/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/nvme.h" #include "spdk/env.h" #include "spdk/string.h" #include "spdk/pci_ids.h" struct ctrlr_entry { struct spdk_nvme_ctrlr *ctrlr; struct ctrlr_entry *next; char name[1024]; }; struct ns_entry { struct spdk_nvme_ns *ns; struct spdk_nvme_ctrlr *ctrlr; struct ns_entry *next; uint32_t io_size_blocks; uint64_t size_in_ios; char name[1024]; }; struct ns_worker_ctx { struct ns_entry *entry; struct spdk_nvme_qpair *qpair; uint64_t io_completed; uint64_t io_completed_error; uint64_t io_submitted; uint64_t current_queue_depth; uint64_t offset_in_ios; bool is_draining; struct ns_worker_ctx *next; }; struct reset_task { struct ns_worker_ctx *ns_ctx; void *buf; }; struct worker_thread { struct ns_worker_ctx *ns_ctx; unsigned lcore; }; static struct spdk_mempool *task_pool; static struct ctrlr_entry *g_controllers = NULL; static struct ns_entry *g_namespaces = NULL; static int g_num_namespaces = 0; static struct worker_thread *g_workers = NULL; static bool g_qemu_ssd_found = false; static uint64_t g_tsc_rate; static int g_io_size_bytes; static int g_rw_percentage; static int g_is_random; static int g_queue_depth; static int g_time_in_sec; #define TASK_POOL_NUM 8192 static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; if (!spdk_nvme_ns_is_active(ns)) { printf("Skipping inactive NS %u\n", spdk_nvme_ns_get_id(ns)); return; } entry = malloc(sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } cdata = spdk_nvme_ctrlr_get_data(ctrlr); entry->ns = ns; entry->ctrlr = ctrlr; entry->size_in_ios = spdk_nvme_ns_get_size(ns) / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns); snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); g_num_namespaces++; entry->next = g_namespaces; g_namespaces = entry; } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { int nsid, num_ns; struct spdk_nvme_ns *ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } entry->ctrlr = ctrlr; entry->next = g_controllers; g_controllers = entry; num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr); for (nsid = 1; nsid <= num_ns; nsid++) { ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); if (ns == NULL) { continue; } register_ns(ctrlr, ns); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion); static __thread unsigned int seed = 0; static void submit_single_io(struct ns_worker_ctx *ns_ctx) { struct reset_task *task = NULL; uint64_t offset_in_ios; int rc; struct ns_entry *entry = ns_ctx->entry; task = spdk_mempool_get(task_pool); if (!task) { fprintf(stderr, "Failed to get task from task_pool\n"); exit(1); } task->buf = spdk_zmalloc(g_io_size_bytes, 0x200, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (!task->buf) { spdk_free(task->buf); fprintf(stderr, "task->buf spdk_zmalloc failed\n"); exit(1); } task->ns_ctx = ns_ctx; task->ns_ctx->io_submitted++; if (g_is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = ns_ctx->offset_in_ios++; if (ns_ctx->offset_in_ios == entry->size_in_ios) { ns_ctx->offset_in_ios = 0; } } if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) { rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task, 0); } else { rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task, 0); } if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); } else { ns_ctx->current_queue_depth++; } } static void task_complete(struct reset_task *task, const struct spdk_nvme_cpl *completion) { struct ns_worker_ctx *ns_ctx; ns_ctx = task->ns_ctx; ns_ctx->current_queue_depth--; if (spdk_nvme_cpl_is_error(completion)) { ns_ctx->io_completed_error++; } else { ns_ctx->io_completed++; } spdk_free(task->buf); spdk_mempool_put(task_pool, task); /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (!ns_ctx->is_draining) { submit_single_io(ns_ctx); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion) { task_complete((struct reset_task *)ctx, completion); } static void check_io(struct ns_worker_ctx *ns_ctx) { spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0); } static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) { while (queue_depth-- > 0) { submit_single_io(ns_ctx); } } static void drain_io(struct ns_worker_ctx *ns_ctx) { ns_ctx->is_draining = true; while (ns_ctx->current_queue_depth > 0) { check_io(ns_ctx); } } static int work_fn(void *arg) { uint64_t tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; struct worker_thread *worker = (struct worker_thread *)arg; struct ns_worker_ctx *ns_ctx = NULL; bool did_reset = false; printf("Starting thread on core %u\n", worker->lcore); /* Submit initial I/O for each namespace. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->ctrlr, NULL, 0); if (ns_ctx->qpair == NULL) { fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair() failed on core %u\n", worker->lcore); return -1; } submit_io(ns_ctx, g_queue_depth); ns_ctx = ns_ctx->next; } while (1) { if (!did_reset && ((tsc_end - spdk_get_ticks()) / g_tsc_rate) > (uint64_t)g_time_in_sec / 2) { ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { if (spdk_nvme_ctrlr_reset(ns_ctx->entry->ctrlr) < 0) { fprintf(stderr, "nvme reset failed.\n"); return -1; } ns_ctx = ns_ctx->next; } did_reset = true; } /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { check_io(ns_ctx); ns_ctx = ns_ctx->next; } if (spdk_get_ticks() > tsc_end) { break; } } ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { drain_io(ns_ctx); spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair); ns_ctx = ns_ctx->next; } return 0; } static void usage(char *program_name) { printf("%s options", program_name); printf("\n"); printf("\t[-q io depth]\n"); printf("\t[-s io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-t time in seconds(should be larger than 15 seconds)]\n"); printf("\t[-m max completions per poll]\n"); printf("\t\t(default:0 - unlimited)\n"); } static int print_stats(void) { uint64_t io_completed, io_submitted, io_completed_error; uint64_t total_completed_io, total_submitted_io, total_completed_err_io; struct worker_thread *worker; struct ns_worker_ctx *ns_ctx; total_completed_io = 0; total_submitted_io = 0; total_completed_err_io = 0; worker = g_workers; ns_ctx = worker->ns_ctx; while (ns_ctx) { io_completed = ns_ctx->io_completed; io_submitted = ns_ctx->io_submitted; io_completed_error = ns_ctx->io_completed_error; total_completed_io += io_completed; total_submitted_io += io_submitted; total_completed_err_io += io_completed_error; ns_ctx = ns_ctx->next; } printf("========================================================\n"); printf("%16lu IO completed successfully\n", total_completed_io); printf("%16lu IO completed with error\n", total_completed_err_io); printf("--------------------------------------------------------\n"); printf("%16lu IO completed total\n", total_completed_io + total_completed_err_io); printf("%16lu IO submitted\n", total_submitted_io); if (total_submitted_io != (total_completed_io + total_completed_err_io)) { fprintf(stderr, "Some IO are missing......\n"); return -1; } return 0; } static int parse_args(int argc, char **argv) { const char *workload_type; int op; bool mix_specified = false; long int val; /* default value */ g_queue_depth = 0; g_io_size_bytes = 0; workload_type = NULL; g_time_in_sec = 0; g_rw_percentage = -1; while ((op = getopt(argc, argv, "m:q:s:t:w:M:")) != -1) { if (op == 'w') { workload_type = optarg; } else if (op == '?') { usage(argv[0]); return -EINVAL; } else { val = spdk_strtol(optarg, 10); if (val < 0) { fprintf(stderr, "Converting a string to integer failed\n"); return val; } switch (op) { case 'q': g_queue_depth = val; break; case 's': g_io_size_bytes = val; break; case 't': g_time_in_sec = val; break; case 'M': g_rw_percentage = val; mix_specified = true; break; default: usage(argv[0]); return -EINVAL; } } } if (!g_queue_depth) { usage(argv[0]); return 1; } if (!g_io_size_bytes) { usage(argv[0]); return 1; } if (!workload_type) { usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } if (strcmp(workload_type, "read") && strcmp(workload_type, "write") && strcmp(workload_type, "randread") && strcmp(workload_type, "randwrite") && strcmp(workload_type, "rw") && strcmp(workload_type, "randrw")) { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread")) { g_rw_percentage = 100; } if (!strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { g_rw_percentage = 0; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread") || !strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { if (mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } if (!strcmp(workload_type, "rw") || !strcmp(workload_type, "randrw")) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "write") || !strcmp(workload_type, "rw")) { g_is_random = 0; } else { g_is_random = 1; } return 0; } static int register_workers(void) { struct worker_thread *worker; worker = malloc(sizeof(struct worker_thread)); if (worker == NULL) { perror("worker_thread malloc"); return -1; } memset(worker, 0, sizeof(struct worker_thread)); worker->lcore = spdk_env_get_current_core(); g_workers = worker; return 0; } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { opts->disable_error_logging = true; return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) { struct spdk_pci_device *dev = spdk_nvme_ctrlr_get_pci_device(ctrlr); /* QEMU emulated SSDs can't handle this test, so we will skip * them. QEMU NVMe SSDs report themselves as VID == Intel. So we need * to check this specific 0x5845 device ID to know whether it's QEMU * or not. */ if (spdk_pci_device_get_vendor_id(dev) == SPDK_PCI_VID_INTEL && spdk_pci_device_get_device_id(dev) == 0x5845) { g_qemu_ssd_found = true; printf("Skipping QEMU NVMe SSD at %s\n", trid->traddr); return; } } register_ctrlr(ctrlr); } static int register_controllers(void) { printf("Initializing NVMe Controllers\n"); if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); return 1; } return 0; } static void unregister_controllers(void) { struct ctrlr_entry *entry = g_controllers; while (entry) { struct ctrlr_entry *next = entry->next; spdk_nvme_detach(entry->ctrlr); free(entry); entry = next; } } static int associate_workers_with_ns(void) { struct ns_entry *entry = g_namespaces; struct worker_thread *worker = g_workers; struct ns_worker_ctx *ns_ctx; int i, count; count = g_num_namespaces; for (i = 0; i < count; i++) { if (entry == NULL) { break; } ns_ctx = malloc(sizeof(struct ns_worker_ctx)); if (!ns_ctx) { return -1; } memset(ns_ctx, 0, sizeof(*ns_ctx)); printf("Associating %s with lcore %d\n", entry->name, worker->lcore); ns_ctx->entry = entry; ns_ctx->next = worker->ns_ctx; worker->ns_ctx = ns_ctx; worker = g_workers; entry = entry->next; if (entry == NULL) { entry = g_namespaces; } } return 0; } static int run_nvme_reset_cycle(void) { struct worker_thread *worker; struct ns_worker_ctx *ns_ctx; if (work_fn(g_workers) != 0) { return -1; } if (print_stats() != 0) { return -1; } worker = g_workers; ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { ns_ctx->io_completed = 0; ns_ctx->io_completed_error = 0; ns_ctx->io_submitted = 0; ns_ctx->is_draining = false; ns_ctx = ns_ctx->next; } return 0; } static void spdk_reset_free_tasks(void) { if (spdk_mempool_count(task_pool) != TASK_POOL_NUM) { fprintf(stderr, "task_pool count is %zu but should be %d\n", spdk_mempool_count(task_pool), TASK_POOL_NUM); } spdk_mempool_free(task_pool); } int main(int argc, char **argv) { int rc; int i; struct spdk_env_opts opts; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "reset"; opts.core_mask = "0x1"; opts.shm_id = 0; if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); return 1; } if (register_controllers() != 0) { return 1; } if (!g_controllers) { printf("No NVMe controller found, %s exiting\n", argv[0]); return g_qemu_ssd_found ? 0 : 1; } task_pool = spdk_mempool_create("task_pool", TASK_POOL_NUM, sizeof(struct reset_task), 64, SPDK_ENV_SOCKET_ID_ANY); if (!task_pool) { fprintf(stderr, "Cannot create task pool\n"); return 1; } g_tsc_rate = spdk_get_ticks_hz(); if (register_workers() != 0) { return 1; } if (associate_workers_with_ns() != 0) { rc = 1; goto cleanup; } printf("Initialization complete. Launching workers.\n"); for (i = 2; i >= 0; i--) { rc = run_nvme_reset_cycle(); if (rc != 0) { goto cleanup; } } cleanup: unregister_controllers(); spdk_reset_free_tasks(); if (rc != 0) { fprintf(stderr, "%s: errors occured\n", argv[0]); } return rc; }