summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/cache/clock_cache.cc
blob: 6c9f18c2fb9829b9746bbc6f39af316f64f4707b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "cache/clock_cache.h"

#include <cassert>
#include <functional>
#include <numeric>

#include "cache/cache_key.h"
#include "logging/logging.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/statistics.h"
#include "port/lang.h"
#include "util/hash.h"
#include "util/math.h"
#include "util/random.h"

namespace ROCKSDB_NAMESPACE {

namespace clock_cache {

namespace {
inline uint64_t GetRefcount(uint64_t meta) {
  return ((meta >> ClockHandle::kAcquireCounterShift) -
          (meta >> ClockHandle::kReleaseCounterShift)) &
         ClockHandle::kCounterMask;
}

inline uint64_t GetInitialCountdown(Cache::Priority priority) {
  // Set initial clock data from priority
  // TODO: configuration parameters for priority handling and clock cycle
  // count?
  switch (priority) {
    case Cache::Priority::HIGH:
      return ClockHandle::kHighCountdown;
    default:
      assert(false);
      FALLTHROUGH_INTENDED;
    case Cache::Priority::LOW:
      return ClockHandle::kLowCountdown;
    case Cache::Priority::BOTTOM:
      return ClockHandle::kBottomCountdown;
  }
}

inline void FreeDataMarkEmpty(ClockHandle& h) {
  // NOTE: in theory there's more room for parallelism if we copy the handle
  // data and delay actions like this until after marking the entry as empty,
  // but performance tests only show a regression by copying the few words
  // of data.
  h.FreeData();

#ifndef NDEBUG
  // Mark slot as empty, with assertion
  uint64_t meta = h.meta.exchange(0, std::memory_order_release);
  assert(meta >> ClockHandle::kStateShift == ClockHandle::kStateConstruction);
#else
  // Mark slot as empty
  h.meta.store(0, std::memory_order_release);
#endif
}

inline bool ClockUpdate(ClockHandle& h) {
  uint64_t meta = h.meta.load(std::memory_order_relaxed);

  uint64_t acquire_count =
      (meta >> ClockHandle::kAcquireCounterShift) & ClockHandle::kCounterMask;
  uint64_t release_count =
      (meta >> ClockHandle::kReleaseCounterShift) & ClockHandle::kCounterMask;
  // fprintf(stderr, "ClockUpdate @ %p: %lu %lu %u\n", &h, acquire_count,
  // release_count, (unsigned)(meta >> ClockHandle::kStateShift));
  if (acquire_count != release_count) {
    // Only clock update entries with no outstanding refs
    return false;
  }
  if (!((meta >> ClockHandle::kStateShift) & ClockHandle::kStateShareableBit)) {
    // Only clock update Shareable entries
    return false;
  }
  if ((meta >> ClockHandle::kStateShift == ClockHandle::kStateVisible) &&
      acquire_count > 0) {
    // Decrement clock
    uint64_t new_count =
        std::min(acquire_count - 1, uint64_t{ClockHandle::kMaxCountdown} - 1);
    // Compare-exchange in the decremented clock info, but
    // not aggressively
    uint64_t new_meta =
        (uint64_t{ClockHandle::kStateVisible} << ClockHandle::kStateShift) |
        (new_count << ClockHandle::kReleaseCounterShift) |
        (new_count << ClockHandle::kAcquireCounterShift);
    h.meta.compare_exchange_strong(meta, new_meta, std::memory_order_relaxed);
    return false;
  }
  // Otherwise, remove entry (either unreferenced invisible or
  // unreferenced and expired visible).
  if (h.meta.compare_exchange_strong(
          meta,
          uint64_t{ClockHandle::kStateConstruction} << ClockHandle::kStateShift,
          std::memory_order_acquire)) {
    // Took ownership.
    return true;
  } else {
    // Compare-exchange failing probably
    // indicates the entry was used, so skip it in that case.
    return false;
  }
}

}  // namespace

void ClockHandleBasicData::FreeData() const {
  if (deleter) {
    UniqueId64x2 unhashed;
    (*deleter)(
        ClockCacheShard<HyperClockTable>::ReverseHash(hashed_key, &unhashed),
        value);
  }
}

