summaryrefslogtreecommitdiffstats
path: root/src/osd/ECBackend.h
blob: d710aacb7dedb408315a5546a5746860e793c8f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
 * Ceph - scalable distributed file system
 *
 * Copyright (C) 2013 Inktank Storage, Inc.
 *
 * This is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1, as published by the Free Software
 * Foundation.  See file COPYING.
 *
 */

#ifndef ECBACKEND_H
#define ECBACKEND_H

#include <boost/intrusive/set.hpp>
#include <boost/intrusive/list.hpp>

#include "OSD.h"
#include "PGBackend.h"
#include "erasure-code/ErasureCodeInterface.h"
#include "ECUtil.h"
#include "ECTransaction.h"
#include "ExtentCache.h"

//forward declaration
struct ECSubWrite;
struct ECSubWriteReply;
struct ECSubRead;
struct ECSubReadReply;

struct RecoveryMessages;
class ECBackend : public PGBackend {
public:
  RecoveryHandle *open_recovery_op() override;

  void run_recovery_op(
    RecoveryHandle *h,
    int priority
    ) override;

  int recover_object(
    const hobject_t &hoid,
    eversion_t v,
    ObjectContextRef head,
    ObjectContextRef obc,
    RecoveryHandle *h
    ) override;

  bool _handle_message(
    OpRequestRef op
    ) override;
  bool can_handle_while_inactive(
    OpRequestRef op
    ) override;
  friend struct SubWriteApplied;
  friend struct SubWriteCommitted;
  void sub_write_committed(
    ceph_tid_t tid,
    eversion_t version,
    eversion_t last_complete,
    const ZTracer::Trace &trace);
  void handle_sub_write(
    pg_shard_t from,
    OpRequestRef msg,
    ECSubWrite &op,
    const ZTracer::Trace &trace
    );
  void handle_sub_read(
    pg_shard_t from,
    const ECSubRead &op,
    ECSubReadReply *reply,
    const ZTracer::Trace &trace
    );
  void handle_sub_write_reply(
    pg_shard_t from,
    const ECSubWriteReply &op,
    const ZTracer::Trace &trace
    );
  void handle_sub_read_reply(
    pg_shard_t from,
    ECSubReadReply &op,
    RecoveryMessages *m,
    const ZTracer::Trace &trace
    );

  /// @see ReadOp below
  void check_recovery_sources(const OSDMapRef& osdmap) override;

  void on_change() override;
  void clear_recovery_state() override;

  void dump_recovery_info(ceph::Formatter *f) const override;

  void call_write_ordered(std::function<void(void)> &&cb) override;

  void submit_transaction(
    const hobject_t &hoid,
    const object_stat_sum_t &delta_stats,
    const eversion_t &at_version,
    PGTransactionUPtr &&t,
    const eversion_t &trim_to,
    const eversion_t &min_last_complete_ondisk,
    std::vector<pg_log_entry_t>&& log_entries,
    std::optional<pg_hit_set_history_t> &hset_history,
    Context *on_all_commit,
    ceph_tid_t tid,
    osd_reqid_t reqid,
    OpRequestRef op
    ) override;

  int objects_read_sync(
    const hobject_t &hoid,
    uint64_t off,
    uint64_t len,
    uint32_t op_flags,
    ceph::buffer::list *bl) override;

  /**
   * Async read mechanism
   *
   * Async reads use the same async read mechanism as does recovery.
   * CallClientContexts is responsible for reconstructing the response
   * buffer as well as for calling the callbacks.
   *
   * One tricky bit is that two reads may possibly not read from the same
   * std::set of replicas.  This could result in two reads completing in the
   * wrong (from the interface user's point of view) order.  Thus, we
   * maintain a queue of in progress reads (@see in_progress_client_reads)
   * to ensure that we always call the completion callback in order.
   *
   * Another subtly is that while we may read a degraded object, we will
   * still only perform a client read from shards in the acting std::set.  This
   * ensures that we won't ever have to restart a client initiated read in
   * check_recovery_sources.
   */
  void objects_read_and_reconstruct(
    const std::map<hobject_t, std::list<boost::tuple<uint64_t, uint64_t, uint32_t> >
    > &reads,
    bool fast_read,
    GenContextURef<std::map<hobject_t,std::pair<int, extent_map> > &&> &&func);

