/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/barrier.h" #include "spdk/fd.h" #include "spdk/nvme.h" #include "spdk/env.h" #include "spdk/string.h" #include "spdk/nvme_intel.h" #include "spdk/histogram_data.h" #if HAVE_LIBAIO #include #endif struct ctrlr_entry { struct spdk_nvme_ctrlr *ctrlr; struct ctrlr_entry *next; char name[1024]; }; enum entry_type { ENTRY_TYPE_NVME_NS, ENTRY_TYPE_AIO_FILE, }; struct ns_entry { enum entry_type type; union { struct { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; struct spdk_nvme_qpair *qpair; } nvme; #if HAVE_LIBAIO struct { int fd; struct io_event *events; io_context_t ctx; } aio; #endif } u; uint32_t io_size_blocks; uint64_t size_in_ios; bool is_draining; uint32_t current_queue_depth; char name[1024]; struct ns_entry *next; struct spdk_histogram_data *submit_histogram; struct spdk_histogram_data *complete_histogram; }; struct perf_task { void *buf; uint64_t submit_tsc; #if HAVE_LIBAIO struct iocb iocb; #endif }; static bool g_enable_histogram = false; static struct ctrlr_entry *g_ctrlr = NULL; static struct ns_entry *g_ns = NULL; static uint64_t g_tsc_rate; static uint32_t g_io_size_bytes; static int g_time_in_sec; static int g_aio_optind; /* Index of first AIO filename in argv */ struct perf_task *g_task; uint64_t g_tsc_submit = 0; uint64_t g_tsc_submit_min = UINT64_MAX; uint64_t g_tsc_submit_max = 0; uint64_t g_tsc_complete = 0; uint64_t g_tsc_complete_min = UINT64_MAX; uint64_t g_tsc_complete_max = 0; uint64_t g_io_completed = 0; static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (!spdk_nvme_ns_is_active(ns)) { printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns)); return; } if (spdk_nvme_ns_get_size(ns) < g_io_size_bytes || spdk_nvme_ns_get_sector_size(ns) > g_io_size_bytes) { printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); return; } entry = calloc(1, sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } entry->type = ENTRY_TYPE_NVME_NS; entry->u.nvme.ctrlr = ctrlr; entry->u.nvme.ns = ns; entry->size_in_ios = spdk_nvme_ns_get_size(ns) / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns); entry->submit_histogram = spdk_histogram_data_alloc(); entry->complete_histogram = spdk_histogram_data_alloc(); snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); entry->next = g_ns; g_ns = entry; } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { int num_ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); entry->ctrlr = ctrlr; entry->next = g_ctrlr; g_ctrlr = entry; num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr); /* Only register the first namespace. */ if (num_ns < 1) { fprintf(stderr, "controller found with no namespaces\n"); return; } register_ns(ctrlr, spdk_nvme_ctrlr_get_ns(ctrlr, 1)); } #if HAVE_LIBAIO static int register_aio_file(const char *path) { struct ns_entry *entry; int fd; uint64_t size; uint32_t blklen; fd = open(path, O_RDWR | O_DIRECT); if (fd < 0) { fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno)); return -1; } size = spdk_fd_get_size(fd); if (size == 0) { fprintf(stderr, "Could not determine size of AIO device %s\n", path); close(fd); return -1; } blklen = spdk_fd_get_blocklen(fd); if (blklen == 0) { fprintf(stderr, "Could not determine block size of AIO device %s\n", path); close(fd); return -1; } entry = calloc(1, sizeof(struct ns_entry)); if (entry == NULL) { close(fd); perror("aio ns_entry malloc"); return -1; } entry->type = ENTRY_TYPE_AIO_FILE; entry->u.aio.fd = fd; entry->size_in_ios = size / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / blklen; entry->submit_histogram = spdk_histogram_data_alloc(); entry->complete_histogram = spdk_histogram_data_alloc(); snprintf(entry->name, sizeof(entry->name), "%s", path); g_ns = entry; return 0; } static int aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd, void *buf, unsigned long nbytes, uint64_t offset, void *cb_ctx) { iocb->aio_fildes = fd; iocb->aio_reqprio = 0; iocb->aio_lio_opcode = cmd; iocb->u.c.buf = buf; iocb->u.c.nbytes = nbytes; iocb->u.c.offset = offset; iocb->data = cb_ctx; if (io_submit(aio_ctx, 1, &iocb) < 0) { printf("io_submit"); return -1; } return 0; } static void aio_check_io(void) { int count, i; struct timespec timeout; timeout.tv_sec = 0; timeout.tv_nsec = 0; count = io_getevents(g_ns->u.aio.ctx, 1, 1, g_ns->u.aio.events, &timeout); if (count < 