HyperClockTable::HyperClockTable(
    size_t capacity, bool /*strict_capacity_limit*/,
    CacheMetadataChargePolicy metadata_charge_policy, const Opts& opts)
    : length_bits_(CalcHashBits(capacity, opts.estimated_value_size,
                                metadata_charge_policy)),
      length_bits_mask_((size_t{1} << length_bits_) - 1),
      occupancy_limit_(static_cast<size_t>((uint64_t{1} << length_bits_) *
                                           kStrictLoadFactor)),
      array_(new HandleImpl[size_t{1} << length_bits_]) {
  if (metadata_charge_policy ==
      CacheMetadataChargePolicy::kFullChargeCacheMetadata) {
    usage_ += size_t{GetTableSize()} * sizeof(HandleImpl);
  }

  static_assert(sizeof(HandleImpl) == 64U,
                "Expecting size / alignment with common cache line size");
}

HyperClockTable::~HyperClockTable() {
  // Assumes there are no references or active operations on any slot/element
  // in the table.
  for (size_t i = 0; i < GetTableSize(); i++) {
    HandleImpl& h = array_[i];
    switch (h.meta >> ClockHandle::kStateShift) {
      case ClockHandle::kStateEmpty:
        // noop
        break;
      case ClockHandle::kStateInvisible:  // rare but possible
      case ClockHandle::kStateVisible:
        assert(GetRefcount(h.meta) == 0);
        h.FreeData();
#ifndef NDEBUG
        Rollback(h.hashed_key, &h);
        ReclaimEntryUsage(h.GetTotalCharge());
#endif
        break;
      // otherwise
      default:
        assert(false);
        break;
    }
  }

#ifndef NDEBUG
  for (size_t i = 0; i < GetTableSize(); i++) {
    assert(array_[i].displacements.load() == 0);
  }
#endif

  assert(usage_.load() == 0 ||
         usage_.load() == size_t{GetTableSize()} * sizeof(HandleImpl));
  assert(occupancy_ == 0);
}

// If an entry doesn't receive clock updates but is repeatedly referenced &
// released, the acquire and release counters could overflow without some
// intervention. This is that intervention, which should be inexpensive
// because it only incurs a simple, very predictable check. (Applying a bit
// mask in addition to an increment to every Release likely would be
// relatively expensive, because it's an extra atomic update.)
//
// We do have to assume that we never have many millions of simultaneous
// references to a cache handle, because we cannot represent so many
// references with the difference in counters, masked to the number of
// counter bits. Similarly, we assume there aren't millions of threads
// holding transient references (which might be "undone" rather than
// released by the way).
//
// Consider these possible states for each counter:
// low: less than kMaxCountdown
// medium: kMaxCountdown to half way to overflow + kMaxCountdown
// high: half way to overflow + kMaxCountdown, or greater
//
// And these possible states for the combination of counters:
// acquire / release
// -------   -------
// low       low       - Normal / common, with caveats (see below)
// medium    low       - Can happen while holding some refs
// high      low       - Violates assumptions (too many refs)
// low       medium    - Violates assumptions (refs underflow, etc.)
// medium    medium    - Normal (very read heavy cache)
// high      medium    - Can happen while holding some refs
// low       high      - This function is supposed to prevent
// medium    high      - Violates assumptions (refs underflow, etc.)
// high      high      - Needs CorrectNearOverflow
//
// Basically, this function detects (high, high) state (inferred from
// release alone being high) and bumps it back down to (medium, medium)
// state with the same refcount and the same logical countdown counter
// (everything > kMaxCountdown is logically the same). Note that bumping
// down to (low, low) would modify the countdown counter, so is "reserved"
// in a sense.
//
// If near-overflow correction is triggered here, there's no guarantee
// that another thread hasn't freed the entry and replaced it with another.
// Therefore, it must be the case that the correction does not affect
// entries unless they are very old (many millions of acquire-release cycles).
// (Our bit manipulation is indeed idempotent and only affects entries in
// exceptional cases.) We assume a pre-empted thread will not stall that long.
// If it did, the state could be corrupted in the (unlikely) case that the top
// bit of the acquire counter is set but not the release counter, and thus
// we only clear the top bit of the acquire counter on resumption. It would
// then appear that there are too many refs and the entry would be permanently
// pinned (which is not terrible for an exceptionally rare occurrence), unless
// it is referenced enough (at least kMaxCountdown more times) for the release
// counter to reach "high" state again and bumped back to "medium." (This
// motivates only checking for release counter in high state, not both in high
// state.)
inline void CorrectNearOverflow(uint64_t old_meta,
                                std::atomic<uint64_t>& meta) {
  // We clear both top-most counter bits at the same time.
  constexpr uint64_t kCounterTopBit = uint64_t{1}
                                      << (ClockHandle::kCounterNumBits - 1);
  constexpr uint64_t kClearBits =
      (kCounterTopBit << ClockHandle::kAcquireCounterShift) |
      (kCounterTopBit << ClockHandle::kReleaseCounterShift);
  // A simple check that allows us to initiate clearing the top bits for
  // a large portion of the "high" state space on release counter.
  constexpr uint64_t kCheckBits =
      (kCounterTopBit | (ClockHandle::kMaxCountdown + 1))
      << ClockHandle::kReleaseCounterShift;