  friend struct CallClientContexts;
  struct ClientAsyncReadStatus {
    unsigned objects_to_read;
    GenContextURef<std::map<hobject_t,std::pair<int, extent_map> > &&> func;
    std::map<hobject_t,std::pair<int, extent_map> > results;
    explicit ClientAsyncReadStatus(
      unsigned objects_to_read,
      GenContextURef<std::map<hobject_t,std::pair<int, extent_map> > &&> &&func)
      : objects_to_read(objects_to_read), func(std::move(func)) {}
    void complete_object(
      const hobject_t &hoid,
      int err,
      extent_map &&buffers) {
      ceph_assert(objects_to_read);
      --objects_to_read;
      ceph_assert(!results.count(hoid));
      results.emplace(hoid, std::make_pair(err, std::move(buffers)));
    }
    bool is_complete() const {
      return objects_to_read == 0;
    }
    void run() {
      func.release()->complete(std::move(results));
    }
  };
  std::list<ClientAsyncReadStatus> in_progress_client_reads;
  void objects_read_async(
    const hobject_t &hoid,
    const std::list<std::pair<boost::tuple<uint64_t, uint64_t, uint32_t>,
		    std::pair<ceph::buffer::list*, Context*> > > &to_read,
    Context *on_complete,
    bool fast_read = false) override;

  template <typename Func>
  void objects_read_async_no_cache(
    const std::map<hobject_t,extent_set> &to_read,
    Func &&on_complete) {
    std::map<hobject_t,std::list<boost::tuple<uint64_t, uint64_t, uint32_t> > > _to_read;
    for (auto &&hpair: to_read) {
      auto &l = _to_read[hpair.first];
      for (auto extent: hpair.second) {
	l.emplace_back(extent.first, extent.second, 0);
      }
    }
    objects_read_and_reconstruct(
      _to_read,
      false,
      make_gen_lambda_context<
      std::map<hobject_t,std::pair<int, extent_map> > &&, Func>(
	  std::forward<Func>(on_complete)));
  }
  void kick_reads() {
    while (in_progress_client_reads.size() &&
	   in_progress_client_reads.front().is_complete()) {
      in_progress_client_reads.front().run();
      in_progress_client_reads.pop_front();
    }
  }

private:
  friend struct ECRecoveryHandle;
  uint64_t get_recovery_chunk_size() const {
    return round_up_to(cct->_conf->osd_recovery_max_chunk,
			sinfo.get_stripe_width());
  }

  void get_want_to_read_shards(std::set<int> *want_to_read) const {
    const std::vector<int> &chunk_mapping = ec_impl->get_chunk_mapping();
    for (int i = 0; i < (int)ec_impl->get_data_chunk_count(); ++i) {
      int chunk = (int)chunk_mapping.size() > i ? chunk_mapping[i] : i;
      want_to_read->insert(chunk);
    }
  }

  /**
   * Recovery
   *
   * Recovery uses the same underlying read mechanism as client reads
   * with the slight difference that recovery reads may come from non
   * acting shards.  Thus, check_recovery_sources may wind up calling
   * cancel_pull for a read originating with RecoveryOp.
   *
   * The recovery process is expressed as a state machine:
   * - IDLE: Nothing is currently in progress, reads will be started and
   *         we will transition to READING
   * - READING: We are awaiting a pending read op.  Once complete, we will
   *            decode the buffers and proceed to WRITING
   * - WRITING: We are awaiting a completed push.  Once complete, we will
   *            either transition to COMPLETE or to IDLE to continue.
   * - COMPLETE: complete
   *
   * We use the existing Push and PushReply messages and structures to
   * handle actually shuffling the data over to the replicas.  recovery_info
   * and recovery_progress are expressed in terms of the logical offset
   * space except for data_included which is in terms of the chunked object
   * space (to match the passed buffer).
   *
   * xattrs are requested on the first read and used to initialize the
   * object_context if missing on completion of the first read.
   *
   * In order to batch up reads and writes, we batch Push, PushReply,
   * Transaction, and reads in a RecoveryMessages object which is passed
   * among the recovery methods.
   */
  struct RecoveryOp {
    hobject_t hoid;
    eversion_t v;
    std::set<pg_shard_t> missing_on;
    std::set<shard_id_t> missing_on_shards;

