK] vmovdqu %%XTMP5, [%%T3] vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = T1 + a1*b1 vpxor %%XTMP1, %%XTMP1, %%XTMP4 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = T2 + a0*b0 vpxor %%XTMP2, %%XTMP2, %%XTMP4 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = T3 + a1*b0 + a0*b1 vpxor %%XTMP3, %%XTMP3, %%XTMP4 vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10 vpxor %%XTMP3, %%XTMP3, %%XTMP4 add %%T3, 16 ; move to next hashkey add %%T1, 16 sub %%T2, 16 cmp %%T2, 16 jl %%_AAD_reduce jmp %%_AAD_blocks %%_AAD_reduce: vpslldq %%XTMP4, %%XTMP3, 8 ; shift-L 2 DWs vpsrldq %%XTMP3, %%XTMP3, 8 ; shift-R 2 DWs vpxor %%XTMP2, %%XTMP2, %%XTMP4 vpxor %%XTMP1, %%XTMP1, %%XTMP3 ; accumulate the results in %%T1(M):%%T2(L) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;first phase of the reduction vmovdqa %%XTMP5, [rel POLY2] vpclmulqdq %%XTMP0, %%XTMP5, %%XTMP2, 0x01 vpslldq %%XTMP0, %%XTMP0, 8 ; shift-L xmm2 2 DWs vpxor %%XTMP2, %%XTMP2, %%XTMP0 ; first phase of the reduction complete ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;second phase of the reduction vpclmulqdq %%XTMP3, %%XTMP5, %%XTMP2, 0x00 vpsrldq %%XTMP3, %%XTMP3, 4 ; shift-R 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R) vpclmulqdq %%XTMP4, %%XTMP5, %%XTMP2, 0x10 vpslldq %%XTMP4, %%XTMP4, 4 ; shift-L 1 DW (Shift-L 1-DW to obtain result with no shifts) vpxor %%XTMP4, %%XTMP4, %%XTMP3 ; second phase of the reduction complete ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vpxor %%AAD_HASH, %%XTMP1, %%XTMP4 ; the result is in %%T1 or %%T2, %%T2 je %%_CALC_AAD_done %%_get_small_AAD_block: vmovdqu %%XTMP0, [%%GDATA_KEY + HashKey] READ_SMALL_DATA_INPUT %%XTMP1, %%T1, %%T2, %%T3, %%T4, %%T5 ;byte-reflect the AAD data vpshufb %%XTMP1, [rel SHUF_MASK] vpxor %%AAD_HASH, %%XTMP1 GHASH_MUL %%AAD_HASH, %%XTMP0, %%XTMP1, %%XTMP2, %%XTMP3, %%XTMP4, %%XTMP5 %%_CALC_AAD_done: %endmacro ; CALC_AAD_HASH ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks between update calls. ; Requires the input data be at least 1 byte long. ; Input: ; GDATA_KEY - struct gcm_key_data * ; GDATA_CTX - struct gcm_context_data * ; PLAIN_CYPH_IN - input text ; PLAIN_CYPH_LEN - input text length ; DATA_OFFSET - the current data offset ; ENC_DEC - whether encoding or decoding ; Output: A cypher of the first partial block (CYPH_PLAIN_OUT), and updated GDATA_CTX ; Clobbers rax, r10, r12, r13, r15, xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm9, xmm10, xmm11, xmm13 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %macro PARTIAL_BLOCK 8 %define %%GDATA_KEY %1 %define %%GDATA_CTX %2 %define %%CYPH_PLAIN_OUT %3 %define %%PLAIN_CYPH_IN %4 %define %%PLAIN_CYPH_LEN %5 %define %%DATA_OFFSET %6 %define %%AAD_HASH %7 %define %%ENC_DEC %8 mov r13, [%%GDATA_CTX + PBlockLen] cmp r13, 0 je %%_partial_block_done ;Leave Macro if no partial blocks cmp %%PLAIN_CYPH_LEN, 16 ;Read in input data without over reading jl %%_fewer_than_16_bytes VXLDR xmm1, [%%PLAIN_CYPH_IN] ;If more than 16 bytes of data, just fill the xmm register jmp %%_data_read %%_fewer_than_16_bytes: lea r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET] READ_SMALL_DATA_INPUT xmm1, r10, %%PLAIN_CYPH_LEN, rax, r12, r15 %%_data_read: ;Finished reading in data vmovdqu xmm9, [%%GDATA_CTX + PBlockEncKey] ;xmm9 = my_ctx_data.partial_block_enc_key vmovdqu xmm13, [%%GDATA_KEY + HashKey] lea r12, [SHIFT_MASK] cmp r13, rax add r12, r13 ; adjust the shuffle mask pointer to be able to shift r13 bytes (16-r13 is the number of bytes in plaintext mod 16) vmovdqu xmm2, [r12] ; get the appropriate shuffle mask vpshufb xmm9, xmm2 ;shift right r13 bytes %ifidn %%ENC_DEC, DEC vmovdqa xmm3, xmm1 vpxor xmm9, xmm1 ; Cyphertext XOR E(K, Yn) mov r15, %%PLAIN_CYPH_LEN add r15, r13 sub r15, 16 ;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block jge %%_no_extra_mask_1 ;Determine if if partial block is not being filled and shift mask accordingly sub r12, r15 %%_no_extra_mask_1: vmovdqu xmm1, [r12 + ALL_F-SHIFT_MASK] ; get the appropriate mask to mask out bottom r13 bytes of xmm9 vpand xmm9, xmm1 ; mask out bottom r13 bytes of xmm9 vpand xmm3, xmm1 vpshufb xmm3, [SHUF_MASK] vpshufb xmm3, xmm2 vpxor %%AAD_HASH, xmm3 cmp r15,0 jl %%_partial_incomplete_1 GHASH_MUL %%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block xor rax,rax mov [%%GDATA_CTX + PBlockLen], rax jmp %%_dec_done %%_partial_incomplete_1: %ifidn __OUTPUT_FORMAT__, win64 mov rax, %%PLAIN_CYPH_LEN add [%%GDATA_CTX + PBlockLen], rax %else add [%%GDATA_CTX + PBlockLen], %%PLAIN_CYPH_LEN %endif %%_dec_done: vmovdqu [%%GDATA_CTX + AadHash], %%AAD_HASH %else vpxor xmm9, xmm1 ; Plaintext XOR E(K, Yn) mov r15, %%PLAIN_CYPH_LEN add r15, r13 sub r15, 16 ;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block jge %%_no_extra_mask_2 ;Determine if if partial block is not being filled and shift mask accordingly sub r12, r15 %%_no_extra_mask_2: vmovdqu xmm1, [r12 + ALL_F-SHIFT_MASK] ; get the appropriate mask to mask out bottom r13 bytes of xmm9 vpand xmm9, xmm1 ; mask out bottom r13 bytes of xmm9 vpshufb xmm9, [SHUF_MASK] vpshufb xmm9, xmm2 vpxor %%AAD_HASH, xmm9 cmp r15,0 jl %%_partial_incomplete_2 GHASH_MUL %%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block xor rax,rax mov [%%GDATA_CTX + PBlockLen], rax jmp %%_encode_done %%_partial_incomplete_2: %ifidn __OUTPUT_FORMAT__, win64 mov rax, %%PLAIN_CYPH_LEN add [%%GDATA_CTX + PBlockLen], rax %else add [%%GDATA_CTX + PBlockLen], %%PLAIN_CYPH_LEN %endif %%_encode_done: vmovdqu [%%GDATA_CTX + AadHash], %%AAD_HASH vpshufb xmm9, [SHUF_MASK] ; shuffle xmm9 back to output as ciphertext vpshufb xmm9, xmm2 %endif ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; output encrypted Bytes cmp r15,0 jl %%_partial_fill mov r12, r13 mov r13, 16 sub r13, r12 ; Set r13 to be the number of bytes to write out jmp %%_count_set %%_partial_fill: mov r13, %%PLAIN_CYPH_LEN %%_count_set: vmovq rax, xmm9 cmp r13, 8 jle %%_less_than_8_bytes_left mov [%%CYPH_PLAIN_OUT+ %%DATA_OFFSET], rax add %%DATA_OFFSET, 8 vpsrldq xmm9, xmm9, 8 vmovq rax, xmm9 sub r13, 8 %%_less_than_8_bytes_left: mov BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al add %%DATA_OFFSET, 1 shr rax, 8 sub r13, 1 jne %%_less_than_8_bytes_left ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %%_partial_block_done: %endmacro ; PARTIAL_BLOCK ; if a = number of total plaintext bytes ; b = floor(a/16) ; %%num_initial_blocks = b mod 8; ; encrypt the initial %%num_initial_blocks blocks and apply ghash on the ciphertext ; %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r14 are used as a pointer only, not modified. ; Updated AAD_HASH is returned in %%T3 %macro INITIAL_BLOCKS 24 %define %%GDATA_KEY %1 %define %%GDATA_CTX %2 %define %%CYPH_PLAIN_OUT %3 %define %%PLAIN_CYPH_IN %4 %define %%LENGTH %5 %define %%DATA_OFFSET %6 %define %%num_initial_blocks %7 ; can be 0, 1, 2, 3, 4, 5, 6 or 7 %define %%T1 %8 %define %%HASH_KEY %9 %define %%T3 %10 %define %%T4 %11 %define %%T5 %12 %define %%CTR %13 %define %%XMM1 %14 %define %%XMM2 %15 %define %%XMM3 %16 %define %%XMM4 %17 %define %%XMM5 %18 %define %%XMM6 %19 %define %%XMM7 %20 %define %%XMM8 %21 %define %%T6 %22 %define %%T_key %23 %define %%ENC_DEC %24 %assign i (8-%%num_initial_blocks) vmovdqu reg(i), %%XMM8 ; move AAD_HASH to temp reg ; start AES for %%num_initial_blocks blocks vmovdqu %%CTR, [%%GDATA_CTX + CurCount] ; %%CTR = Y0 %assign i (9-%%num_initial_blocks) %rep %%num_initial_blocks vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa reg(i), %%CTR vpshufb reg(i), [SHUF_MASK] ; perform a 16Byte swap %assign i (i+1) %endrep vmovdqu %%T_key, [%%GDATA_KEY+16*0] %assign i (9-%%num_initial_blocks) %rep %%num_initial_blocks vpxor reg(i),%%T_key %assign i (i+1) %endrep %assign j 1 %rep NROUNDS vmovdqu %%T_key, [%%GDATA_KEY+16*j] %assign i (9-%%num_initial_blocks) %rep %%num_initial_blocks vaesenc reg(i),%%T_key %assign i (i+1) %endrep %assign j (j+1) %endrep ; NROUNDS vmovdqu %%T_key, [%%GDATA_KEY+16*j] %assign i (9-%%num_initial_blocks) %rep %%num_initial_blocks vaesenclast reg(i),%%T_key %assign i (i+1) %endrep %assign i (9-%%num_initial_blocks) %rep %%num_initial_blocks VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET] vpxor reg(i), %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], reg(i) ; write back ciphertext for %%num_initial_blocks blocks add %%DATA_OFFSET, 16 %ifidn %%ENC_DEC, DEC vmovdqa reg(i), %%T1 %endif vpshufb reg(i), [SHUF_MASK] ; prepare ciphertext for GHASH computations %assign i (i+1) %endrep %assign i (8-%%num_initial_blocks) %assign j (9-%%num_initial_blocks) %rep %%num_initial_blocks vpxor reg(j), reg(i) GHASH_MUL reg(j), %%HASH_KEY, %%T1, %%T3, %%T4, %%T5, %%T6 ; apply GHASH on %%num_initial_blocks blocks %assign i (i+1) %assign j (j+1) %endrep ; %%XMM8 has the current Hash Value vmovdqa %%T3, %%XMM8 cmp %%LENGTH, 128 jl %%_initial_blocks_done ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Prepare 8 counter blocks and perform rounds of AES cipher on them, load plain/cipher text and ; store cipher/plain text. ; Keep 8 cipher text blocks for further GHASH computations (XMM1 - XMM8) ; - combine current GHASH value into block 0 (XMM1) vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM1, %%CTR vpshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM2, %%CTR vpshufb %%XMM2, [SHUF_MASK] ; perform a 16Byte swap vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM3, %%CTR vpshufb %%XMM3, [SHUF_MASK] ; perform a 16Byte swap vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM4, %%CTR vpshufb %%XMM4, [SHUF_MASK] ; perform a 16Byte swap vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM5, %%CTR vpshufb %%XMM5, [SHUF_MASK] ; perform a 16Byte swap vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM6, %%CTR vpshufb %%XMM6, [SHUF_MASK] ; perform a 16Byte swap vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM7, %%CTR vpshufb %%XMM7, [SHUF_MASK] ; perform a 16Byte swap vpaddd %%CTR, [ONE] ; INCR Y0 vmovdqa %%XMM8, %%CTR vpshufb %%XMM8, [SHUF_MASK] ; perform a 16Byte swap vmovdqu %%T_key, [%%GDATA_KEY+16*0] vpxor %%XMM1, %%T_key vpxor %%XMM2, %%T_key vpxor %%XMM3, %%T_key vpxor %%XMM4, %%T_key vpxor %%XMM5, %%T_key vpxor %%XMM6, %%T_key vpxor %%XMM7, %%T_key vpxor %%XMM8, %%T_key %assign i 1 %rep NROUNDS vmovdqu %%T_key, [%%GDATA_KEY+16*i] vaesenc %%XMM1, %%T_key vaesenc %%XMM2, %%T_key vaesenc %%XMM3, %%T_key vaesenc %%XMM4, %%T_key vaesenc %%XMM5, %%T_key vaesenc %%XMM6, %%T_key vaesenc %%XMM7, %%T_key vaesenc %%XMM8, %%T_key %assign i (i+1) %endrep vmovdqu %%T_key, [%%GDATA_KEY+16*i] vaesenclast %%XMM1, %%T_key vaesenclast %%XMM2, %%T_key vaesenclast %%XMM3, %%T_key vaesenclast %%XMM4, %%T_key vaesenclast %%XMM5, %%T_key vaesenclast %%XMM6, %%T_key vaesenclast %%XMM7, %%T_key vaesenclast %%XMM8, %%T_key VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*0] vpxor %%XMM1, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*0], %%XMM1 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM1, %%T1 %endif VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*1] vpxor %%XMM2, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*1], %%XMM2 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM2, %%T1 %endif VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*2] vpxor %%XMM3, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*2], %%XMM3 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM3, %%T1 %endif VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*3] vpxor %%XMM4, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*3], %%XMM4 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM4, %%T1 %endif VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*4] vpxor %%XMM5, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*4], %%XMM5 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM5, %%T1 %endif VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*5] vpxor %%XMM6, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*5], %%XMM6 