  if (UNLIKELY(old_meta & kCheckBits)) {
    meta.fetch_and(~kClearBits, std::memory_order_relaxed);
  }
}

inline Status HyperClockTable::ChargeUsageMaybeEvictStrict(
    size_t total_charge, size_t capacity, bool need_evict_for_occupancy) {
  if (total_charge > capacity) {
    return Status::MemoryLimit(
        "Cache entry too large for a single cache shard: " +
        std::to_string(total_charge) + " > " + std::to_string(capacity));
  }
  // Grab any available capacity, and free up any more required.
  size_t old_usage = usage_.load(std::memory_order_relaxed);
  size_t new_usage;
  if (LIKELY(old_usage != capacity)) {
    do {
      new_usage = std::min(capacity, old_usage + total_charge);
    } while (!usage_.compare_exchange_weak(old_usage, new_usage,
                                           std::memory_order_relaxed));
  } else {
    new_usage = old_usage;
  }
  // How much do we need to evict then?
  size_t need_evict_charge = old_usage + total_charge - new_usage;
  size_t request_evict_charge = need_evict_charge;
  if (UNLIKELY(need_evict_for_occupancy) && request_evict_charge == 0) {
    // Require at least 1 eviction.
    request_evict_charge = 1;
  }
  if (request_evict_charge > 0) {
    size_t evicted_charge = 0;
    size_t evicted_count = 0;
    Evict(request_evict_charge, &evicted_charge, &evicted_count);
    occupancy_.fetch_sub(evicted_count, std::memory_order_release);
    if (LIKELY(evicted_charge > need_evict_charge)) {
      assert(evicted_count > 0);
      // Evicted more than enough
      usage_.fetch_sub(evicted_charge - need_evict_charge,
                       std::memory_order_relaxed);
    } else if (evicted_charge < need_evict_charge ||
               (UNLIKELY(need_evict_for_occupancy) && evicted_count == 0)) {
      // Roll back to old usage minus evicted
      usage_.fetch_sub(evicted_charge + (new_usage - old_usage),
                       std::memory_order_relaxed);
      if (evicted_charge < need_evict_charge) {
        return Status::MemoryLimit(
            "Insert failed because unable to evict entries to stay within "
            "capacity limit.");
      } else {
        return Status::MemoryLimit(
            "Insert failed because unable to evict entries to stay within "
            "table occupancy limit.");
      }
    }
    // If we needed to evict something and we are proceeding, we must have
    // evicted something.
    assert(evicted_count > 0);
  }
  return Status::OK();
}

