1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef COMMON_CEPH_TIMER_H
#define COMMON_CEPH_TIMER_H
#include <cassert>
#include <condition_variable>
#include <cstdint>
#include <functional>
#include <memory>
#include <mutex>
#include <thread>
#include <boost/intrusive/set.hpp>
#include "include/function2.hpp"
#include "include/compat.h"
#include "common/detail/construct_suspended.h"
namespace bi = boost::intrusive;
namespace ceph {
// Compared to the SafeTimer this does fewer allocations (you
// don't have to allocate a new Context every time you
// want to cue the next tick.)
//
// It also does not share a lock with the caller. If you call
// cancel event, it either cancels the event (and returns true) or
// you missed it. If this does not work for you, you can set up a
// flag and mutex of your own.
//
// You get to pick your clock. I like mono_clock, since I usually
// want to wait FOR a given duration. real_clock is worthwhile if
// you want to wait UNTIL a specific moment of wallclock time. If
// you want you can set up a timer that executes a function after
// you use up ten seconds of CPU time.
template<typename TC>
class timer {
using sh = bi::set_member_hook<bi::link_mode<bi::normal_link>>;
struct event {
typename TC::time_point t = typename TC::time_point::min();
std::uint64_t id = 0;
fu2::unique_function<void()> f;
sh schedule_link;
sh event_link;
event() = default;
event(typename TC::time_point t, std::uint64_t id,
fu2::unique_function<void()> f) : t(t), id(id), f(std::move(f)) {}
event(const event&) = delete;
event& operator =(const event&) = delete;
event(event&&) = delete;
event& operator =(event&&) = delete;
bool operator <(const event& e) const noexcept {
return t == e.t ? id < e.id : t < e.t;
}
};
struct id_key {
using type = std::uint64_t;
const type& operator ()(const event& e) const noexcept {
return e.id;
}
};
bi::set<event, bi::member_hook<event, sh, &event::schedule_link>,
bi::constant_time_size<false>> schedule;
bi::set<event, bi::member_hook<event, sh, &event::event_link>,
bi::constant_time_size<false>,
bi::key_of_value<id_key>> events;
std::mutex lock;
std::condition_variable cond;
event* running = nullptr;
std::uint64_t next_id = 0;
bool suspended;
std::thread thread;
void timer_thread() {
std::unique_lock l(lock);
while (!suspended) {
auto now = TC::now();
while (!schedule.empty()) {
auto p = schedule.begin();
// Should we wait for the future?
if (p->t > now)
break;
auto& e = *p;
schedule.erase(e);
events.erase(e.id);
// Since we have only one thread it is impossible to have more
// than one running event
running = &e;
l.unlock();
p->f();
l.lock();
if (running) {
running = nullptr;
delete &e;
} // Otherwise the event requeued itself
}
if (suspended)
break;
if (schedule.empty()) {
cond.wait(l);
} else {
// Since wait_until takes its parameter by reference, passing
// the time /in the event/ is unsafe, as it might be canceled
// while we wait.
const auto t = schedule.begin()->t;
cond.wait_until(l, t);
}
}
}
public:
timer() : suspended(false) {
thread = std::thread(&timer::timer_thread, this);
ceph_pthread_setname(thread.native_handle(), "ceph_timer");
}
// Create a suspended timer, jobs will be executed in order when
// it is resumed.
timer(construct_suspended_t) : suspended(true) {}
timer(const timer&) = delete;
timer& operator =(const timer&) = delete;
~timer() {
suspend();
cancel_all_events();
}
// Suspend operation of the timer (and let its thread die).
void suspend() {
std::unique_lock l(lock);
if (suspended)
return;
suspended = true;
cond.notify_one();
l.unlock();
thread.join();
}
// Resume operation of the timer. (Must have been previously
// suspended.)
void resume() {
std::unique_lock l(lock);
if (!suspended)
return;
suspended = false;
assert(!thread.joinable());
thread = std::thread(&timer::timer_thread, this);
}
// Schedule an event in the relative future
template<typename Callable, typename... Args>
std::uint64_t add_event(typename TC::duration duration,
Callable&& f, Args&&... args) {
return add_event(TC::now() + duration,
std::forward<Callable>(f),
std::forward<Args>(args)...);
}
// Schedule an event in the absolute future
template<typename Callable, typename... Args>
std::uint64_t add_event(typename TC::time_point when,
Callable&& f, Args&&... args) {
std::lock_guard l(lock);
auto e = std::make_unique<event>(when, ++next_id,
std::bind(std::forward<Callable>(f),
std::forward<Args>(args)...));
auto id = e->id;
auto i = schedule.insert(*e);
events.insert(*(e.release()));
/* If the event we have just inserted comes before everything
* else, we need to adjust our timeout. */
if (i.first == schedule.begin())
cond.notify_one();
// Previously each event was a context, identified by a
// pointer, and each context to be called only once. Since you
// can queue the same function pointer, member function,
// lambda, or functor up multiple times, identifying things by
// function for the purposes of cancellation is no longer
// suitable. Thus:
return id;
}
// Adjust the timeout of a currently-scheduled event (relative)
bool adjust_event(std::uint64_t id, typename TC::duration duration) {
return adjust_event(id, TC::now() + duration);
}
// Adjust the timeout of a currently-scheduled event (absolute)
bool adjust_event(std::uint64_t id, typename TC::time_point when) {
std::lock_guard l(lock);
auto it = events.find(id);
if (it == events.end())
return false;
auto& e = *it;
schedule.erase(e);
e.t = when;
schedule.insert(e);
return true;
}
// Cancel an event. If the event has already come and gone (or you
// never submitted it) you will receive false. Otherwise you will
// receive true and it is guaranteed the event will not execute.
bool cancel_event(const std::uint64_t id) {
std::lock_guard l(lock);
auto p = events.find(id);
if (p == events.end()) {
return false;
}
auto& e = *p;
events.erase(e.id);
schedule.erase(e);
delete &e;
return true;
}
// Reschedules a currently running event in the relative
// future. Must be called only from an event executed by this
// timer. If you have a function that can be called either from
// this timer or some other way, it is your responsibility to make
// sure it can tell the difference only does not call
// reschedule_me in the non-timer case.
//
// Returns an event id. If you had an event_id from the first
// scheduling, replace it with this return value.
std::uint64_t reschedule_me(typename TC::duration duration) {
return reschedule_me(TC::now() + duration);
}
// Reschedules a currently running event in the absolute
// future. Must be called only from an event executed by this
// timer. if you have a function that can be called either from
// this timer or some other way, it is your responsibility to make
// sure it can tell the difference only does not call
// reschedule_me in the non-timer case.
//
// Returns an event id. If you had an event_id from the first
// scheduling, replace it with this return value.
std::uint64_t reschedule_me(typename TC::time_point when) {
assert(std::this_thread::get_id() == thread.get_id());
std::lock_guard l(lock);
running->t = when;
std::uint64_t id = ++next_id;
running->id = id;
schedule.insert(*running);
events.insert(*running);
// Hacky, but keeps us from being deleted
running = nullptr;
// Same function, but you get a new ID.
return id;
}
// Remove all events from the queue.
void cancel_all_events() {
std::lock_guard l(lock);
while (!events.empty()) {
auto p = events.begin();
event& e = *p;
schedule.erase(e);
events.erase(e.id);
delete &e;
}
}
}; // timer
} // namespace ceph
#endif
|