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM6, %%T1 %endif VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*6] vpxor %%XMM7, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*6], %%XMM7 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM7, %%T1 %endif VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*7] vpxor %%XMM8, %%T1 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*7], %%XMM8 %ifidn %%ENC_DEC, DEC vmovdqa %%XMM8, %%T1 %endif add %%DATA_OFFSET, 128 vpshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap vpxor %%XMM1, %%T3 ; combine GHASHed value with the corresponding ciphertext vpshufb %%XMM2, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM3, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM4, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM5, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM6, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM7, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM8, [SHUF_MASK] ; perform a 16Byte swap ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %%_initial_blocks_done: %endmacro ; encrypt 8 blocks at a time ; ghash the 8 previously encrypted ciphertext blocks ; %%GDATA - (GCM key data), %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN are used as pointers only, not modified ; r11 is the data offset value %macro GHASH_8_ENCRYPT_8_PARALLEL 22 %define %%GDATA %1 %define %%CYPH_PLAIN_OUT %2 %define %%PLAIN_CYPH_IN %3 %define %%DATA_OFFSET %4 %define %%T1 %5 %define %%T2 %6 %define %%T3 %7 %define %%T4 %8 %define %%T5 %9 %define %%T6 %10 %define %%CTR %11 %define %%XMM1 %12 %define %%XMM2 %13 %define %%XMM3 %14 %define %%XMM4 %15 %define %%XMM5 %16 %define %%XMM6 %17 %define %%XMM7 %18 %define %%XMM8 %19 %define %%T7 %20 %define %%loop_idx %21 %define %%ENC_DEC %22 vmovdqa %%T2, %%XMM1 vmovdqu [rsp + TMP2], %%XMM2 vmovdqu [rsp + TMP3], %%XMM3 vmovdqu [rsp + TMP4], %%XMM4 vmovdqu [rsp + TMP5], %%XMM5 vmovdqu [rsp + TMP6], %%XMM6 vmovdqu [rsp + TMP7], %%XMM7 vmovdqu [rsp + TMP8], %%XMM8 %ifidn %%loop_idx, in_order vpaddd %%XMM1, %%CTR, [ONE] ; INCR CNT vpaddd %%XMM2, %%XMM1, [ONE] vpaddd %%XMM3, %%XMM2, [ONE] vpaddd %%XMM4, %%XMM3, [ONE] vpaddd %%XMM5, %%XMM4, [ONE] vpaddd %%XMM6, %%XMM5, [ONE] vpaddd %%XMM7, %%XMM6, [ONE] vpaddd %%XMM8, %%XMM7, [ONE] vmovdqa %%CTR, %%XMM8 vpshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM2, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM3, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM4, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM5, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM6, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM7, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM8, [SHUF_MASK] ; perform a 16Byte swap %else vpaddd %%XMM1, %%CTR, [ONEf] ; INCR CNT vpaddd %%XMM2, %%XMM1, [ONEf] vpaddd %%XMM3, %%XMM2, [ONEf] vpaddd %%XMM4, %%XMM3, [ONEf] vpaddd %%XMM5, %%XMM4, [ONEf] vpaddd %%XMM6, %%XMM5, [ONEf] vpaddd %%XMM7, %%XMM6, [ONEf] vpaddd %%XMM8, %%XMM7, [ONEf] vmovdqa %%CTR, %%XMM8 %endif ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vmovdqu %%T1, [%%GDATA + 16*0] vpxor %%XMM1, %%T1 vpxor %%XMM2, %%T1 vpxor %%XMM3, %%T1 vpxor %%XMM4, %%T1 vpxor %%XMM5, %%T1 vpxor %%XMM6, %%T1 vpxor %%XMM7, %%T1 vpxor %%XMM8, %%T1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vmovdqu %%T1, [%%GDATA + 16*1] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 vmovdqu %%T1, [%%GDATA + 16*2] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vmovdqu %%T5, [%%GDATA + HashKey_8] vpclmulqdq %%T4, %%T2, %%T5, 0x11 ; %%T4 = a1*b1 vpclmulqdq %%T7, %%T2, %%T5, 0x00 ; %%T7 = a0*b0 vpshufd %%T6, %%T2, 01001110b vpxor %%T6, %%T2 vmovdqu %%T5, [%%GDATA + HashKey_8_k] vpclmulqdq %%T6, %%T6, %%T5, 0x00 ; vmovdqu %%T1, [%%GDATA + 16*3] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 vmovdqu %%T1, [rsp + TMP2] vmovdqu %%T5, [%%GDATA + HashKey_7] vpclmulqdq %%T3, %%T1, %%T5, 0x11 vpxor %%T4, %%T4, %%T3 vpclmulqdq %%T3, %%T1, %%T5, 0x00 vpxor %%T7, %%T7, %%T3 vpshufd %%T3, %%T1, 01001110b vpxor %%T3, %%T1 vmovdqu %%T5, [%%GDATA + HashKey_7_k] vpclmulqdq %%T3, %%T3, %%T5, 0x10 vpxor %%T6, %%T6, %%T3 vmovdqu %%T1, [%%GDATA + 16*4] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vmovdqu %%T1, [rsp + TMP3] vmovdqu %%T5, [%%GDATA + HashKey_6] vpclmulqdq %%T3, %%T1, %%T5, 0x11 vpxor %%T4, %%T4, %%T3 vpclmulqdq %%T3, %%T1, %%T5, 0x00 vpxor %%T7, %%T7, %%T3 vpshufd %%T3, %%T1, 01001110b vpxor %%T3, %%T1 vmovdqu %%T5, [%%GDATA + HashKey_6_k] vpclmulqdq %%T3, %%T3, %%T5, 0x10 vpxor %%T6, %%T6, %%T3 vmovdqu %%T1, [%%GDATA + 16*5] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 vmovdqu %%T1, [rsp + TMP4] vmovdqu %%T5, [%%GDATA + HashKey_5] vpclmulqdq %%T3, %%T1, %%T5, 0x11 vpxor %%T4, %%T4, %%T3 vpclmulqdq %%T3, %%T1, %%T5, 0x00 vpxor %%T7, %%T7, %%T3 vpshufd %%T3, %%T1, 01001110b vpxor %%T3, %%T1 vmovdqu %%T5, [%%GDATA + HashKey_5_k] vpclmulqdq %%T3, %%T3, %%T5, 0x10 vpxor %%T6, %%T6, %%T3 vmovdqu %%T1, [%%GDATA + 16*6] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 vmovdqu %%T1, [rsp + TMP5] vmovdqu %%T5, [%%GDATA + HashKey_4] vpclmulqdq %%T3, %%T1, %%T5, 0x11 vpxor %%T4, %%T4, %%T3 vpclmulqdq %%T3, %%T1, %%T5, 0x00 vpxor %%T7, %%T7, %%T3 vpshufd %%T3, %%T1, 01001110b vpxor %%T3, %%T1 vmovdqu %%T5, [%%GDATA + HashKey_4_k] vpclmulqdq %%T3, %%T3, %%T5, 0x10 vpxor %%T6, %%T6, %%T3 vmovdqu %%T1, [%%GDATA + 16*7] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 vmovdqu %%T1, [rsp + TMP6] vmovdqu %%T5, [%%GDATA + HashKey_3] vpclmulqdq %%T3, %%T1, %%T5, 0x11 vpxor %%T4, %%T4, %%T3 vpclmulqdq %%T3, %%T1, %%T5, 0x00 vpxor %%T7, %%T7, %%T3 vpshufd %%T3, %%T1, 01001110b vpxor %%T3, %%T1 vmovdqu %%T5, [%%GDATA + HashKey_3_k] vpclmulqdq %%T3, %%T3, %%T5, 0x10 vpxor %%T6, %%T6, %%T3 vmovdqu %%T1, [%%GDATA + 16*8] vaesenc %%XMM1, %%T1 vaesenc %%XMM2, %%T1 vaesenc %%XMM3, %%T1 vaesenc %%XMM4, %%T1 vaesenc %%XMM5, %%T1 vaesenc %%XMM6, %%T1 vaesenc %%XMM7, %%T1 vaesenc %%XMM8, %%T1 vmovdqu %%T1, [rsp + TMP7] vmovdqu %%T5, [%%GDATA + HashKey_2] vpclmulqdq %%T3, %%T1, %%T5, 0x11 vpxor %%T4, %%T4, %%T3 vpclmulqdq %%T3, %%T1, %%T5, 0x00 vpxor %%T7, %%T7, %%T3 vpshufd %%T3, %%T1, 01001110b vpxor %%T3, %%T1 vmovdqu %%T5, [%%GDATA + HashKey_2_k] vpclmulqdq %%T3, %%T3, %%T5, 0x10 vpxor %%T6, %%T6, %%T3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vmovdqu %%T5, [%%GDATA + 16*9] vaesenc %%XMM1, %%T5 vaesenc %%XMM2, %%T5 vaesenc %%XMM3, %%T5 vaesenc %%XMM4, %%T5 vaesenc %%XMM5, %%T5 vaesenc %%XMM6, %%T5 vaesenc %%XMM7, %%T5 vaesenc %%XMM8, %%T5 vmovdqu %%T1, [rsp + TMP8] vmovdqu %%T5, [%%GDATA + HashKey] vpclmulqdq %%T3, %%T1, %%T5, 0x11 vpxor %%T4, %%T4, %%T3 vpclmulqdq %%T3, %%T1, %%T5, 0x00 vpxor %%T7, %%T7, %%T3 vpshufd %%T3, %%T1, 01001110b vpxor %%T3, %%T1 vmovdqu %%T5, [%%GDATA + HashKey_k] vpclmulqdq %%T3, %%T3, %%T5, 0x10 vpxor %%T6, %%T6, %%T3 vpxor %%T6, %%T4 vpxor %%T6, %%T7 %ifdef GCM128_MODE vmovdqu %%T5, [%%GDATA + 16*10] %endif %ifdef GCM192_MODE vmovdqu %%T5, [%%GDATA + 16*10] vaesenc %%XMM1, %%T5 vaesenc %%XMM2, %%T5 vaesenc %%XMM3, %%T5 vaesenc %%XMM4, %%T5 vaesenc %%XMM5, %%T5 vaesenc %%XMM6, %%T5 vaesenc %%XMM7, %%T5 vaesenc %%XMM8, %%T5 vmovdqu %%T5, [%%GDATA + 16*11] vaesenc %%XMM1, %%T5 vaesenc %%XMM2, %%T5 vaesenc %%XMM3, %%T5 vaesenc %%XMM4, %%T5 vaesenc %%XMM5, %%T5 vaesenc %%XMM6, %%T5 vaesenc %%XMM7, %%T5 vaesenc %%XMM8, %%T5 vmovdqu %%T5, [%%GDATA + 16*12] %endif %ifdef GCM256_MODE vmovdqu %%T5, [%%GDATA + 16*10] vaesenc %%XMM1, %%T5 vaesenc %%XMM2, %%T5 vaesenc %%XMM3, %%T5 vaesenc %%XMM4, %%T5 vaesenc %%XMM5, %%T5 vaesenc %%XMM6, %%T5 vaesenc %%XMM7, %%T5 vaesenc %%XMM8, %%T5 vmovdqu %%T5, [%%GDATA + 16*11] vaesenc %%XMM1, %%T5 vaesenc %%XMM2, %%T5 vaesenc %%XMM3, %%T5 vaesenc %%XMM4, %%T5 vaesenc %%XMM5, %%T5 vaesenc %%XMM6, %%T5 vaesenc %%XMM7, %%T5 vaesenc %%XMM8, %%T5 vmovdqu %%T5, [%%GDATA + 16*12] vaesenc %%XMM1, %%T5 vaesenc %%XMM2, %%T5 vaesenc %%XMM3, %%T5 vaesenc %%XMM4, %%T5 vaesenc %%XMM5, %%T5 vaesenc %%XMM6, %%T5 vaesenc %%XMM7, %%T5 vaesenc %%XMM8, %%T5 vmovdqu %%T5, [%%GDATA + 16*13] vaesenc %%XMM1, %%T5 vaesenc %%XMM2, %%T5 vaesenc %%XMM3, %%T5 vaesenc %%XMM4, %%T5 vaesenc %%XMM5, %%T5 vaesenc %%XMM6, %%T5 vaesenc %%XMM7, %%T5 vaesenc %%XMM8, %%T5 vmovdqu %%T5, [%%GDATA + 16*14] %endif %assign i 0 %assign j 1 %rep 8 %ifidn %%ENC_DEC, ENC %ifdef NT_LD VXLDR %%T2, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*i] vpxor %%T2, %%T2, %%T5 %else vpxor %%T2, %%T5, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*i] %endif ; NT_LD vaesenclast reg(j), reg(j), %%T2 %else VXLDR %%T2, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*i] vpxor %%T2, %%T2, %%T5 vaesenclast %%T3, reg(j), %%T2 vpxor reg(j), %%T2, %%T5 VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*i], %%T3 %endif ; %%ENC_DEC %assign i (i+1) %assign j (j+1) %endrep vpslldq %%T3, %%T6, 8 ; shift-L %%T3 2 DWs vpsrldq %%T6, %%T6, 8 ; shift-R %%T2 2 DWs vpxor %%T7, %%T3 vpxor %%T6, %%T4 ; accumulate the results in %%T6:%%T7 ;first phase of the reduction vpslld %%T2, %%T7, 31 ; packed right shifting << 31 vpslld %%T3, %%T7, 30 ; packed right shifting shift << 30 vpslld %%T4, %%T7, 25 ; packed right shifting shift << 25 vpxor %%T2, %%T2, %%T3 ; xor the shifted versions vpxor %%T2, %%T2, %%T4 vpsrldq %%T1, %%T2, 4 ; shift-R %%T1 1 DW vpslldq %%T2, %%T2, 12 ; shift-L %%T2 3 DWs vpxor %%T7, %%T2 ; first phase of the reduction complete ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %ifidn %%ENC_DEC, ENC VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*0], %%XMM1 ; Write to the Ciphertext buffer VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*1], %%XMM2 ; Write to the Ciphertext buffer VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*2], %%XMM3 ; Write to the Ciphertext buffer VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*3], %%XMM4 ; Write to the Ciphertext buffer VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*4], %%XMM5 ; Write to the Ciphertext buffer VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*5], %%XMM6 ; Write to the Ciphertext buffer VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*6], %%XMM7 ; Write to the Ciphertext buffer VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*7], %%XMM8 ; Write to the Ciphertext buffer %endif ;second phase of the reduction vpsrld %%T2,%%T7,1 ; packed left shifting >> 1 vpsrld %%T3,%%T7,2 ; packed left shifting >> 2 vpsrld %%T4,%%T7,7 ; packed left shifting >> 7 vpxor %%T2, %%T2,%%T3 ; xor the shifted versions vpxor %%T2, %%T2,%%T4 vpxor %%T2, %%T2, %%T1 vpxor %%T7, %%T7, %%T2 vpxor %%T6, %%T6, %%T7 ; the result is in %%T6 vpshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap vpshufb %%XMM2, [SHUF_MASK] vpshufb %%XMM3, [SHUF_MASK] vpshufb %%XMM4, [SHUF_MASK] vpshufb %%XMM5, [SHUF_MASK] vpshufb %%XMM6, [SHUF_MASK] vpshufb %%XMM7, [SHUF_MASK] vpshufb %%XMM8, [SHUF_MASK] vpxor %%XMM1, %%T6 %endmacro ; GHASH the last 4 ciphertext blocks. ; %%GDATA is GCM key data %macro GHASH_LAST_8 16 %define %%GDATA %1 %define %%T1 %2 %define %%T2 %3 %define %%T3 %4 %define %%T4 %5 %define %%T5 %6 %define %%T6 %7 %define %%T7 %8 %define %%XMM1 %9 %define %%XMM2 %10 %define %%XMM3 %11 %define %%XMM4 %12 %define %%XMM5 %13 %define %%XMM6 %14 %define %%XMM7 %15 %define %%XMM8 %16 ;; Karatsuba Method vpshufd %%T2, %%XMM1, 01001110b vpxor %%T2, %%XMM1 vmovdqu %%T5, [%%GDATA + HashKey_8] vpclmulqdq %%T6, %%XMM1, %%T5, 0x11 vpclmulqdq %%T7, %%XMM1, %%T5, 0x00 vmovdqu %%T3, [%%GDATA + HashKey_8_k] vpclmulqdq %%XMM1, %%T2, %%T3, 0x00 ;;;;;;;;;;;;;;;;;;;;;; vpshufd %%T2, %%XMM2, 01001110b vpxor %%T2, %%XMM2 vmovdqu %%T5, [%%GDATA + HashKey_7] vpclmulqdq %%T4, %%XMM2, %%T5, 0x11 vpxor %%T6, %%T6, %%T4 vpclmulqdq %%T4, %%XMM2, %%T5, 0x00 vpxor %%T7, %%T7, %%T4 vmovdqu %%T3, [%%GDATA + HashKey_7_k] vpclmulqdq %%T2, %%T2, %%T3, 0x00 vpxor %%XMM1, %%XMM1, %%T2 ;;;;;;;;;;;;;;;;;;;;;; vpshufd %%T2, %%XMM3, 01001110b vpxor %%T2, %%XMM3 vmovdqu %%T5, [%%GDATA + HashKey_6] vpclmulqdq %%T4, %%XMM3, %%T5, 