    ObjectRecoveryInfo recovery_info;
    ObjectRecoveryProgress recovery_progress;

    enum state_t { IDLE, READING, WRITING, COMPLETE } state;

    static const char* tostr(state_t state) {
      switch (state) {
      case ECBackend::RecoveryOp::IDLE:
	return "IDLE";
      case ECBackend::RecoveryOp::READING:
	return "READING";
      case ECBackend::RecoveryOp::WRITING:
	return "WRITING";
      case ECBackend::RecoveryOp::COMPLETE:
	return "COMPLETE";
      default:
	ceph_abort();
	return "";
      }
    }

    // must be filled if state == WRITING
    std::map<int, ceph::buffer::list> returned_data;
    std::map<std::string, ceph::buffer::list, std::less<>> xattrs;
    ECUtil::HashInfoRef hinfo;
    ObjectContextRef obc;
    std::set<pg_shard_t> waiting_on_pushes;

    // valid in state READING
    std::pair<uint64_t, uint64_t> extent_requested;

    void dump(ceph::Formatter *f) const;

    RecoveryOp() : state(IDLE) {}
  };
  friend ostream &operator<<(ostream &lhs, const RecoveryOp &rhs);
  std::map<hobject_t, RecoveryOp> recovery_ops;

  void continue_recovery_op(
    RecoveryOp &op,
    RecoveryMessages *m);
  void dispatch_recovery_messages(RecoveryMessages &m, int priority);
  friend struct OnRecoveryReadComplete;
  void handle_recovery_read_complete(
    const hobject_t &hoid,
    boost::tuple<uint64_t, uint64_t, std::map<pg_shard_t, ceph::buffer::list> > &to_read,
    std::optional<std::map<std::string, ceph::buffer::list, std::less<>> > attrs,
    RecoveryMessages *m);
  void handle_recovery_push(
    const PushOp &op,
    RecoveryMessages *m,
    bool is_repair);
  void handle_recovery_push_reply(
    const PushReplyOp &op,
    pg_shard_t from,
    RecoveryMessages *m);
  void get_all_avail_shards(
    const hobject_t &hoid,
    const std::set<pg_shard_t> &error_shards,
    std::set<int> &have,
    std::map<shard_id_t, pg_shard_t> &shards,
    bool for_recovery);

public:
  /**
   * Low level async read mechanism
   *
   * To avoid duplicating the logic for requesting and waiting for
   * multiple object shards, there is a common async read mechanism
   * taking a std::map of hobject_t->read_request_t which defines callbacks
   * taking read_result_ts as arguments.
   *
   * tid_to_read_map gives open read ops.  check_recovery_sources uses
   * shard_to_read_map and ReadOp::source_to_obj to restart reads
   * involving down osds.
   *
   * The user is responsible for specifying replicas on which to read
   * and for reassembling the buffer on the other side since client
   * reads require the original object buffer while recovery only needs
   * the missing pieces.
   *
   * Rather than handling reads on the primary directly, we simply send
   * ourselves a message.  This avoids a dedicated primary path for that
   * part.
   */
  struct read_result_t {
    int r;
    std::map<pg_shard_t, int> errors;
    std::optional<std::map<std::string, ceph::buffer::list, std::less<>> > attrs;
    std::list<
      boost::tuple<
	uint64_t, uint64_t, std::map<pg_shard_t, ceph::buffer::list> > > returned;
    read_result_t() : r(0) {}
  };
  struct read_request_t {
    const std::list<boost::tuple<uint64_t, uint64_t, uint32_t> > to_read;
    std::map<pg_shard_t, std::vector<std::pair<int, int>>> need;
    bool want_attrs;
    GenContext<std::pair<RecoveryMessages *, read_result_t& > &> *cb;
    read_request_t(
      const std::list<boost::tuple<uint64_t, uint64_t, uint32_t> > &to_read,
      const std::map<pg_shard_t, std::vector<std::pair<int, int>>> &need,
      bool want_attrs,
      GenContext<std::pair<RecoveryMessages *, read_result_t& > &> *cb)
      : to_read(to_read), need(need), want_attrs(want_attrs),
	cb(cb) {}
  };
  friend ostream &operator<<(ostream &lhs, const read_request_t &rhs);