inline bool HyperClockTable::ChargeUsageMaybeEvictNonStrict(
    size_t total_charge, size_t capacity, bool need_evict_for_occupancy) {
  // For simplicity, we consider that either the cache can accept the insert
  // with no evictions, or we must evict enough to make (at least) enough
  // space. It could lead to unnecessary failures or excessive evictions in
  // some extreme cases, but allows a fast, simple protocol. If we allow a
  // race to get us over capacity, then we might never get back to capacity
  // limit if the sizes of entries allow each insertion to evict the minimum
  // charge. Thus, we should evict some extra if it's not a signifcant
  // portion of the shard capacity. This can have the side benefit of
  // involving fewer threads in eviction.
  size_t old_usage = usage_.load(std::memory_order_relaxed);
  size_t need_evict_charge;
  // NOTE: if total_charge > old_usage, there isn't yet enough to evict
  // `total_charge` amount. Even if we only try to evict `old_usage` amount,
  // there's likely something referenced and we would eat CPU looking for
  // enough to evict.
  if (old_usage + total_charge <= capacity || total_charge > old_usage) {
    // Good enough for me (might run over with a race)
    need_evict_charge = 0;
  } else {
    // Try to evict enough space, and maybe some extra
    need_evict_charge = total_charge;
    if (old_usage > capacity) {
      // Not too much to avoid thundering herd while avoiding strict
      // synchronization, such as the compare_exchange used with strict
      // capacity limit.
      need_evict_charge += std::min(capacity / 1024, total_charge) + 1;
    }
  }
  if (UNLIKELY(need_evict_for_occupancy) && need_evict_charge == 0) {
    // Special case: require at least 1 eviction if we only have to
    // deal with occupancy
    need_evict_charge = 1;
  }
  size_t evicted_charge = 0;
  size_t evicted_count = 0;
  if (need_evict_charge > 0) {
    Evict(need_evict_charge, &evicted_charge, &evicted_count);
    // Deal with potential occupancy deficit
    if (UNLIKELY(need_evict_for_occupancy) && evicted_count == 0) {
      assert(evicted_charge == 0);
      // Can't meet occupancy requirement
      return false;
    } else {
      // Update occupancy for evictions
      occupancy_.fetch_sub(evicted_count, std::memory_order_release);
    }
  }
  // Track new usage even if we weren't able to evict enough
  usage_.fetch_add(total_charge - evicted_charge, std::memory_order_relaxed);
  // No underflow
  assert(usage_.load(std::memory_order_relaxed) < SIZE_MAX / 2);
  // Success
  return true;
}

inline HyperClockTable::HandleImpl* HyperClockTable::DetachedInsert(
    const ClockHandleBasicData& proto) {
  // Heap allocated separate from table
  HandleImpl* h = new HandleImpl();
  ClockHandleBasicData* h_alias = h;
  *h_alias = proto;
  h->SetDetached();
  // Single reference (detached entries only created if returning a refed
  // Handle back to user)
  uint64_t meta = uint64_t{ClockHandle::kStateInvisible}
                  << ClockHandle::kStateShift;
  meta |= uint64_t{1} << ClockHandle::kAcquireCounterShift;
  h->meta.store(meta, std::memory_order_release);
  // Keep track of how much of usage is detached
  detached_usage_.fetch_add(proto.GetTotalCharge(), std::memory_order_relaxed);
  return h;
}

Status HyperClockTable::Insert(const ClockHandleBasicData& proto,
                               HandleImpl** handle, Cache::Priority priority,
                               size_t capacity, bool strict_capacity_limit) {
  // Do we have the available occupancy? Optimistically assume we do
  // and deal with it if we don't.
  size_t old_occupancy = occupancy_.fetch_add(1, std::memory_order_acquire);
  auto revert_occupancy_fn = [&]() {
    occupancy_.fetch_sub(1, std::memory_order_relaxed);
  };
  // Whether we over-committed and need an eviction to make up for it
  bool need_evict_for_occupancy = old_occupancy >= occupancy_limit_;