0x11 vpxor %%T6, %%T6, %%T4 vpclmulqdq %%T4, %%XMM3, %%T5, 0x00 vpxor %%T7, %%T7, %%T4 vmovdqu %%T3, [%%GDATA + HashKey_6_k] vpclmulqdq %%T2, %%T2, %%T3, 0x00 vpxor %%XMM1, %%XMM1, %%T2 ;;;;;;;;;;;;;;;;;;;;;; vpshufd %%T2, %%XMM4, 01001110b vpxor %%T2, %%XMM4 vmovdqu %%T5, [%%GDATA + HashKey_5] vpclmulqdq %%T4, %%XMM4, %%T5, 0x11 vpxor %%T6, %%T6, %%T4 vpclmulqdq %%T4, %%XMM4, %%T5, 0x00 vpxor %%T7, %%T7, %%T4 vmovdqu %%T3, [%%GDATA + HashKey_5_k] vpclmulqdq %%T2, %%T2, %%T3, 0x00 vpxor %%XMM1, %%XMM1, %%T2 ;;;;;;;;;;;;;;;;;;;;;; vpshufd %%T2, %%XMM5, 01001110b vpxor %%T2, %%XMM5 vmovdqu %%T5, [%%GDATA + HashKey_4] vpclmulqdq %%T4, %%XMM5, %%T5, 0x11 vpxor %%T6, %%T6, %%T4 vpclmulqdq %%T4, %%XMM5, %%T5, 0x00 vpxor %%T7, %%T7, %%T4 vmovdqu %%T3, [%%GDATA + HashKey_4_k] vpclmulqdq %%T2, %%T2, %%T3, 0x00 vpxor %%XMM1, %%XMM1, %%T2 ;;;;;;;;;;;;;;;;;;;;;; vpshufd %%T2, %%XMM6, 01001110b vpxor %%T2, %%XMM6 vmovdqu %%T5, [%%GDATA + HashKey_3] vpclmulqdq %%T4, %%XMM6, %%T5, 0x11 vpxor %%T6, %%T6, %%T4 vpclmulqdq %%T4, %%XMM6, %%T5, 0x00 vpxor %%T7, %%T7, %%T4 vmovdqu %%T3, [%%GDATA + HashKey_3_k] vpclmulqdq %%T2, %%T2, %%T3, 0x00 vpxor %%XMM1, %%XMM1, %%T2 ;;;;;;;;;;;;;;;;;;;;;; vpshufd %%T2, %%XMM7, 01001110b vpxor %%T2, %%XMM7 vmovdqu %%T5, [%%GDATA + HashKey_2] vpclmulqdq %%T4, %%XMM7, %%T5, 0x11 vpxor %%T6, %%T6, %%T4 vpclmulqdq %%T4, %%XMM7, %%T5, 0x00 vpxor %%T7, %%T7, %%T4 vmovdqu %%T3, [%%GDATA + HashKey_2_k] vpclmulqdq %%T2, %%T2, %%T3, 0x00 vpxor %%XMM1, %%XMM1, %%T2 ;;;;;;;;;;;;;;;;;;;;;; vpshufd %%T2, %%XMM8, 01001110b vpxor %%T2, %%XMM8 vmovdqu %%T5, [%%GDATA + HashKey] vpclmulqdq %%T4, %%XMM8, %%T5, 0x11 vpxor %%T6, %%T6, %%T4 vpclmulqdq %%T4, %%XMM8, %%T5, 0x00 vpxor %%T7, %%T7, %%T4 vmovdqu %%T3, [%%GDATA + HashKey_k] vpclmulqdq %%T2, %%T2, %%T3, 0x00 vpxor %%XMM1, %%XMM1, %%T2 vpxor %%XMM1, %%XMM1, %%T6 vpxor %%T2, %%XMM1, %%T7 vpslldq %%T4, %%T2, 8 vpsrldq %%T2, %%T2, 8 vpxor %%T7, %%T4 vpxor %%T6, %%T2 ; <%%T6:%%T7> holds the result of the accumulated carry-less multiplications ;first phase of the reduction vpslld %%T2, %%T7, 31 ; packed right shifting << 31 vpslld %%T3, %%T7, 30 ; packed right shifting shift << 30 vpslld %%T4, %%T7, 25 ; packed right shifting shift << 25 vpxor %%T2, %%T2, %%T3 ; xor the shifted versions vpxor %%T2, %%T2, %%T4 vpsrldq %%T1, %%T2, 4 ; shift-R %%T1 1 DW vpslldq %%T2, %%T2, 12 ; shift-L %%T2 3 DWs vpxor %%T7, %%T2 ; first phase of the reduction complete ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;second phase of the reduction vpsrld %%T2,%%T7,1 ; packed left shifting >> 1 vpsrld %%T3,%%T7,2 ; packed left shifting >> 2 vpsrld %%T4,%%T7,7 ; packed left shifting >> 7 vpxor %%T2, %%T2,%%T3 ; xor the shifted versions vpxor %%T2, %%T2,%%T4 vpxor %%T2, %%T2, %%T1 vpxor %%T7, %%T7, %%T2 vpxor %%T6, %%T6, %%T7 ; the result is in %%T6 %endmacro ; Encryption of a single block ; %%GDATA is GCM key data %macro ENCRYPT_SINGLE_BLOCK 2 %define %%GDATA %1 %define %%XMM0 %2 vpxor %%XMM0, [%%GDATA+16*0] %assign i 1 %rep NROUNDS vaesenc %%XMM0, [%%GDATA+16*i] %assign i (i+1) %endrep ; NROUNDS vaesenclast %%XMM0, [%%GDATA+16*i] %endmacro ;; Start of Stack Setup %macro FUNC_SAVE 0 ;; Required for Update/GMC_ENC ;the number of pushes must equal STACK_OFFSET push r12 push r13 push r14 push r15 mov r14, rsp sub rsp, VARIABLE_OFFSET and rsp, ~63 %ifidn __OUTPUT_FORMAT__, win64 ; xmm6:xmm15 need to be maintained for Windows vmovdqu [rsp + LOCAL_STORAGE + 0*16],xmm6 vmovdqu [rsp + LOCAL_STORAGE + 1*16],xmm7 vmovdqu [rsp + LOCAL_STORAGE + 2*16],xmm8 vmovdqu [rsp + LOCAL_STORAGE + 3*16],xmm9 vmovdqu [rsp + LOCAL_STORAGE + 4*16],xmm10 vmovdqu [rsp + LOCAL_STORAGE + 5*16],xmm11 vmovdqu [rsp + LOCAL_STORAGE + 6*16],xmm12 vmovdqu [rsp + LOCAL_STORAGE + 7*16],xmm13 vmovdqu [rsp + LOCAL_STORAGE + 8*16],xmm14 vmovdqu [rsp + LOCAL_STORAGE + 9*16],xmm15 %endif %endmacro %macro FUNC_RESTORE 0 %ifdef SAFE_DATA clear_scratch_gps_asm clear_scratch_xmms_avx_asm %endif %ifidn __OUTPUT_FORMAT__, win64 vmovdqu xmm15 , [rsp + LOCAL_STORAGE + 9*16] vmovdqu xmm14 , [rsp + LOCAL_STORAGE + 8*16] vmovdqu xmm13 , [rsp + LOCAL_STORAGE + 7*16] vmovdqu xmm12 , [rsp + LOCAL_STORAGE + 6*16] vmovdqu xmm11 , [rsp + LOCAL_STORAGE + 5*16] vmovdqu xmm10 , [rsp + LOCAL_STORAGE + 4*16] vmovdqu xmm9 , [rsp + LOCAL_STORAGE + 3*16] vmovdqu xmm8 , [rsp + LOCAL_STORAGE + 2*16] vmovdqu xmm7 , [rsp + LOCAL_STORAGE + 1*16] vmovdqu xmm6 , [rsp + LOCAL_STORAGE + 0*16] %endif ;; Required for Update/GMC_ENC mov rsp, r14 pop r15 pop r14 pop r13 pop r12 %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; GCM_INIT initializes a gcm_context_data struct to prepare for encoding/decoding. ; Input: struct gcm_key_data *(GDATA_KEY), struct gcm_context_data *(GDATA_CTX), ; IV, Additional Authentication data (A_IN), Additional ; Data length (A_LEN) ; Output: Updated GDATA with the hash of A_IN (AadHash) and initialized other parts of GDATA. ; Clobbers rax, r10-r13, and xmm0-xmm6 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %macro GCM_INIT 5 %define %%GDATA_KEY %1 %define %%GDATA_CTX %2 %define %%IV %3 %define %%A_IN %4 %define %%A_LEN %5 %define %%AAD_HASH xmm0 CALC_AAD_HASH %%A_IN, %%A_LEN, %%AAD_HASH, %%GDATA_KEY, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, r10, r11, r12, r13, rax vpxor xmm2, xmm3 mov r10, %%A_LEN vmovdqu [%%GDATA_CTX + AadHash], %%AAD_HASH ; ctx_data.aad hash = aad_hash mov [%%GDATA_CTX + AadLen], r10 ; ctx_data.aad_length = aad_length xor r10, r10 mov [%%GDATA_CTX + InLen], r10 ; ctx_data.in_length = 0 mov [%%GDATA_CTX + PBlockLen], r10 ; ctx_data.partial_block_length = 0 vmovdqu [%%GDATA_CTX + PBlockEncKey], xmm2 ; ctx_data.partial_block_enc_key = 0 mov r10, %%IV vmovdqa xmm2, [rel ONEf] ; read 12 IV bytes and pad with 0x00000001 vpinsrq xmm2, [r10], 0 vpinsrd xmm2, [r10+8], 2 vmovdqu [%%GDATA_CTX + OrigIV], xmm2 ; ctx_data.orig_IV = iv vpshufb xmm2, [rel SHUF_MASK] vmovdqu [%%GDATA_CTX + CurCount], xmm2 ; ctx_data.current_counter = iv %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_context_data struct ; has been initialized by GCM_INIT ; Requires the input data be at least 1 byte long because of READ_SMALL_INPUT_DATA. ; Input: struct gcm_key_data* (GDATA_KEY), struct gcm_context_data * (GDATA_CTX), ; input text (PLAIN_CYPH_IN), input text length (PLAIN_CYPH_LEN), ; and whether encoding or decoding (ENC_DEC) ; Output: A cypher of the given plain text (CYPH_PLAIN_OUT), and updated GDATA_CTX ; Clobbers rax, r10-r15, and xmm0-xmm15 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %macro GCM_ENC_DEC 6 %define %%GDATA_KEY %1 %define %%GDATA_CTX %2 %define %%CYPH_PLAIN_OUT %3 %define %%PLAIN_CYPH_IN %4 %define %%PLAIN_CYPH_LEN %5 %define %%ENC_DEC %6 %define %%DATA_OFFSET r11 ; Macro flow: ; calculate the number of 16byte blocks in the message ; process (number of 16byte blocks) mod 8 '%%_initial_num_blocks_is_# .. %%_initial_blocks_encrypted' ; process 8 16 byte blocks at a time until all are done '%%_encrypt_by_8_new .. %%_eight_cipher_left' ; if there is a block of less tahn 16 bytes process it '%%_zero_cipher_left .. %%_multiple_of_16_bytes' cmp %%PLAIN_CYPH_LEN, 0 je %%_multiple_of_16_bytes xor %%DATA_OFFSET, %%DATA_OFFSET %ifidn __OUTPUT_FORMAT__, win64 mov rax, %%PLAIN_CYPH_LEN add [%%GDATA_CTX + InLen], rax ; Update length of data processed %else add [%%GDATA_CTX + InLen], %%PLAIN_CYPH_LEN ; Update length of data processed %endif vmovdqu xmm13, [%%GDATA_KEY + HashKey] ; xmm13 = HashKey vmovdqu xmm8, [%%GDATA_CTX + AadHash] PARTIAL_BLOCK %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%PLAIN_CYPH_LEN, %%DATA_OFFSET, xmm8, %%ENC_DEC mov r13, %%PLAIN_CYPH_LEN sub r13, %%DATA_OFFSET mov r10, r13 ; save the amount of data left to process in r10 and r13, -16 ; r13 = r13 - (r13 mod 16) mov r12, r13 shr r12, 4 and r12, 7 jz %%_initial_num_blocks_is_0 cmp r12, 7 je %%_initial_num_blocks_is_7 cmp r12, 6 je %%_initial_num_blocks_is_6 cmp r12, 5 je %%_initial_num_blocks_is_5 cmp r12, 4 je %%_initial_num_blocks_is_4 cmp r12, 3 je %%_initial_num_blocks_is_3 cmp r12, 2 je %%_initial_num_blocks_is_2 jmp %%_initial_num_blocks_is_1 %%_initial_num_blocks_is_7: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 7, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC sub r13, 16*7 jmp %%_initial_blocks_encrypted %%_initial_num_blocks_is_6: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 6, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC sub r13, 16*6 jmp %%_initial_blocks_encrypted %%_initial_num_blocks_is_5: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 5, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC sub r13, 16*5 jmp %%_initial_blocks_encrypted %%_initial_num_blocks_is_4: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 4, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC sub r13, 16*4 jmp %%_initial_blocks_encrypted %%_initial_num_blocks_is_3: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 3, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC sub r13, 16*3 jmp %%_initial_blocks_encrypted %%_initial_num_blocks_is_2: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 2, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC sub r13, 16*2 jmp %%_initial_blocks_encrypted %%_initial_num_blocks_is_1: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 1, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC sub r13, 16 jmp %%_initial_blocks_encrypted %%_initial_num_blocks_is_0: INITIAL_BLOCKS %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 0, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC %%_initial_blocks_encrypted: cmp r13, 0 je %%_zero_cipher_left sub r13, 128 je %%_eight_cipher_left vmovd r15d, xmm9 and r15d, 255 vpshufb xmm9, [SHUF_MASK] %%_encrypt_by_8_new: cmp r15d, 255-8 jg %%_encrypt_by_8 add r15b, 8 GHASH_8_ENCRYPT_8_PARALLEL %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, out_order, %%ENC_DEC add %%DATA_OFFSET, 128 sub r13, 128 jne %%_encrypt_by_8_new vpshufb xmm9, [SHUF_MASK] jmp %%_eight_cipher_left %%_encrypt_by_8: vpshufb xmm9, [SHUF_MASK] add r15b, 8 GHASH_8_ENCRYPT_8_PARALLEL %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN,%%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, in_order, %%ENC_DEC vpshufb xmm9, [SHUF_MASK] add %%DATA_OFFSET, 128 sub r13, 128 jne %%_encrypt_by_8_new vpshufb xmm9, [SHUF_MASK] %%_eight_cipher_left: GHASH_LAST_8 %%GDATA_KEY, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8 %%_zero_cipher_left: vmovdqu [%%GDATA_CTX + AadHash], xmm14 ; ctx_data.aad hash = xmm14 vmovdqu [%%GDATA_CTX + CurCount], xmm9 ; ctx_data.current_counter = xmm9 mov r13, r10 and r13, 15 ; r13 = (%%PLAIN_CYPH_LEN mod 16) je %%_multiple_of_16_bytes mov [%%GDATA_CTX + PBlockLen], r13 ; ctx_data.partial_blck_length = r13 ; handle the last <16 Byte block seperately vpaddd xmm9, [ONE] ; INCR CNT to get Yn vmovdqu [%%GDATA_CTX + CurCount], xmm9 ; my_ctx_data.current_counter = xmm9 vpshufb xmm9, [SHUF_MASK] ENCRYPT_SINGLE_BLOCK %%GDATA_KEY, xmm9 ; E(K, Yn) vmovdqu [%%GDATA_CTX + PBlockEncKey], xmm9 ; ctx_data.partial_block_enc_key = xmm9 cmp %%PLAIN_CYPH_LEN, 16 jge %%_large_enough_update lea r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET] READ_SMALL_DATA_INPUT xmm1, r10, r13, r12, r15, rax lea r12, [SHIFT_MASK + 16] sub r12, r13 jmp %%_data_read %%_large_enough_update: sub %%DATA_OFFSET, 16 add %%DATA_OFFSET, r13 vmovdqu xmm1, [%%PLAIN_CYPH_IN+%%DATA_OFFSET] ; receive the last <16 Byte block sub %%DATA_OFFSET, r13 add %%DATA_OFFSET, 16 lea r12, [SHIFT_MASK + 16] sub r12, r13 ; adjust the shuffle mask pointer to be able to shift 16-r13 bytes (r13 is the number of bytes in plaintext mod 16) vmovdqu xmm2, [r12] ; get the appropriate shuffle mask vpshufb xmm1, xmm2 ; shift right 16-r13 bytes %%_data_read: %ifidn %%ENC_DEC, DEC vmovdqa xmm2, xmm1 vpxor xmm9, xmm1 ; Plaintext XOR E(K, Yn) vmovdqu xmm1, [r12 + ALL_F - SHIFT_MASK] ; get the appropriate mask to mask out top 16-r13 bytes of xmm9 vpand xmm9, xmm1 ; mask out top 16-r13 