1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef PRIORITY_QUEUE_H
#define PRIORITY_QUEUE_H
#include "include/ceph_assert.h"
#include "common/Formatter.h"
#include "common/OpQueue.h"
/**
* Manages queue for normal and strict priority items
*
* On dequeue, the queue will select the lowest priority queue
* such that the q has bucket > cost of front queue item.
*
* If there is no such queue, we choose the next queue item for
* the highest priority queue.
*
* Before returning a dequeued item, we place into each bucket
* cost * (priority/total_priority) tokens.
*
* enqueue_strict and enqueue_strict_front queue items into queues
* which are serviced in strict priority order before items queued
* with enqueue and enqueue_front
*
* Within a priority class, we schedule round robin based on the class
* of type K used to enqueue items. e.g. you could use entity_inst_t
* to provide fairness for different clients.
*/
template <typename T, typename K>
class PrioritizedQueue : public OpQueue <T, K> {
int64_t total_priority;
int64_t max_tokens_per_subqueue;
int64_t min_cost;
typedef std::list<std::pair<unsigned, T> > ListPairs;
struct SubQueue {
private:
typedef std::map<K, ListPairs> Classes;
Classes q;
unsigned tokens, max_tokens;
int64_t size;
typename Classes::iterator cur;
public:
SubQueue(const SubQueue &other)
: q(other.q),
tokens(other.tokens),
max_tokens(other.max_tokens),
size(other.size),
cur(q.begin()) {}
SubQueue()
: tokens(0),
max_tokens(0),
size(0), cur(q.begin()) {}
void set_max_tokens(unsigned mt) {
max_tokens = mt;
}
unsigned get_max_tokens() const {
return max_tokens;
}
unsigned num_tokens() const {
return tokens;
}
void put_tokens(unsigned t) {
tokens += t;
if (tokens > max_tokens) {
tokens = max_tokens;
}
}
void take_tokens(unsigned t) {
if (tokens > t) {
tokens -= t;
} else {
tokens = 0;
}
}
void enqueue(K cl, unsigned cost, T &&item) {
q[cl].push_back(std::make_pair(cost, std::move(item)));
if (cur == q.end())
cur = q.begin();
size++;
}
void enqueue_front(K cl, unsigned cost, T &&item) {
q[cl].push_front(std::make_pair(cost, std::move(item)));
if (cur == q.end())
cur = q.begin();
size++;
}
std::pair<unsigned, T> &front() const {
ceph_assert(!(q.empty()));
ceph_assert(cur != q.end());
return cur->second.front();
}
T pop_front() {
ceph_assert(!(q.empty()));
ceph_assert(cur != q.end());
T ret = std::move(cur->second.front().second);
cur->second.pop_front();
if (cur->second.empty()) {
q.erase(cur++);
} else {
++cur;
}
if (cur == q.end()) {
cur = q.begin();
}
size--;
return ret;
}
unsigned length() const {
ceph_assert(size >= 0);
return (unsigned)size;
}
bool empty() const {
return q.empty();
}
void remove_by_class(K k, std::list<T> *out) {
typename Classes::iterator i = q.find(k);
if (i == q.end()) {
return;
}
size -= i->second.size();
if (i == cur) {
++cur;
}
if (out) {
for (typename ListPairs::reverse_iterator j =
i->second.rbegin();
j != i->second.rend();
++j) {
out->push_front(std::move(j->second));
}
}
q.erase(i);
if (cur == q.end()) {
cur = q.begin();
}
}
void dump(ceph::Formatter *f) const {
f->dump_int("tokens", tokens);
f->dump_int("max_tokens", max_tokens);
f->dump_int("size", size);
f->dump_int("num_keys", q.size());
if (!empty()) {
f->dump_int("first_item_cost", front().first);
}
}
};
typedef std::map<unsigned, SubQueue> SubQueues;
SubQueues high_queue;
SubQueues queue;
SubQueue *create_queue(unsigned priority) {
typename SubQueues::iterator p = queue.find(priority);
if (p != queue.end()) {
return &p->second;
}
total_priority += priority;
SubQueue *sq = &queue[priority];
sq->set_max_tokens(max_tokens_per_subqueue);
return sq;
}
void remove_queue(unsigned priority) {
ceph_assert(queue.count(priority));
queue.erase(priority);
total_priority -= priority;
ceph_assert(total_priority >= 0);
}
void distribute_tokens(unsigned cost) {
if (total_priority == 0) {
return;
}
for (typename SubQueues::iterator i = queue.begin();
i != queue.end();