0) { fprintf(stderr, "io_getevents error\n"); exit(1); } for (i = 0; i < count; i++) { g_ns->current_queue_depth--; } } #endif /* HAVE_LIBAIO */ static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion); static __thread unsigned int seed = 0; static void submit_single_io(void) { uint64_t offset_in_ios; uint64_t start; int rc; struct ns_entry *entry = g_ns; uint64_t tsc_submit; offset_in_ios = rand_r(&seed) % entry->size_in_ios; start = spdk_get_ticks(); spdk_rmb(); #if HAVE_LIBAIO if (entry->type == ENTRY_TYPE_AIO_FILE) { rc = aio_submit(g_ns->u.aio.ctx, &g_task->iocb, entry->u.aio.fd, IO_CMD_PREAD, g_task->buf, g_io_size_bytes, offset_in_ios * g_io_size_bytes, g_task); } else #endif { rc = spdk_nvme_ns_cmd_read(entry->u.nvme.ns, g_ns->u.nvme.qpair, g_task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, g_task, 0); } spdk_rmb(); tsc_submit = spdk_get_ticks() - start; g_tsc_submit += tsc_submit; if (tsc_submit < g_tsc_submit_min) { g_tsc_submit_min = tsc_submit; } if (tsc_submit > g_tsc_submit_max) { g_tsc_submit_max = tsc_submit; } if (g_enable_histogram) { spdk_histogram_data_tally(entry->submit_histogram, tsc_submit); } if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); } else { g_ns->current_queue_depth++; } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion) { g_ns->current_queue_depth--; } uint64_t g_complete_tsc_start; static uint64_t check_io(void) { uint64_t end, tsc_complete; spdk_rmb(); #if HAVE_LIBAIO if (g_ns->type == ENTRY_TYPE_AIO_FILE) { aio_check_io(); } else #endif { spdk_nvme_qpair_process_completions(g_ns->u.nvme.qpair, 0); } spdk_rmb(); end = spdk_get_ticks(); if (g_ns->current_queue_depth == 1) { /* * Account for race condition in AIO case where interrupt occurs * after checking for queue depth. If the timestamp capture * is too big compared to the last capture, assume that an * interrupt fired, and do not bump the start tsc forward. This * will ensure this extra time is accounted for next time through * when we see current_queue_depth drop to 0. */ if (g_ns->type == ENTRY_TYPE_NVME_NS || (end - g_complete_tsc_start) < 500) { g_complete_tsc_start = end; } } else { tsc_complete = end - g_complete_tsc_start; g_tsc_complete += tsc_complete; if (tsc_complete < g_tsc_complete_min) { g_tsc_complete_min = tsc_complete; } if (tsc_complete > g_tsc_complete_max) { g_tsc_complete_max = tsc_complete; } if (g_enable_histogram) { spdk_histogram_data_tally(g_ns->complete_histogram, tsc_complete); } g_io_completed++; if (!g_ns->is_draining) { submit_single_io(); } end = g_complete_tsc_start = spdk_get_ticks(); } return end; } static void drain_io(void) { g_ns->is_draining = true; while (g_ns->current_queue_depth > 0) { check_io(); } } static int init_ns_worker_ctx(void) { if (g_ns->type == ENTRY_TYPE_AIO_FILE) { #ifdef HAVE_LIBAIO g_ns->u.aio.events = calloc(1, sizeof(struct io_event)); if (!g_ns->u.aio.events) { return -1; } g_ns->u.aio.ctx = 0; if (io_setup(1, &g_ns->u.aio.ctx) < 0) { free(g_ns->u.aio.events); perror("io_setup"); return -1; } #endif } else { /* * TODO: If a controller has multiple namespaces, they could all use the same queue. * For now, give each namespace/thread combination its own queue. */ g_ns->u.nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(g_ns->u.nvme.ctrlr, NULL, 0); if (!g_ns->u.nvme.qpair) { printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n"); return -1; } } return 0; } static void cleanup_ns_worker_ctx(void) { if (g_ns->type == ENTRY_TYPE_AIO_FILE) { #ifdef HAVE_LIBAIO io_destroy(g_ns->u.aio.ctx); free(g_ns->u.aio.events); #endif } else { spdk_nvme_ctrlr_free_io_qpair(g_ns->u.nvme.qpair); } } static int work_fn(void) { uint64_t tsc_end, current; /* Allocate a queue pair for each namespace. */ if (init_ns_worker_ctx() != 0) { printf("ERROR: init_ns_worker_ctx() failed\n"); return 1; } tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; /* Submit initial I/O for each namespace. */ submit_single_io(); g_complete_tsc_start = spdk_get_ticks(); while (1) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ current = check_io(); if (current > tsc_end) { break; } } drain_io(); cleanup_ns_worker_ctx(); return 0; } static void usage(char *program_name) { printf("%s options", program_name); #if HAVE_LIBAIO printf(" [AIO device(s)]..."); #endif printf("\n"); printf("\t[-s io size in bytes]\n"); printf("\t[-t time in