  // Usage/capacity handling is somewhat different depending on
  // strict_capacity_limit, but mostly pessimistic.
  bool use_detached_insert = false;
  const size_t total_charge = proto.GetTotalCharge();
  if (strict_capacity_limit) {
    Status s = ChargeUsageMaybeEvictStrict(total_charge, capacity,
                                           need_evict_for_occupancy);
    if (!s.ok()) {
      revert_occupancy_fn();
      return s;
    }
  } else {
    // Case strict_capacity_limit == false
    bool success = ChargeUsageMaybeEvictNonStrict(total_charge, capacity,
                                                  need_evict_for_occupancy);
    if (!success) {
      revert_occupancy_fn();
      if (handle == nullptr) {
        // Don't insert the entry but still return ok, as if the entry
        // inserted into cache and evicted immediately.
        proto.FreeData();
        return Status::OK();
      } else {
        // Need to track usage of fallback detached insert
        usage_.fetch_add(total_charge, std::memory_order_relaxed);
        use_detached_insert = true;
      }
    }
  }
  auto revert_usage_fn = [&]() {
    usage_.fetch_sub(total_charge, std::memory_order_relaxed);
    // No underflow
    assert(usage_.load(std::memory_order_relaxed) < SIZE_MAX / 2);
  };

  if (!use_detached_insert) {
    // Attempt a table insert, but abort if we find an existing entry for the
    // key. If we were to overwrite old entries, we would either
    // * Have to gain ownership over an existing entry to overwrite it, which
    // would only work if there are no outstanding (read) references and would
    // create a small gap in availability of the entry (old or new) to lookups.
    // * Have to insert into a suboptimal location (more probes) so that the
    // old entry can be kept around as well.

    uint64_t initial_countdown = GetInitialCountdown(priority);
    assert(initial_countdown > 0);

    size_t probe = 0;
    HandleImpl* e = FindSlot(
        proto.hashed_key,
        [&](HandleImpl* h) {
          // Optimistically transition the slot from "empty" to
          // "under construction" (no effect on other states)
          uint64_t old_meta =
              h->meta.fetch_or(uint64_t{ClockHandle::kStateOccupiedBit}
                                   << ClockHandle::kStateShift,
                               std::memory_order_acq_rel);
          uint64_t old_state = old_meta >> ClockHandle::kStateShift;

          if (old_state == ClockHandle::kStateEmpty) {
            // We've started inserting into an available slot, and taken
            // ownership Save data fields
            ClockHandleBasicData* h_alias = h;
            *h_alias = proto;

            // Transition from "under construction" state to "visible" state
            uint64_t new_meta = uint64_t{ClockHandle::kStateVisible}
                                << ClockHandle::kStateShift;

            // Maybe with an outstanding reference
            new_meta |= initial_countdown << ClockHandle::kAcquireCounterShift;
            new_meta |= (initial_countdown - (handle != nullptr))
                        << ClockHandle::kReleaseCounterShift;

#ifndef NDEBUG
            // Save the state transition, with assertion
            old_meta = h->meta.exchange(new_meta, std::memory_order_release);
            assert(old_meta >> ClockHandle::kStateShift ==
                   ClockHandle::kStateConstruction);
#else
            // Save the state transition
            h->meta.store(new_meta, std::memory_order_release);
#endif
            return true;
          } else if (old_state != ClockHandle::kStateVisible) {
            // Slot not usable / touchable now
            return false;
          }
          // Existing, visible entry, which might be a match.
          // But first, we need to acquire a ref to read it. In fact, number of
          // refs for initial countdown, so that we boost the clock state if
          // this is a match.
          old_meta = h->meta.fetch_add(
              ClockHandle::kAcquireIncrement * initial_countdown,
              std::memory_order_acq_rel);
          // Like Lookup
          if ((old_meta >> ClockHandle::kStateShift) ==
              ClockHandle::kStateVisible) {
            // Acquired a read reference
            if (h->hashed_key == proto.hashed_key) {
              // Match. Release in a way that boosts the clock state
              old_meta = h->meta.fetch_add(
                  ClockHandle::kReleaseIncrement * initial_countdown,
                  std::memory_order_acq_rel);
              // Correct for possible (but rare) overflow
              CorrectNearOverflow(old_meta, h->meta);
              // Insert detached instead (only if return handle needed)
              use_detached_insert = true;
              return true;
            } else {
              // Mismatch. Pretend we never took the reference
              old_meta = h->meta.fetch_sub(
                  ClockHandle::kAcquireIncrement * initial_countdown,
                  std::memory_order_acq_rel);
            }
          } else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
                              ClockHandle::kStateInvisible)) {
            // Pretend we never took the reference
            // WART: there's a tiny chance we release last ref to invisible
            // entry here. If that happens, we let eviction take care of it.
            old_meta = h->meta.fetch_sub(
                ClockHandle::kAcquireIncrement * initial_countdown,
                std::memory_order_acq_rel);
          } else {
            // For other states, incrementing the acquire counter has no effect
            // so we don't need to undo it.
            // Slot not usable / touchable now.
          }
          (void)old_meta;
          return false;
        },
        [&](HandleImpl* /*h*/) { return false; },
        [&](HandleImpl* h) {
          h->displacements.fetch_add(1, std::memory_order_relaxed);
        },
        probe);
    if (e == nullptr) {
      // Occupancy check and never abort FindSlot above should generally
      // prevent this, except it's theoretically possible for other threads
      // to evict and replace entries in the right order to hit every slot
      // when it is populated. Assuming random hashing, the chance of that
      // should be no higher than pow(kStrictLoadFactor, n) for n slots.
      // That should be infeasible for roughly n >= 256, so if this assertion
      // fails, that suggests something is going wrong.
      assert(GetTableSize() < 256);
      use_detached_insert = true;
    }
    if (!use_detached_insert) {
      // Successfully inserted
      if (handle) {
        *handle = e;
      }
      return Status::OK();
    }
    // Roll back table insertion
    Rollback(proto.hashed_key, e);
    revert_occupancy_fn();
    // Maybe fall back on detached insert
    if (handle == nullptr) {
      revert_usage_fn();
      // As if unrefed entry immdiately evicted
      proto.FreeData();
      return Status::OK();
    }
  }