bytes of xmm9 vpand xmm2, xmm1 vpshufb xmm2, [SHUF_MASK] vpxor xmm14, xmm2 vmovdqu [%%GDATA_CTX + AadHash], xmm14 %else vpxor xmm9, xmm1 ; Plaintext XOR E(K, Yn) vmovdqu xmm1, [r12 + ALL_F - SHIFT_MASK] ; get the appropriate mask to mask out top 16-r13 bytes of xmm9 vpand xmm9, xmm1 ; mask out top 16-r13 bytes of xmm9 vpshufb xmm9, [SHUF_MASK] vpxor xmm14, xmm9 vmovdqu [%%GDATA_CTX + AadHash], xmm14 vpshufb xmm9, [SHUF_MASK] ; shuffle xmm9 back to output as ciphertext %endif ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; output r13 Bytes vmovq rax, xmm9 cmp r13, 8 jle %%_less_than_8_bytes_left mov [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], rax add %%DATA_OFFSET, 8 vpsrldq xmm9, xmm9, 8 vmovq rax, xmm9 sub r13, 8 %%_less_than_8_bytes_left: mov BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al add %%DATA_OFFSET, 1 shr rax, 8 sub r13, 1 jne %%_less_than_8_bytes_left ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %%_multiple_of_16_bytes: %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; GCM_COMPLETE Finishes Encyrption/Decryption of last partial block after GCM_UPDATE finishes. ; Input: struct gcm_key_data* (GDATA_KEY), struct gcm_context_data *(GDATA_CTX) and ; whether encoding or decoding (ENC_DEC). ; Output: Authorization Tag (AUTH_TAG) and Authorization Tag length (AUTH_TAG_LEN) ; Clobbers rax, r10-r12, and xmm0, xmm1, xmm5, xmm6, xmm9, xmm11, xmm14, xmm15 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %macro GCM_COMPLETE 5 %define %%GDATA_KEY %1 %define %%GDATA_CTX %2 %define %%AUTH_TAG %3 %define %%AUTH_TAG_LEN %4 %define %%ENC_DEC %5 %define %%PLAIN_CYPH_LEN rax mov r12, [%%GDATA_CTX + PBlockLen] vmovdqu xmm14, [%%GDATA_CTX + AadHash] vmovdqu xmm13, [%%GDATA_KEY + HashKey] cmp r12, 0 je %%_partial_done GHASH_MUL xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block vmovdqu [%%GDATA_CTX + AadHash], xmm14 %%_partial_done: mov r12, [%%GDATA_CTX + AadLen] ; r12 = aadLen (number of bytes) mov %%PLAIN_CYPH_LEN, [%%GDATA_CTX + InLen] shl r12, 3 ; convert into number of bits vmovd xmm15, r12d ; len(A) in xmm15 shl %%PLAIN_CYPH_LEN, 3 ; len(C) in bits (*128) vmovq xmm1, %%PLAIN_CYPH_LEN vpslldq xmm15, xmm15, 8 ; xmm15 = len(A)|| 0x0000000000000000 vpxor xmm15, xmm1 ; xmm15 = len(A)||len(C) vpxor xmm14, xmm15 GHASH_MUL xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ; final GHASH computation vpshufb xmm14, [SHUF_MASK] ; perform a 16Byte swap vmovdqu xmm9, [%%GDATA_CTX + OrigIV] ; xmm9 = Y0 ENCRYPT_SINGLE_BLOCK %%GDATA_KEY, xmm9 ; E(K, Y0) vpxor xmm9, xmm14 %%_return_T: mov r10, %%AUTH_TAG ; r10 = authTag mov r11, %%AUTH_TAG_LEN ; r11 = auth_tag_len cmp r11, 16 je %%_T_16 cmp r11, 12 je %%_T_12 cmp r11, 8 je %%_T_8 simd_store_avx r10, xmm9, r11, r12, rax jmp %%_return_T_done %%_T_8: vmovq rax, xmm9 mov [r10], rax jmp %%_return_T_done %%_T_12: vmovq rax, xmm9 mov [r10], rax vpsrldq xmm9, xmm9, 8 vmovd eax, xmm9 mov [r10 + 8], eax jmp %%_return_T_done %%_T_16: vmovdqu [r10], xmm9 %%_return_T_done: %ifdef SAFE_DATA ;; Clear sensitive data from context structure vpxor xmm0, xmm0 vmovdqu [%%GDATA_CTX + AadHash], xmm0 vmovdqu [%%GDATA_CTX + PBlockEncKey], xmm0 %endif %endmacro ; GCM_COMPLETE ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_precomp_128_avx_gen2 ; (struct gcm_key_data *key_data); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(precomp,_),function,) FN_NAME(precomp,_): %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_precomp %endif push r12 push r13 push r14 push r15 mov r14, rsp sub rsp, VARIABLE_OFFSET and rsp, ~63 ; align rsp to 64 bytes %ifidn __OUTPUT_FORMAT__, win64 ; only xmm6 needs to be maintained vmovdqu [rsp + LOCAL_STORAGE + 0*16],xmm6 %endif vpxor xmm6, xmm6 ENCRYPT_SINGLE_BLOCK arg1, xmm6 ; xmm6 = HashKey vpshufb xmm6, [SHUF_MASK] ;;;;;;;;;;;;;;; PRECOMPUTATION of HashKey<<1 mod poly from the HashKey;;;;;;;;;;;;;;; vmovdqa xmm2, xmm6 vpsllq xmm6, 1 vpsrlq xmm2, 63 vmovdqa xmm1, xmm2 vpslldq xmm2, xmm2, 8 vpsrldq xmm1, xmm1, 8 vpor xmm6, xmm2 ;reduction vpshufd xmm2, xmm1, 00100100b vpcmpeqd xmm2, [TWOONE] vpand xmm2, [POLY] vpxor xmm6, xmm2 ; xmm6 holds the HashKey<<1 mod poly ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; vmovdqu [arg1 + HashKey], xmm6 ; store HashKey<<1 mod poly PRECOMPUTE arg1, xmm6, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5 %ifidn __OUTPUT_FORMAT__, win64 vmovdqu xmm6, [rsp + LOCAL_STORAGE + 0*16] %endif mov rsp, r14 pop r15 pop r14 pop r13 pop r12 %ifdef SAFE_DATA clear_scratch_gps_asm clear_scratch_xmms_avx_asm %endif exit_precomp: ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_init_128_avx_gen2( ; const struct gcm_key_data *key_data, ; struct gcm_context_data *context_data, ; u8 *iv, ; const u8 *aad, ; u64 aad_len); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(init,_),function,) FN_NAME(init,_): push r12 push r13 %ifidn __OUTPUT_FORMAT__, win64 push r14 push r15 mov r14, rsp ; xmm6:xmm15 need to be maintained for Windows sub rsp, 1*16 movdqu [rsp + 0*16], xmm6 %endif %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_init ;; Check context_data != NULL cmp arg2, 0 jz exit_init ;; Check IV != NULL cmp arg3, 0 jz exit_init ;; Check if aad_len == 0 cmp arg5, 0 jz skip_aad_check_init ;; Check aad != NULL (aad_len != 0) cmp arg4, 0 jz exit_init skip_aad_check_init: %endif GCM_INIT arg1, arg2, arg3, arg4, arg5 %ifdef SAFE_DATA clear_scratch_gps_asm clear_scratch_xmms_avx_asm %endif exit_init: %ifidn __OUTPUT_FORMAT__, win64 movdqu xmm6 , [rsp + 0*16] mov rsp, r14 pop r15 pop r14 %endif pop r13 pop r12 ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_enc_128_update_avx_gen2( ; const struct gcm_key_data *key_data, ; struct gcm_context_data *context_data, ; u8 *out, ; const u8 *in, ; u64 plaintext_len); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(enc,_update_),function,) FN_NAME(enc,_update_): FUNC_SAVE %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_update_enc ;; Check context_data != NULL cmp arg2, 0 jz