/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "env_internal.h" #include #include #include #include "spdk_internal/assert.h" #include "spdk/assert.h" #include "spdk/likely.h" #include "spdk/queue.h" #include "spdk/util.h" #include "spdk/memory.h" #include "spdk/env_dpdk.h" #ifdef __FreeBSD__ #define VFIO_ENABLED 0 #else #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) #define VFIO_ENABLED 1 #include #include struct spdk_vfio_dma_map { struct vfio_iommu_type1_dma_map map; struct vfio_iommu_type1_dma_unmap unmap; TAILQ_ENTRY(spdk_vfio_dma_map) tailq; }; struct vfio_cfg { int fd; bool enabled; bool noiommu_enabled; unsigned device_ref; TAILQ_HEAD(, spdk_vfio_dma_map) maps; pthread_mutex_t mutex; }; static struct vfio_cfg g_vfio = { .fd = -1, .enabled = false, .noiommu_enabled = false, .device_ref = 0, .maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps), .mutex = PTHREAD_MUTEX_INITIALIZER }; #else #define VFIO_ENABLED 0 #endif #endif #if DEBUG #define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__) #else #define DEBUG_PRINT(...) #endif #define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB)) #define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB)) #define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB)) #define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1)) /* Page is registered */ #define REG_MAP_REGISTERED (1ULL << 62) /* A notification region barrier. The 2MB translation entry that's marked * with this flag must be unregistered separately. This allows contiguous * regions to be unregistered in the same chunks they were registered. */ #define REG_MAP_NOTIFY_START (1ULL << 63) /* Translation of a single 2MB page. */ struct map_2mb { uint64_t translation_2mb; }; /* Second-level map table indexed by bits [21..29] of the virtual address. * Each entry contains the address translation or error for entries that haven't * been retrieved yet. */ struct map_1gb { struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)]; }; /* Top-level map table indexed by bits [30..47] of the virtual address. * Each entry points to a second-level map table or NULL. */ struct map_256tb { struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)]; }; /* Page-granularity memory address translation */ struct spdk_mem_map { struct map_256tb map_256tb; pthread_mutex_t mutex; uint64_t default_translation; struct spdk_mem_map_ops ops; void *cb_ctx; TAILQ_ENTRY(spdk_mem_map) tailq; }; /* Registrations map. The 64 bit translations are bit fields with the * following layout (starting with the low bits): * 0 - 61 : reserved * 62 - 63 : flags */ static struct spdk_mem_map *g_mem_reg_map; static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps); static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER; static bool g_legacy_mem; /* * Walk the currently registered memory via the main memory registration map * and call the new map's notify callback for each virtually contiguous region. */ static int mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action) { size_t idx_256tb; uint64_t idx_1gb; uint64_t contig_start = UINT64_MAX; uint64_t contig_end = UINT64_MAX; struct map_1gb *map_1gb; int rc; if (!g_mem_reg_map) { return -EINVAL; } /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */ pthread_mutex_lock(&g_mem_reg_map->mutex); for (idx_256tb = 0; idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]); idx_256tb++) { map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; if (!map_1gb) { if (contig_start != UINT64_MAX) { /* End of of a virtually contiguous range */ rc = map->ops.notify_cb(map->cb_ctx, map, action, (void *)contig_start, contig_end - contig_start + VALUE_2MB); /* Don't bother handling unregister failures. It can't be any worse */ if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { goto err_unregister; } } contig_start = UINT64_MAX; continue; } for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) { if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && (contig_start == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { /* Rebuild the virtual address from the indexes */ uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); if (contig_start == UINT64_MAX) { contig_start = vaddr; } contig_end = vaddr; } else { if (contig_start != UINT64_MAX) { /* End of of a virtually contiguous range */ rc = map->ops.notify_cb(map->cb_ctx, map, action, (void *)contig_start, contig_end - contig_start + VALUE_2MB); /* Don't bother