1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#' @include arrowExports.R
.unary_function_map <- list(
# NOTE: Each of the R functions mapped here takes exactly *one* argument, maps
# *directly* to an Arrow C++ compute kernel, and does not require any
# non-default options to be specified. More complex R function mappings are
# defined in dplyr-functions.R.
# functions are arranged alphabetically by name within categories
# arithmetic functions
"abs" = "abs_checked",
"ceiling" = "ceil",
"floor" = "floor",
"log10" = "log10_checked",
"log1p" = "log1p_checked",
"log2" = "log2_checked",
"sign" = "sign",
# trunc is defined in dplyr-functions.R
# trigonometric functions
"acos" = "acos_checked",
"asin" = "asin_checked",
"cos" = "cos_checked",
"sin" = "sin_checked",
"tan" = "tan_checked",
# logical functions
"!" = "invert",
# string functions
# nchar is defined in dplyr-functions.R
"str_length" = "utf8_length",
# str_pad is defined in dplyr-functions.R
# str_sub is defined in dplyr-functions.R
# str_to_lower is defined in dplyr-functions.R
# str_to_title is defined in dplyr-functions.R
# str_to_upper is defined in dplyr-functions.R
# str_trim is defined in dplyr-functions.R
"stri_reverse" = "utf8_reverse",
# substr is defined in dplyr-functions.R
# substring is defined in dplyr-functions.R
"tolower" = "utf8_lower",
"toupper" = "utf8_upper",
# date and time functions
"day" = "day",
"hour" = "hour",
"isoweek" = "iso_week",
"epiweek" = "us_week",
"isoyear" = "iso_year",
"minute" = "minute",
"month" = "month",
"quarter" = "quarter",
# second is defined in dplyr-functions.R
# wday is defined in dplyr-functions.R
"yday" = "day_of_year",
"year" = "year",
# type conversion functions
"as.factor" = "dictionary_encode"
)
.binary_function_map <- list(
# NOTE: Each of the R functions/operators mapped here takes exactly *two*
# arguments. Most map *directly* to an Arrow C++ compute kernel and require no
# non-default options, but some are modified by build_expr(). More complex R
# function/operator mappings are defined in dplyr-functions.R.
"==" = "equal",
"!=" = "not_equal",
">" = "greater",
">=" = "greater_equal",
"<" = "less",
"<=" = "less_equal",
"&" = "and_kleene",
"|" = "or_kleene",
"+" = "add_checked",
"-" = "subtract_checked",
"*" = "multiply_checked",
"/" = "divide",
"%/%" = "divide_checked",
# we don't actually use divide_checked with `%%`, rather it is rewritten to
# use `%/%` above.
"%%" = "divide_checked",
"^" = "power_checked",
"%in%" = "is_in_meta_binary"
)
.array_function_map <- c(.unary_function_map, .binary_function_map)
#' Arrow expressions
#'
#' @description
#' `Expression`s are used to define filter logic for passing to a [Dataset]
#' [Scanner].
#'
#' `Expression$scalar(x)` constructs an `Expression` which always evaluates to
#' the provided scalar (length-1) R value.
#'
#' `Expression$field_ref(name)` is used to construct an `Expression` which
#' evaluates to the named column in the `Dataset` against which it is evaluated.
#'
#' `Expression$create(function_name, ..., options)` builds a function-call
#' `Expression` containing one or more `Expression`s.
#' @name Expression
#' @rdname Expression
#' @export
Expression <- R6Class("Expression",
inherit = ArrowObject,
public = list(
ToString = function() compute___expr__ToString(self),
Equals = function(other, ...) {
inherits(other, "Expression") && compute___expr__equals(self, other)
},
# TODO: Implement type determination without storing
# schemas in Expression objects (ARROW-13186)
schema = NULL,
type = function(schema = self$schema) {
assert_that(!is.null(schema))
compute___expr__type(self, schema)
},
type_id = function(schema = self$schema) {
assert_that(!is.null(schema))
compute___expr__type_id(self, schema)
},
cast = function(to_type, safe = TRUE, ...) {
opts <- list(
to_type = to_type,
allow_int_overflow = !safe,
allow_time_truncate = !safe,
allow_float_truncate = !safe
)
Expression$create("cast", self, options = modifyList(opts, list(...)))
}
),
active = list(
field_name = function() compute___expr__get_field_ref_name(self)
)
)
Expression$create <- function(function_name,
...,
args = list(...),
options = empty_named_list()) {
assert_that(is.string(function_name))
assert_that(is_list_of(args, "Expression"), msg = "Expression arguments must be Expression objects")
expr <- compute___expr__call(function_name, args, options)
expr$schema <- unify_schemas(schemas = lapply(args, function(x) x$schema))
expr
}
Expression$field_ref <- function(name) {
assert_that(is.string(name))
compute___expr__field_ref(name)
}
Expression$scalar <- function(x) {
expr <- compute___expr__scalar(Scalar$create(x))
expr$schema <- schema()
expr
}
# Wrapper around Expression$create that:
# (1) maps R function names to Arrow C++ compute ("/" --> "divide_checked")
# (2) wraps R input args as Array or Scalar
build_expr <- function(FUN,
...,
args = list(...),
options = empty_named_list()) {
if (FUN == "-" && length(args) == 1L) {
if (inherits(args[[1]], c("ArrowObject", "Expression"))) {
return(build_expr("negate_checked", args[[1]]))
} else {
return(-args[[1]])
}
}
if (FUN == "%in%") {
# Special-case %in%, which is different from the Array function name
expr <- Expression$create("is_in", args[[1]],
options = list(
# If args[[2]] is already an Arrow object (like a scalar),
# this wouldn't work
value_set = Array$create(args[[2]]),
skip_nulls = TRUE
)
)
} else {
args <- lapply(args, function(x) {
if (!inherits(x, "Expression")) {
x <- Expression$scalar(x)
}
x
})
# In Arrow, "divide" is one function, which does integer division on
# integer inputs and floating-point division on floats
if (FUN == "/") {
# TODO: omg so many ways it's wrong to assume these types
args <- lapply(args, function(x) x$cast(float64()))
} else if (FUN == "%/%") {
# In R, integer division works like floor(float division)
out <- build_expr("/", args = args)
return(out$cast(int32(), allow_float_truncate = TRUE))
} else if (FUN == "%%") {
return(args[[1]] - args[[2]] * (args[[1]] %/% args[[2]]))
}
expr <- Expression$create(.array_function_map[[FUN]] %||% FUN, args = args, options = options)
}
expr
}
#' @export
Ops.Expression <- function(e1, e2) {
if (.Generic == "!") {
build_expr(.Generic, e1)
} else {
build_expr(.Generic, e1, e2)
}
}
#' @export
is.na.Expression <- function(x) {
Expression$create("is_null", x, options = list(nan_is_null = TRUE))
}
|