  struct ReadOp {
    int priority;
    ceph_tid_t tid;
    OpRequestRef op; // may be null if not on behalf of a client
    // True if redundant reads are issued, false otherwise,
    // this is useful to tradeoff some resources (redundant ops) for
    // low latency read, especially on relatively idle cluster
    bool do_redundant_reads;
    // True if reading for recovery which could possibly reading only a subset
    // of the available shards.
    bool for_recovery;

    ZTracer::Trace trace;

    std::map<hobject_t, std::set<int>> want_to_read;
    std::map<hobject_t, read_request_t> to_read;
    std::map<hobject_t, read_result_t> complete;

    std::map<hobject_t, std::set<pg_shard_t>> obj_to_source;
    std::map<pg_shard_t, std::set<hobject_t> > source_to_obj;

    void dump(ceph::Formatter *f) const;

    std::set<pg_shard_t> in_progress;

    ReadOp(
      int priority,
      ceph_tid_t tid,
      bool do_redundant_reads,
      bool for_recovery,
      OpRequestRef op,
      std::map<hobject_t, std::set<int>> &&_want_to_read,
      std::map<hobject_t, read_request_t> &&_to_read)
      : priority(priority), tid(tid), op(op), do_redundant_reads(do_redundant_reads),
	for_recovery(for_recovery), want_to_read(std::move(_want_to_read)),
	to_read(std::move(_to_read)) {
      for (auto &&hpair: to_read) {
	auto &returned = complete[hpair.first].returned;
	for (auto &&extent: hpair.second.to_read) {
	  returned.push_back(
	    boost::make_tuple(
	      extent.get<0>(),
	      extent.get<1>(),
	      std::map<pg_shard_t, ceph::buffer::list>()));
	}
      }
    }
    ReadOp() = delete;
    ReadOp(const ReadOp &) = default;
    ReadOp(ReadOp &&) = default;
  };
  friend struct FinishReadOp;
  void filter_read_op(
    const OSDMapRef& osdmap,
    ReadOp &op);
  void complete_read_op(ReadOp &rop, RecoveryMessages *m);
  friend ostream &operator<<(ostream &lhs, const ReadOp &rhs);
  std::map<ceph_tid_t, ReadOp> tid_to_read_map;
  std::map<pg_shard_t, std::set<ceph_tid_t> > shard_to_read_map;
  void start_read_op(
    int priority,
    std::map<hobject_t, std::set<int>> &want_to_read,
    std::map<hobject_t, read_request_t> &to_read,
    OpRequestRef op,
    bool do_redundant_reads, bool for_recovery);

  void do_read_op(ReadOp &rop);
  int send_all_remaining_reads(
    const hobject_t &hoid,
    ReadOp &rop);


  /**
   * Client writes
   *
   * ECTransaction is responsible for generating a transaction for
   * each shard to which we need to send the write.  As required
   * by the PGBackend interface, the ECBackend write mechanism
   * passes trim information with the write and last_complete back
   * with the reply.
   *
   * As with client reads, there is a possibility of out-of-order
   * completions. Thus, callbacks and completion are called in order
   * on the writing std::list.
   */
  struct Op : boost::intrusive::list_base_hook<> {
    /// From submit_transaction caller, describes operation
    hobject_t hoid;
    object_stat_sum_t delta_stats;
    eversion_t version;
    eversion_t trim_to;
    std::optional<pg_hit_set_history_t> updated_hit_set_history;
    std::vector<pg_log_entry_t> log_entries;
    ceph_tid_t tid;
    osd_reqid_t reqid;
    ZTracer::Trace trace;

    eversion_t roll_forward_to; /// Soon to be generated internally

    /// Ancillary also provided from submit_transaction caller
    std::map<hobject_t, ObjectContextRef> obc_map;