exit_update_enc ;; Check if plaintext_len == 0 cmp arg5, 0 jz skip_in_out_check_update_enc ;; Check out != NULL (plaintext_len != 0) cmp arg3, 0 jz exit_update_enc ;; Check in != NULL (plaintext_len != 0) cmp arg4, 0 jz exit_update_enc skip_in_out_check_update_enc: %endif GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, ENC exit_update_enc: FUNC_RESTORE ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_dec_128_update_avx_gen2( ; const struct gcm_key_data *key_data, ; struct gcm_context_data *context_data, ; u8 *out, ; const u8 *in, ; u64 plaintext_len); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(dec,_update_),function,) FN_NAME(dec,_update_): FUNC_SAVE %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_update_dec ;; Check context_data != NULL cmp arg2, 0 jz exit_update_dec ;; Check if plaintext_len == 0 cmp arg5, 0 jz skip_in_out_check_update_dec ;; Check out != NULL (plaintext_len != 0) cmp arg3, 0 jz exit_update_dec ;; Check in != NULL (plaintext_len != 0) cmp arg4, 0 jz exit_update_dec skip_in_out_check_update_dec: %endif GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, DEC exit_update_dec: FUNC_RESTORE ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_enc_128_finalize_avx_gen2( ; const struct gcm_key_data *key_data, ; struct gcm_context_data *context_data, ; u8 *auth_tag, ; u64 auth_tag_len); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(enc,_finalize_),function,) FN_NAME(enc,_finalize_): %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_enc_fin ;; Check context_data != NULL cmp arg2, 0 jz exit_enc_fin ;; Check auth_tag != NULL cmp arg3, 0 jz exit_enc_fin ;; Check auth_tag_len == 0 or > 16 cmp arg4, 0 jz exit_enc_fin cmp arg4, 16 ja exit_enc_fin %endif push r12 %ifidn __OUTPUT_FORMAT__, win64 ; xmm6:xmm15 need to be maintained for Windows sub rsp, 5*16 vmovdqu [rsp + 0*16],xmm6 vmovdqu [rsp + 1*16],xmm9 vmovdqu [rsp + 2*16],xmm11 vmovdqu [rsp + 3*16],xmm14 vmovdqu [rsp + 4*16],xmm15 %endif GCM_COMPLETE arg1, arg2, arg3, arg4, ENC %ifidn __OUTPUT_FORMAT__, win64 vmovdqu xmm15 , [rsp + 4*16] vmovdqu xmm14 , [rsp + 3*16] vmovdqu xmm11 , [rsp + 2*16] vmovdqu xmm9 , [rsp + 1*16] vmovdqu xmm6 , [rsp + 0*16] add rsp, 5*16 %endif pop r12 %ifdef SAFE_DATA clear_scratch_gps_asm clear_scratch_xmms_avx_asm %endif exit_enc_fin: ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_dec_128_finalize_avx_gen2( ; const struct gcm_key_data *key_data, ; struct gcm_context_data *context_data, ; u8 *auth_tag, ; u64 auth_tag_len); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(dec,_finalize_),function,) FN_NAME(dec,_finalize_): %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_dec_fin ;; Check context_data != NULL cmp arg2, 0 jz exit_dec_fin ;; Check auth_tag != NULL cmp arg3, 0 jz exit_dec_fin ;; Check auth_tag_len == 0 or > 16 cmp arg4, 0 jz exit_dec_fin cmp arg4, 16 ja exit_dec_fin %endif push r12 %ifidn __OUTPUT_FORMAT__, win64 ; xmm6:xmm15 need to be maintained for Windows sub rsp, 5*16 vmovdqu [rsp + 0*16],xmm6 vmovdqu [rsp + 1*16],xmm9 vmovdqu [rsp + 2*16],xmm11 vmovdqu [rsp + 3*16],xmm14 vmovdqu [rsp + 4*16],xmm15 %endif GCM_COMPLETE arg1, arg2, arg3, arg4, DEC %ifidn __OUTPUT_FORMAT__, win64 vmovdqu xmm15 , [rsp + 4*16] vmovdqu xmm14 , [rsp + 3*16] vmovdqu xmm11 , [rsp + 2*16] vmovdqu xmm9 , [rsp + 1*16] vmovdqu xmm6 , [rsp + 0*16] add rsp, 5*16 %endif pop r12 %ifdef SAFE_DATA clear_scratch_gps_asm clear_scratch_xmms_avx_asm %endif exit_dec_fin: ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_enc_128_avx_gen2( ; const struct gcm_key_data *key_data, ; struct gcm_context_data *context_data, ; u8 *out, ; const u8 *in, ; u64 plaintext_len, ; u8 *iv, ; const u8 *aad, ; u64 aad_len, ; u8 *auth_tag, ; u64 auth_tag_len); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(enc,_),function,) FN_NAME(enc,_): FUNC_SAVE %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_enc ;; Check context_data != NULL cmp arg2, 0 jz exit_enc ;; Check IV != NULL cmp arg6, 0 jz exit_enc ;; Check auth_tag != NULL cmp arg9, 0 jz exit_enc ;; Check auth_tag_len == 0 or > 16 cmp arg10, 0 jz exit_enc cmp arg10, 16 ja exit_enc ;; Check if plaintext_len == 0 cmp arg5, 0 jz skip_in_out_check_enc ;; Check out != NULL (plaintext_len != 0) cmp arg3, 0 jz exit_enc ;; Check in != NULL (plaintext_len != 0) cmp arg4, 0 jz exit_enc skip_in_out_check_enc: ;; Check if aad_len == 0 cmp arg8, 0 jz skip_aad_check_enc ;; Check aad != NULL (aad_len != 0) cmp arg7, 0 jz exit_enc skip_aad_check_enc: %endif GCM_INIT arg1, arg2, arg6, arg7, arg8 GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, ENC GCM_COMPLETE arg1, arg2, arg9, arg10, ENC exit_enc: FUNC_RESTORE ret ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;void aes_gcm_dec_128_avx_gen2( ; const struct gcm_key_data *key_data, ; struct gcm_context_data *context_data, ; u8 *out, ; const u8 *in, ; u64 plaintext_len, ; u8 *iv, ; const u8 *aad, ; u64 aad_len, ; u8 *auth_tag, ; u64 auth_tag_len); ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MKGLOBAL(FN_NAME(dec,_),function,) FN_NAME(dec,_): FUNC_SAVE %ifdef SAFE_PARAM ;; Check key_data != NULL cmp arg1, 0 jz exit_dec ;; Check context_data != NULL cmp arg2, 0 jz exit_dec ;; Check IV != NULL cmp arg6, 0 jz exit_dec ;; Check auth_tag != NULL cmp arg9, 0 jz exit_dec ;; Check auth_tag_len == 0 or > 16 cmp arg10, 0 jz exit_dec cmp arg10, 16 ja exit_dec ;; Check if plaintext_len == 0 cmp arg5, 0 jz skip_in_out_check_dec ;; Check out != NULL (plaintext_len != 0) cmp arg3, 0 jz exit_dec ;; Check in != NULL (plaintext_len != 0) cmp arg4, 0 jz exit_dec skip_in_out_check_dec: ;; Check if aad_len == 0 cmp arg8, 0 jz skip_aad_check_dec ;; Check aad != NULL (aad_len != 0) cmp arg7, 0 jz exit_dec skip_aad_check_dec: %endif GCM_INIT arg1, arg2, arg6, arg7, arg8 GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, DEC GCM_COMPLETE arg1, arg2, arg9, arg10, DEC exit_dec: FUNC_RESTORE ret %ifdef LINUX section .note.GNU-stack noalloc noexec nowrite progbits %endif