seconds]\n"); printf("\t\t(default: 1)]\n"); printf("\t[-H enable histograms]\n"); } static void print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count, uint64_t total, uint64_t so_far) { double so_far_pct; if (count == 0) { return; } so_far_pct = (double)so_far * 100 / total; printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n", (double)start * 1000 * 1000 / g_tsc_rate, (double)end * 1000 * 1000 / g_tsc_rate, so_far_pct, count); } static void print_stats(void) { double divisor = (double)g_tsc_rate / (1000 * 1000 * 1000); printf("submit (in ns) avg, min, max = %8.1f, %8.1f, %8.1f\n", (double)g_tsc_submit / g_io_completed / divisor, (double)g_tsc_submit_min / divisor, (double)g_tsc_submit_max / divisor); printf("complete (in ns) avg, min, max = %8.1f, %8.1f, %8.1f\n", (double)g_tsc_complete / g_io_completed / divisor, (double)g_tsc_complete_min / divisor, (double)g_tsc_complete_max / divisor); if (!g_enable_histogram) { return; } printf("\n"); printf("Submit histogram\n"); printf("================\n"); printf(" Range in us Cumulative Count\n"); spdk_histogram_data_iterate(g_ns->submit_histogram, print_bucket, NULL); printf("\n"); printf("Complete histogram\n"); printf("==================\n"); printf(" Range in us Cumulative Count\n"); spdk_histogram_data_iterate(g_ns->complete_histogram, print_bucket, NULL); printf("\n"); } static int parse_args(int argc, char **argv) { int op; long int val; /* default value */ g_io_size_bytes = 0; g_time_in_sec = 0; while ((op = getopt(argc, argv, "hs:t:H")) != -1) { switch (op) { case 'h': usage(argv[0]); exit(0); break; case 's': val = spdk_strtol(optarg, 10); if (val < 0) { fprintf(stderr, "Invalid io size\n"); return val; } g_io_size_bytes = (uint32_t)val; break; case 't': g_time_in_sec = spdk_strtol(optarg, 10); if (g_time_in_sec < 0) { fprintf(stderr, "Invalid run time\n"); return g_time_in_sec; } break; case 'H': g_enable_histogram = true; break; default: usage(argv[0]); return 1; } } if (!g_io_size_bytes) { usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } g_aio_optind = optind; return 0; } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { static uint32_t ctrlr_found = 0; if (ctrlr_found == 1) { fprintf(stderr, "only attaching to one controller, so skipping\n"); fprintf(stderr, " controller at PCI address %s\n", trid->traddr); return false; } ctrlr_found = 1; printf("Attaching to %s\n", trid->traddr); return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { printf("Attached to %s\n", trid->traddr); register_ctrlr(ctrlr); } static int register_controllers(void) { printf("Initializing NVMe Controllers\n"); if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); return 1; } if (g_ns == NULL) { fprintf(stderr, "no NVMe controller found - check that device is bound to uio/vfio\n"); return 1; } return 0; } static void cleanup(void) { struct ns_entry *ns_entry = g_ns; struct ctrlr_entry *ctrlr_entry = g_ctrlr; while (ns_entry) { struct ns_entry *next = ns_entry->next; spdk_histogram_data_free(ns_entry->submit_histogram); spdk_histogram_data_free(ns_entry->complete_histogram); free(ns_entry); ns_entry = next; } while (ctrlr_entry) { struct ctrlr_entry *next = ctrlr_entry->next; spdk_nvme_detach(ctrlr_entry->ctrlr); free(ctrlr_entry); ctrlr_entry = next; } } int main(int argc, char **argv) { int rc; struct spdk_env_opts opts; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "overhead"; opts.core_mask = "0x1"; opts.shm_id = 0; if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); return 1; } g_task = spdk_zmalloc(sizeof(struct perf_task), 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (g_task == NULL) { fprintf(stderr, "g_task alloc failed\n"); exit(1); } g_task->buf = spdk_zmalloc(g_io_size_bytes, 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (g_task->buf == NULL) { fprintf(stderr, "g_task->buf spdk_zmalloc failed\n"); exit(1); } g_tsc_rate = spdk_get_ticks_hz(); #if HAVE_LIBAIO if (g_aio_optind < argc) { printf("Measuring overhead for AIO device %s.\n", argv[g_aio_optind]); if (register_aio_file(argv[g_aio_optind]) != 0) { cleanup(); return -1; } } else #endif { if (register_controllers() != 0) { cleanup(); return -1; } } printf("Initialization complete. Launching workers.\n"); rc = work_fn(); print_stats(); cleanup(); if (rc != 0) { fprintf(stderr, "%s: errors occured\n", argv[0]); } return rc; }