    /// see call_write_ordered
    std::list<std::function<void(void)> > on_write;

    /// Generated internally
    std::set<hobject_t> temp_added;
    std::set<hobject_t> temp_cleared;

    ECTransaction::WritePlan plan;
    bool requires_rmw() const { return !plan.to_read.empty(); }
    bool invalidates_cache() const { return plan.invalidates_cache; }

    // must be true if requires_rmw(), must be false if invalidates_cache()
    bool using_cache = true;

    /// In progress read state;
    std::map<hobject_t,extent_set> pending_read; // subset already being read
    std::map<hobject_t,extent_set> remote_read;  // subset we must read
    std::map<hobject_t,extent_map> remote_read_result;
    bool read_in_progress() const {
      return !remote_read.empty() && remote_read_result.empty();
    }

    /// In progress write state.
    std::set<pg_shard_t> pending_commit;
    // we need pending_apply for pre-mimic peers so that we don't issue a
    // read on a remote shard before it has applied a previous write.  We can
    // remove this after nautilus.
    std::set<pg_shard_t> pending_apply;
    bool write_in_progress() const {
      return !pending_commit.empty() || !pending_apply.empty();
    }

    /// optional, may be null, for tracking purposes
    OpRequestRef client_op;

    /// pin for cache
    ExtentCache::write_pin pin;

    /// Callbacks
    Context *on_all_commit = nullptr;
    ~Op() {
      delete on_all_commit;
    }
  };
  using op_list = boost::intrusive::list<Op>;
  friend ostream &operator<<(ostream &lhs, const Op &rhs);

  ExtentCache cache;
  std::map<ceph_tid_t, Op> tid_to_op_map; /// Owns Op structure

  /**
   * We model the possible rmw states as a std::set of waitlists.
   * All writes at this time complete in order, so a write blocked
   * at waiting_state blocks all writes behind it as well (same for
   * other states).
   *
   * Future work: We can break this up into a per-object pipeline
   * (almost).  First, provide an ordering token to submit_transaction
   * and require that all operations within a single transaction take
   * place on a subset of hobject_t space partitioned by that token
   * (the hashid seem about right to me -- even works for temp objects
   * if you recall that a temp object created for object head foo will
   * only ever be referenced by other transactions on foo and aren't
   * reused).  Next, factor this part into a class and maintain one per
   * ordering token.  Next, fixup PrimaryLogPG's repop queue to be
   * partitioned by ordering token.  Finally, refactor the op pipeline
   * so that the log entries passed into submit_transaction aren't
   * versioned.  We can't assign versions to them until we actually
   * submit the operation.  That's probably going to be the hard part.
   */
  class pipeline_state_t {
    enum {
      CACHE_VALID = 0,
      CACHE_INVALID = 1
    } pipeline_state = CACHE_VALID;
  public:
    bool caching_enabled() const {
      return pipeline_state == CACHE_VALID;
    }
    bool cache_invalid() const {
      return !caching_enabled();
    }
    void invalidate() {
      pipeline_state = CACHE_INVALID;
    }
    void clear() {
      pipeline_state = CACHE_VALID;
    }
    friend ostream &operator<<(ostream &lhs, const pipeline_state_t &rhs);
  } pipeline_state;


  op_list waiting_state;        /// writes waiting on pipe_state
  op_list waiting_reads;        /// writes waiting on partial stripe reads
  op_list waiting_commit;       /// writes waiting on initial commit
  eversion_t completed_to;
  eversion_t committed_to;
  void start_rmw(Op *op, PGTransactionUPtr &&t);
  bool try_state_to_reads();
  bool try_reads_to_commit();
  bool try_finish_rmw();
  void check_ops();

  ceph::ErasureCodeInterfaceRef ec_impl;