++i) {
i->second.put_tokens(((i->first * cost) / total_priority) + 1);
}
}
public:
PrioritizedQueue(unsigned max_per, unsigned min_c)
: total_priority(0),
max_tokens_per_subqueue(max_per),
min_cost(min_c)
{}
unsigned length() const {
unsigned total = 0;
for (typename SubQueues::const_iterator i = queue.begin();
i != queue.end();
++i) {
ceph_assert(i->second.length());
total += i->second.length();
}
for (typename SubQueues::const_iterator i = high_queue.begin();
i != high_queue.end();
++i) {
ceph_assert(i->second.length());
total += i->second.length();
}
return total;
}
void remove_by_class(K k, std::list<T> *out = 0) final {
for (typename SubQueues::iterator i = queue.begin();
i != queue.end();
) {
i->second.remove_by_class(k, out);
if (i->second.empty()) {
unsigned priority = i->first;
++i;
remove_queue(priority);
} else {
++i;
}
}
for (typename SubQueues::iterator i = high_queue.begin();
i != high_queue.end();
) {
i->second.remove_by_class(k, out);
if (i->second.empty()) {
high_queue.erase(i++);
} else {
++i;
}
}
}
void enqueue_strict(K cl, unsigned priority, T&& item) final {
high_queue[priority].enqueue(cl, 0, std::move(item));
}
void enqueue_strict_front(K cl, unsigned priority, T&& item) final {
high_queue[priority].enqueue_front(cl, 0, std::move(item));
}
void enqueue(K cl, unsigned priority, unsigned cost, T&& item) final {
if (cost < min_cost)
cost = min_cost;
if (cost > max_tokens_per_subqueue)
cost = max_tokens_per_subqueue;
create_queue(priority)->enqueue(cl, cost, std::move(item));
}
void enqueue_front(K cl, unsigned priority, unsigned cost, T&& item) final {
if (cost < min_cost)
cost = min_cost;
if (cost > max_tokens_per_subqueue)
cost = max_tokens_per_subqueue;
create_queue(priority)->enqueue_front(cl, cost, std::move(item));
}
bool empty() const final {
ceph_assert(total_priority >= 0);
ceph_assert((total_priority == 0) || !(queue.empty()));
return queue.empty() && high_queue.empty();
}
T dequeue() final {
ceph_assert(!empty());
if (!(high_queue.empty())) {
T ret = std::move(high_queue.rbegin()->second.front().second);
high_queue.rbegin()->second.pop_front();
if (high_queue.rbegin()->second.empty()) {
high_queue.erase(high_queue.rbegin()->first);
}
return ret;
}
// if there are multiple buckets/subqueues with sufficient tokens,
// we behave like a strict priority queue among all subqueues that
// are eligible to run.
for (typename SubQueues::iterator i = queue.begin();
i != queue.end();
++i) {
ceph_assert(!(i->second.empty()));
if (i->second.front().first < i->second.num_tokens()) {
unsigned cost = i->second.front().first;
i->second.take_tokens(cost);
T ret = std::move(i->second.front().second);
i->second.pop_front();
if (i->second.empty()) {
remove_queue(i->first);
}
distribute_tokens(cost);
return ret;
}
}
// if no subqueues have sufficient tokens, we behave like a strict
// priority queue.
unsigned cost = queue.rbegin()->second.front().first;
T ret = std::move(queue.rbegin()->second.front().second);
queue.rbegin()->second.pop_front();
if (queue.rbegin()->second.empty()) {
remove_queue(queue.rbegin()->first);
}
distribute_tokens(cost);
return ret;
}
void dump(ceph::Formatter *f) const final {
f->dump_int("total_priority", total_priority);
f->dump_int("max_tokens_per_subqueue", max_tokens_per_subqueue);
f->dump_int("min_cost", min_cost);
f->open_array_section("high_queues");
for (typename SubQueues::const_iterator p = high_queue.begin();
p != high_queue.end();
++p) {
f->open_object_section("subqueue");
f->dump_int("priority", p->first);
p->second.dump(f);
f->close_section();
}
f->close_section();
f->open_array_section("queues");
for (typename SubQueues::const_iterator p = queue.begin();
p != queue.end();
++p) {
f->open_object_section("subqueue");
f->dump_int("priority", p->first);
p->second.dump(f);
f->close_section();
}
f->close_section();
}
void print(std::ostream &ostream) const final {
ostream << "PrioritizedQueue";
}
};
#endif
|