handling unregister failures. It can't be any worse */ if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { goto err_unregister; } /* This page might be a part of a neighbour region, so process * it again. The idx_1gb will be incremented immediately. */ idx_1gb--; } contig_start = UINT64_MAX; } } } pthread_mutex_unlock(&g_mem_reg_map->mutex); return 0; err_unregister: /* Unwind to the first empty translation so we don't unregister * a region that just failed to register. */ idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1); idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1); contig_start = UINT64_MAX; contig_end = UINT64_MAX; /* Unregister any memory we managed to register before the failure */ for (; idx_256tb < SIZE_MAX; idx_256tb--) { map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; if (!map_1gb) { if (contig_end != UINT64_MAX) { /* End of of a virtually contiguous range */ map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, (void *)contig_start, contig_end - contig_start + VALUE_2MB); } contig_end = UINT64_MAX; continue; } for (; idx_1gb < UINT64_MAX; idx_1gb--) { if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { /* Rebuild the virtual address from the indexes */ uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); if (contig_end == UINT64_MAX) { contig_end = vaddr; } contig_start = vaddr; } else { if (contig_end != UINT64_MAX) { /* End of of a virtually contiguous range */ map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, (void *)contig_start, contig_end - contig_start + VALUE_2MB); idx_1gb++; } contig_end = UINT64_MAX; } } idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1; } pthread_mutex_unlock(&g_mem_reg_map->mutex); return rc; } struct spdk_mem_map * spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx) { struct spdk_mem_map *map; int rc; map = calloc(1, sizeof(*map)); if (map == NULL) { return NULL; } if (pthread_mutex_init(&map->mutex, NULL)) { free(map); return NULL; } map->default_translation = default_translation; map->cb_ctx = cb_ctx; if (ops) { map->ops = *ops; } if (ops && ops->notify_cb) { pthread_mutex_lock(&g_spdk_mem_map_mutex); rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); DEBUG_PRINT("Initial mem_map notify failed\n"); pthread_mutex_destroy(&map->mutex); free(map); return NULL; } TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq); pthread_mutex_unlock(&g_spdk_mem_map_mutex); } return map; } void spdk_mem_map_free(struct spdk_mem_map **pmap) { struct spdk_mem_map *map; size_t i; if (!pmap) { return; } map = *pmap; if (!map) { return; } if (map->ops.notify_cb) { pthread_mutex_lock(&g_spdk_mem_map_mutex); mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER); TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq); pthread_mutex_unlock(&g_spdk_mem_map_mutex); } for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) { free(map->map_256tb.map[i]); } pthread_mutex_destroy(&map->mutex); free(map); *pmap = NULL; } int spdk_mem_register(void *vaddr, size_t len) { struct spdk_mem_map *map; int rc; void *seg_vaddr; size_t seg_len; uint64_t reg; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); return -EINVAL; } if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", __func__, vaddr, len); return -EINVAL; } if (len == 0) { return 0; } pthread_mutex_lock(&g_spdk_mem_map_mutex); seg_vaddr = vaddr; seg_len = len; while (seg_len > 0) { reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); if (reg & REG_MAP_REGISTERED) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -EBUSY; } seg_vaddr += VALUE_2MB; seg_len -= VALUE_2MB; } seg_vaddr = vaddr; seg_len = 0; while (len > 0) { spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED); seg_len += VALUE_2MB; vaddr += VALUE_2MB; len -= VALUE_2MB; } TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return rc; } } pthread_mutex_unlock(&g_spdk_mem_map_mutex); return 0; } int spdk_mem_unregister(void *vaddr, size_t len) { struct spdk_mem_map *map; int rc; void *seg_vaddr; size_t seg_len; uint64_t reg, newreg; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); return -EINVAL; } if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", __func__, vaddr, len); return -EINVAL; } pthread_mutex_lock(&g_spdk_mem_map_mutex); /* The first page must be a start of a region. Also check if it's * registered to make sure we don't return -ERANGE for non-registered * regions. */ reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -ERANGE; } seg_vaddr = vaddr; seg_len = len; while (seg_len > 0) { reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); if ((reg & REG_MAP_REGISTERED) == 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -EINVAL; } seg_vaddr += VALUE_2MB; seg_len -= VALUE_2MB; } newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); /* If the next page is registered, it must be a start of a region as well, * otherwise we'd be unregistering only a part of a region. */ if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -ERANGE; } seg_vaddr = vaddr; seg_len = 0; while (len > 0) { reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0); if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) { TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return rc; } } seg_vaddr = vaddr; seg_len = VALUE_2MB; } else { seg_len += VALUE_2MB; } vaddr += VALUE_2MB; len -= VALUE_2MB; } if (seg_len > 0) { TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return rc; } } } pthread_mutex_unlock(&g_spdk_mem_map_mutex); return 0; } int spdk_mem_reserve(void *vaddr, size_t len) { struct spdk_mem_map *map; void *seg_vaddr; size_t seg_len; uint64_t reg; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); return -EINVAL; } if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", __func__, vaddr, len); return -EINVAL; } if (len == 0) { return 0; } pthread_mutex_lock(&g_spdk_mem_map_mutex); /* Check if any part of this range is already registered */ seg_vaddr = vaddr; seg_len = len; while (seg_len > 0) { reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); if (reg & REG_MAP_REGISTERED) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -EBUSY; } seg_vaddr += VALUE_2MB; seg_len -= VALUE_2MB; } /* Simply set the translation to the memory map's default. This allocates the space in the * map but does not provide a valid translation. */ spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len, g_mem_reg_map->default_translation); TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation); } pthread_mutex_unlock(&g_spdk_mem_map_mutex); return 0; } static struct map_1gb * mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb) { struct map_1gb *map_1gb; uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb); size_t i; if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) { return NULL; } map_1gb = map->map_256tb.map[idx_256tb]; if (!map_1gb) { pthread_mutex_lock(&map->mutex); /* Recheck to make sure nobody else got the mutex first. */ map_1gb = map->map_256tb.map[idx_256tb]; if (!map_1gb) { map_1gb = malloc(sizeof(struct map_1gb)); if (map_1gb) { /* initialize all entries to default translation */ for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) { map_1gb->map[i].translation_2mb = map->default_translation; } map->map_256tb.map[idx_256tb] = map_1gb; } } pthread_mutex_unlock(&map->mutex); if (!map_1gb) { DEBUG_PRINT("allocation failed\n"); return NULL; } } return map_1gb; } int spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, uint64_t translation) { uint64_t vfn_2mb; struct map_1gb *map_1gb; uint64_t idx_1gb; struct map_2mb *map_2mb; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr); return -EINVAL; } /* For now, only 2 MB-aligned registrations are supported */ if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n", __func__, vaddr, size); return -EINVAL; } vfn_2mb = vaddr >> SHIFT_2MB; while (size) { map_1gb = mem_map_get_map_1gb(map, vfn_2mb); if (!map_1gb) { DEBUG_PRINT("could not get %p map\n", (void *)vaddr); return -ENOMEM; } idx_1gb = MAP_1GB_IDX(vfn_2mb); map_2mb = &map_1gb->map[idx_1gb]; map_2mb->translation_2mb = translation; size -= VALUE_2MB; vfn_2mb++; } return 0; } int spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size) { return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation); } inline uint64_t spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) { const struct map_1gb *map_1gb; const struct map_2mb *map_2mb; uint64_t idx_256tb; uint64_t idx_1gb; uint64_t vfn_2mb; uint64_t cur_size; uint64_t prev_translation; uint64_t orig_translation; if (spdk_unlikely(vaddr & ~MASK_256TB)) { DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr); return map->default_translation; } vfn_2mb = vaddr >> SHIFT_2MB; idx_256tb = MAP_256TB_IDX(vfn_2mb); idx_1gb = MAP_1GB_IDX(vfn_2mb); map_1gb = map->map_256tb.map[idx_256tb]; if (spdk_unlikely(!map_1gb)) { return map->default_translation; } cur_size = VALUE_2MB - _2MB_OFFSET(vaddr); map_2mb = &map_1gb->map[idx_1gb]; if (size == NULL || map->ops.are_contiguous == NULL || map_2mb->translation_2mb == map->default_translation) { if (size != NULL) { *size = spdk_min(*size, cur_size); } return map_2mb->translation_2mb; } orig_translation = map_2mb->translation_2mb; prev_translation = orig_translation; while (cur_size < *size) { vfn_2mb++; idx_256tb = MAP_256TB_IDX(vfn_2mb); idx_1gb = MAP_1GB_IDX(vfn_2mb); map_1gb = map->map_256tb.map[idx_256tb]; if (spdk_unlikely(!map_1gb)) { break; } map_2mb = &map_1gb->map[idx_1gb]; if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) { break; } cur_size += VALUE_2MB; prev_translation = map_2mb->translation_2mb; } *size = spdk_min(*size, cur_size); return orig_translation; } static void memory_hotplug_cb(enum rte_mem_event event_type, const void *addr, size_t len, void *arg) { if (event_type == RTE_MEM_EVENT_ALLOC) { spdk_mem_register((void *)addr, len); #if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0) if (!spdk_env_dpdk_external_init()) { return; } #endif /* Prior to DPDK 19.02, we have to worry about DPDK * freeing memory in different units than it was allocated. * That doesn't work with things like RDMA MRs. So for * those versions of DPDK, mark each segment so that DPDK * won't later free it. That ensures we don't have to deal * with that scenario. * * DPDK 19.02 added the --match-allocations RTE flag to * avoid this condition. * * Note: if the user initialized DPDK separately, we can't * be sure that --match-allocations was specified, so need * to still mark the segments so they aren't freed. */ while (len > 0) { struct rte_memseg *seg; seg = rte_mem_virt2memseg(addr, NULL); assert(seg != NULL); seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; addr = (void *)((uintptr_t)addr + seg->hugepage_sz); len -= seg->hugepage_sz; } } else if (event_type == RTE_MEM_EVENT_FREE) { spdk_mem_unregister((void *)addr, len); } } static int memory_iter_cb(const struct rte_memseg_list *msl, const struct rte_memseg *ms, size_t len, void *arg) { return spdk_mem_register(ms->addr, len); } int mem_map_init(bool legacy_mem) { g_legacy_mem = legacy_mem; g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL); if (g_mem_reg_map == NULL) { DEBUG_PRINT("memory registration map allocation failed\n"); return -ENOMEM; } /* * Walk all DPDK memory segments and register them * with the master memory map */ rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL); rte_memseg_contig_walk(memory_iter_cb, NULL); return 0; } bool spdk_iommu_is_enabled(void) { #if VFIO_ENABLED return g_vfio.enabled && !g_vfio.noiommu_enabled; #else return false; #endif } struct spdk_vtophys_pci_device { struct rte_pci_device *pci_device; TAILQ_ENTRY(spdk_vtophys_pci_device) tailq; }; static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER; static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices = TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices); static struct spdk_mem_map *g_vtophys_map; static struct spdk_mem_map *g_phys_ref_map; #if VFIO_ENABLED static int vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size) { struct spdk_vfio_dma_map *dma_map; uint64_t refcount; int ret; refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); assert(refcount < UINT64_MAX); if (refcount > 0) { spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); return 0; } dma_map = calloc(1, sizeof(*dma_map)); if (dma_map == NULL) { return -ENOMEM; } dma_map->map.argsz = sizeof(dma_map->map); dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; dma_map->map.vaddr = vaddr; dma_map->map.iova = iova; dma_map->map.size = size; dma_map->unmap.argsz = sizeof(dma_map->unmap); dma_map->unmap.flags = 0; dma_map->unmap.iova = iova; dma_map->unmap.size = size; pthread_mutex_lock(&g_vfio.mutex); if (g_vfio.device_ref == 0) { /* VFIO requires at least one device (IOMMU group) to be added to * a VFIO container before it is possible to perform any IOMMU * operations on that container. This memory will be mapped once * the first device (IOMMU group) is hotplugged. * * Since the vfio container is managed internally by DPDK, it is * also possible that some device is already in that container, but * it's not managed by SPDK - e.g. an NIC attached internally * inside DPDK. We could map the memory straight away in such * scenario, but there's no need to do it. DPDK devices clearly * don't need our mappings and hence we defer the mapping * unconditionally until the first SPDK-managed device is * hotplugged. */ goto out_insert; } ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); if (ret) { DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno); pthread_mutex_unlock(&g_vfio.mutex); free(dma_map); return ret; } out_insert: TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq); pthread_mutex_unlock(&g_vfio.mutex); spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); return 0; } static int vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size) { struct spdk_vfio_dma_map *dma_map; uint64_t refcount; int ret; pthread_mutex_lock(&g_vfio.mutex); TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { if (dma_map->map.iova == iova) { break; } } if (dma_map == NULL) { DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova); pthread_mutex_unlock(&g_vfio.mutex); return -ENXIO; } refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); assert(refcount < UINT64_MAX); if (refcount > 0) { spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1); } /* We still have outstanding references, don't clear it. */ if (refcount > 1) { pthread_mutex_unlock(&g_vfio.mutex); return 0; } /** don't support partial or multiple-page unmap for now */ assert(dma_map->map.size == size); if (g_vfio.device_ref == 0) { /* Memory is not mapped anymore, just remove it's references */ goto out_remove; } ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); if (ret) { DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno); pthread_mutex_unlock(&g_vfio.mutex); return ret; } out_remove: TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq); pthread_mutex_unlock(&g_vfio.mutex); free(dma_map); return 0; } #endif static uint64_t vtophys_get_paddr_memseg(uint64_t vaddr) { uintptr_t paddr; struct rte_memseg *seg; seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL); if (seg != NULL) { paddr = seg->phys_addr; if (paddr == RTE_BAD_IOVA) { return SPDK_VTOPHYS_ERROR; } paddr += (vaddr - (uintptr_t)seg->addr); return paddr; } return SPDK_VTOPHYS_ERROR; } /* Try to get the paddr from /proc/self/pagemap */ static uint64_t vtophys_get_paddr_pagemap(uint64_t vaddr) { uintptr_t paddr; /* Silence static analyzers */ assert(vaddr != 0); paddr = rte_mem_virt2iova((void *)vaddr); if (paddr == RTE_BAD_IOVA) { /* * The vaddr may be valid but doesn't have a backing page * assigned yet. Touch the page to ensure a backing page * gets assigned, then try to translate again. */ rte_atomic64_read((rte_atomic64_t *)vaddr); paddr = rte_mem_virt2iova((void *)vaddr); } if (paddr == RTE_BAD_IOVA) { /* Unable to get to the physical address. */ return SPDK_VTOPHYS_ERROR; } return paddr; } /* Try to get the paddr from pci devices */ static uint64_t vtophys_get_paddr_pci(uint64_t vaddr) { struct spdk_vtophys_pci_device *vtophys_dev; uintptr_t paddr; struct rte_pci_device *dev; struct rte_mem_resource *res; unsigned r; pthread_mutex_lock(&g_vtophys_pci_devices_mutex); TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { dev = vtophys_dev->pci_device; for (r = 0; r < PCI_MAX_RESOURCE; r++) { res = &dev->mem_resource[r]; if (res->phys_addr && vaddr >= (uint64_t)res->addr && vaddr < (uint64_t)res->addr + res->len) { paddr = res->phys_addr + (vaddr - (uint64_t)res->addr); DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr, (void *)paddr); pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); return paddr; } } } pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); return SPDK_VTOPHYS_ERROR; } static int vtophys_notify(void *cb_ctx, struct spdk_mem_map *map, enum spdk_mem_map_notify_action action, void *vaddr, size_t len) { int rc = 0, pci_phys = 0; uint64_t paddr; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); return -EINVAL; } if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n", vaddr, len); return -EINVAL; } /* Get the physical address from the DPDK memsegs */ paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); switch (action) { case SPDK_MEM_MAP_NOTIFY_REGISTER: if (paddr == SPDK_VTOPHYS_ERROR) { /* This is not an address that DPDK is managing. */ #if VFIO_ENABLED enum rte_iova_mode iova_mode; #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) iova_mode = rte_eal_iova_mode(); #else iova_mode = rte_eal_get_configuration()->iova_mode; #endif if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) { /* We'll use the virtual address as the iova to match DPDK. */ paddr = (uint64_t)vaddr; rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len); if (rc) { return -EFAULT; } while (len > 0) { rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); if (rc != 0) { return rc; } vaddr += VALUE_2MB; paddr += VALUE_2MB; len -= VALUE_2MB; } } else #endif { /* Get the physical address from /proc/self/pagemap. */ paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); if (paddr == SPDK_VTOPHYS_ERROR) { /* Get the physical address from PCI devices */ paddr = vtophys_get_paddr_pci((uint64_t)vaddr); if (paddr == SPDK_VTOPHYS_ERROR) { DEBUG_PRINT("could not get phys addr for %p\n", vaddr); return -EFAULT; } /* The beginning of this address range points to a PCI resource, * so the rest must point to a PCI resource as well. */ pci_phys = 1; } /* Get paddr for each 2MB chunk in this address range */ while (len > 0) { /* Get the physical address from /proc/self/pagemap. */ if (pci_phys) { paddr = vtophys_get_paddr_pci((uint64_t)vaddr); } else { paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); } if (paddr == SPDK_VTOPHYS_ERROR) { DEBUG_PRINT("could not get phys addr for %p\n", vaddr); return -EFAULT; } /* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */ if (!pci_phys && (paddr & MASK_2MB)) { DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr); return -EINVAL; } #if VFIO_ENABLED /* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory * with the IOMMU using the physical address to match. */ if (spdk_iommu_is_enabled()) { rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB); if (rc) { DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr); return -EFAULT; } } #endif rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); if (rc != 0) { return rc; } vaddr += VALUE_2MB; len -= VALUE_2MB; } } } else { /* This is an address managed by DPDK. Just setup the translations. */ while (len > 0) { paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); if (paddr == SPDK_VTOPHYS_ERROR) { DEBUG_PRINT("could not get phys addr for %p\n", vaddr); return -EFAULT; } rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); if (rc != 0) { return rc; } vaddr += VALUE_2MB; len -= VALUE_2MB; } } break; case SPDK_MEM_MAP_NOTIFY_UNREGISTER: #if VFIO_ENABLED if (paddr == SPDK_VTOPHYS_ERROR) { /* * This is not an address that DPDK is managing. If vfio is enabled, * we need to unmap the range from the IOMMU */ if (spdk_iommu_is_enabled()) { uint64_t buffer_len = len; uint8_t *va = vaddr; enum rte_iova_mode iova_mode; #if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) iova_mode = rte_eal_iova_mode(); #else iova_mode = rte_eal_get_configuration()->iova_mode; #endif /* * In virtual address mode, the region is contiguous and can be done in * one unmap. */ if (iova_mode == RTE_IOVA_VA) { paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len); if (buffer_len != len || paddr != (uintptr_t)va) { DEBUG_PRINT("Unmapping %p with length %lu failed because " "translation had address 0x%" PRIx64 " and length %lu\n", va, len, paddr, buffer_len); return -EINVAL; } rc = vtophys_iommu_unmap_dma(paddr, len); if (rc) { DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); return -EFAULT; } } else if (iova_mode == RTE_IOVA_PA) { /* Get paddr for each 2MB chunk in this address range */ while (buffer_len > 0) { paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL); if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) { DEBUG_PRINT("could not get phys addr for %p\n", va); return -EFAULT; } rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB); if (rc) { DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); return -EFAULT; } va += VALUE_2MB; buffer_len -= VALUE_2MB; } } } } #endif while (len > 0) { rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB); if (rc != 0) { return rc; } vaddr += VALUE_2MB; len -= VALUE_2MB; } break; default: SPDK_UNREACHABLE(); } return rc; } static int vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2) { /* This function is always called with paddrs for two subsequent * 2MB chunks in virtual address space, so those chunks will be only * physically contiguous if the physical addresses are 2MB apart * from each other as well. */ return (paddr2 - paddr1 == VALUE_2MB); } #if VFIO_ENABLED static bool vfio_enabled(void) { return rte_vfio_is_enabled("vfio_pci"); } /* Check if IOMMU is enabled on the system */ static bool has_iommu_groups(void) { struct dirent *d; int count = 0; DIR *dir = opendir("/sys/kernel/iommu_groups"); if (dir == NULL) { return false; } while (count < 3 && (d = readdir(dir)) != NULL) { count++; } closedir(dir); /* there will always be ./ and ../ entries */ return count > 2; } static bool vfio_noiommu_enabled(void) { return rte_vfio_noiommu_is_enabled(); } static void vtophys_iommu_init(void) { char proc_fd_path[PATH_MAX + 1]; char link_path[PATH_MAX + 1]; const char vfio_path[] = "/dev/vfio/vfio"; DIR *dir; struct dirent *d; if (!vfio_enabled()) { return; } if (vfio_noiommu_enabled()) { g_vfio.noiommu_enabled = true; } else if (!has_iommu_groups()) { return; } dir = opendir("/proc/self/fd"); if (!dir) { DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno); return; } while ((d = readdir(dir)) != NULL) { if (d->d_type != DT_LNK) { continue; } snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name); if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) { continue; } if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) { sscanf(d->d_name, "%d", &g_vfio.fd); break; } } closedir(dir); if (g_vfio.fd < 0) { DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n"); return; } g_vfio.enabled = true; return; } #endif void vtophys_pci_device_added(struct rte_pci_device *pci_device) { struct spdk_vtophys_pci_device *vtophys_dev; pthread_mutex_lock(&g_vtophys_pci_devices_mutex); vtophys_dev = calloc(1, sizeof(*vtophys_dev)); if (vtophys_dev) { vtophys_dev->pci_device = pci_device; TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq); } else { DEBUG_PRINT("Memory allocation error\n"); } pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); #if VFIO_ENABLED struct spdk_vfio_dma_map *dma_map; int ret; if (!g_vfio.enabled) { return; } pthread_mutex_lock(&g_vfio.mutex); g_vfio.device_ref++; if (g_vfio.device_ref > 1) { pthread_mutex_unlock(&g_vfio.mutex); return; } /* This is the first SPDK device using DPDK vfio. This means that the first * IOMMU group might have been just been added to the DPDK vfio container. * From this point it is certain that the memory can be mapped now. */ TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); if (ret) { DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno); break; } } pthread_mutex_unlock(&g_vfio.mutex); #endif } void vtophys_pci_device_removed(struct rte_pci_device *pci_device) { struct spdk_vtophys_pci_device *vtophys_dev; pthread_mutex_lock(&g_vtophys_pci_devices_mutex); TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { if (vtophys_dev->pci_device == pci_device) { TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq); free(vtophys_dev); break; } } pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); #if VFIO_ENABLED struct spdk_vfio_dma_map *dma_map; int ret; if (!g_vfio.enabled) { return; } pthread_mutex_lock(&g_vfio.mutex); assert(g_vfio.device_ref > 0); g_vfio.device_ref--; if (g_vfio.device_ref > 0) { pthread_mutex_unlock(&g_vfio.mutex); return; } /* This is the last SPDK device using DPDK vfio. If DPDK doesn't have * any additional devices using it's vfio container, all the mappings * will be automatically removed by the Linux vfio driver. We unmap * the memory manually to be able to easily re-map it later regardless * of other, external factors. */ TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); if (ret) { DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno); break; } } pthread_mutex_unlock(&g_vfio.mutex); #endif } int vtophys_init(void) { const struct spdk_mem_map_ops vtophys_map_ops = { .notify_cb = vtophys_notify, .are_contiguous = vtophys_check_contiguous_entries, }; const struct spdk_mem_map_ops phys_ref_map_ops = { .notify_cb = NULL, .are_contiguous = NULL, }; #if VFIO_ENABLED vtophys_iommu_init(); #endif g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL); if (g_phys_ref_map == NULL) { DEBUG_PRINT("phys_ref map allocation failed.\n"); return -ENOMEM; } g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL); if (g_vtophys_map == NULL) { DEBUG_PRINT("vtophys map allocation failed\n"); return -ENOMEM; } return 0; } uint64_t spdk_vtophys(void *buf, uint64_t *size) { uint64_t vaddr, paddr_2mb; vaddr = (uint64_t)buf; paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size); /* * SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR, * we will still bitwise-or it with the buf offset below, but the result will still be * SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being * unaligned) we must now check the return value before addition. */ SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s"); if (paddr_2mb == SPDK_VTOPHYS_ERROR) { return SPDK_VTOPHYS_ERROR; } else { return paddr_2mb + (vaddr & MASK_2MB); } }