  /**
   * ECRecPred
   *
   * Determines the whether _have is sufficient to recover an object
   */
  class ECRecPred : public IsPGRecoverablePredicate {
    std::set<int> want;
    ceph::ErasureCodeInterfaceRef ec_impl;
  public:
    explicit ECRecPred(ceph::ErasureCodeInterfaceRef ec_impl) : ec_impl(ec_impl) {
      for (unsigned i = 0; i < ec_impl->get_chunk_count(); ++i) {
	want.insert(i);
      }
    }
    bool operator()(const std::set<pg_shard_t> &_have) const override {
      std::set<int> have;
      for (std::set<pg_shard_t>::const_iterator i = _have.begin();
	   i != _have.end();
	   ++i) {
	have.insert(i->shard);
      }
      std::map<int, std::vector<std::pair<int, int>>> min;
      return ec_impl->minimum_to_decode(want, have, &min) == 0;
    }
  };
  IsPGRecoverablePredicate *get_is_recoverable_predicate() const override {
    return new ECRecPred(ec_impl);
  }

  int get_ec_data_chunk_count() const override {
    return ec_impl->get_data_chunk_count();
  }
  int get_ec_stripe_chunk_size() const override {
    return sinfo.get_chunk_size();
  }

  /**
   * ECReadPred
   *
   * Determines the whether _have is sufficient to read an object
   */
  class ECReadPred : public IsPGReadablePredicate {
    pg_shard_t whoami;
    ECRecPred rec_pred;
  public:
    ECReadPred(
      pg_shard_t whoami,
      ceph::ErasureCodeInterfaceRef ec_impl) : whoami(whoami), rec_pred(ec_impl) {}
    bool operator()(const std::set<pg_shard_t> &_have) const override {
      return _have.count(whoami) && rec_pred(_have);
    }
  };
  IsPGReadablePredicate *get_is_readable_predicate() const override {
    return new ECReadPred(get_parent()->whoami_shard(), ec_impl);
  }


  const ECUtil::stripe_info_t sinfo;
  /// If modified, ensure that the ref is held until the update is applied
  SharedPtrRegistry<hobject_t, ECUtil::HashInfo> unstable_hashinfo_registry;
  ECUtil::HashInfoRef get_hash_info(const hobject_t &hoid, bool create = false,
				    const std::map<std::string, ceph::buffer::ptr, std::less<>> *attr = NULL);

public:
  ECBackend(
    PGBackend::Listener *pg,
    const coll_t &coll,
    ObjectStore::CollectionHandle &ch,
    ObjectStore *store,
    CephContext *cct,
    ceph::ErasureCodeInterfaceRef ec_impl,
    uint64_t stripe_width);

  /// Returns to_read replicas sufficient to reconstruct want
  int get_min_avail_to_read_shards(
    const hobject_t &hoid,     ///< [in] object
    const std::set<int> &want,      ///< [in] desired shards
    bool for_recovery,         ///< [in] true if we may use non-acting replicas
    bool do_redundant_reads,   ///< [in] true if we want to issue redundant reads to reduce latency
    std::map<pg_shard_t, std::vector<std::pair<int, int>>> *to_read   ///< [out] shards, corresponding subchunks to read
    ); ///< @return error code, 0 on success

  int get_remaining_shards(
    const hobject_t &hoid,
    const std::set<int> &avail,
    const std::set<int> &want,
    const read_result_t &result,
    std::map<pg_shard_t, std::vector<std::pair<int, int>>> *to_read,
    bool for_recovery);

  int objects_get_attrs(
    const hobject_t &hoid,
    std::map<std::string, ceph::buffer::list, std::less<>> *out) override;

  void rollback_append(
    const hobject_t &hoid,
    uint64_t old_size,
    ObjectStore::Transaction *t) override;

  bool auto_repair_supported() const override { return true; }

  int be_deep_scrub(
    const hobject_t &poid,
    ScrubMap &map,
    ScrubMapBuilder &pos,
    ScrubMap::object &o) override;

  uint64_t be_get_ondisk_size(uint64_t logical_size) const final {
    return sinfo.logical_to_next_chunk_offset(logical_size);
  }
  void _failed_push(const hobject_t &hoid,
    std::pair<RecoveryMessages *, ECBackend::read_result_t &> &in);
};
ostream &operator<<(ostream &lhs, const ECBackend::pipeline_state_t &rhs);

#endif