  // Run detached insert
  assert(use_detached_insert);

  *handle = DetachedInsert(proto);

  // The OkOverwritten status is used to count "redundant" insertions into
  // block cache. This implementation doesn't strictly check for redundant
  // insertions, but we instead are probably interested in how many insertions
  // didn't go into the table (instead "detached"), which could be redundant
  // Insert or some other reason (use_detached_insert reasons above).
  return Status::OkOverwritten();
}

HyperClockTable::HandleImpl* HyperClockTable::Lookup(
    const UniqueId64x2& hashed_key) {
  size_t probe = 0;
  HandleImpl* e = FindSlot(
      hashed_key,
      [&](HandleImpl* h) {
        // Mostly branch-free version (similar performance)
        /*
        uint64_t old_meta = h->meta.fetch_add(ClockHandle::kAcquireIncrement,
                                     std::memory_order_acquire);
        bool Shareable = (old_meta >> (ClockHandle::kStateShift + 1)) & 1U;
        bool visible = (old_meta >> ClockHandle::kStateShift) & 1U;
        bool match = (h->key == key) & visible;
        h->meta.fetch_sub(static_cast<uint64_t>(Shareable & !match) <<
        ClockHandle::kAcquireCounterShift, std::memory_order_release); return
        match;
        */
        // Optimistic lookup should pay off when the table is relatively
        // sparse.
        constexpr bool kOptimisticLookup = true;
        uint64_t old_meta;
        if (!kOptimisticLookup) {
          old_meta = h->meta.load(std::memory_order_acquire);
          if ((old_meta >> ClockHandle::kStateShift) !=
              ClockHandle::kStateVisible) {
            return false;
          }
        }
        // (Optimistically) increment acquire counter
        old_meta = h->meta.fetch_add(ClockHandle::kAcquireIncrement,
                                     std::memory_order_acquire);
        // Check if it's an entry visible to lookups
        if ((old_meta >> ClockHandle::kStateShift) ==
            ClockHandle::kStateVisible) {
          // Acquired a read reference
          if (h->hashed_key == hashed_key) {
            // Match
            return true;
          } else {
            // Mismatch. Pretend we never took the reference
            old_meta = h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                         std::memory_order_release);
          }
        } else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
                            ClockHandle::kStateInvisible)) {
          // Pretend we never took the reference
          // WART: there's a tiny chance we release last ref to invisible
          // entry here. If that happens, we let eviction take care of it.
          old_meta = h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                       std::memory_order_release);
        } else {
          // For other states, incrementing the acquire counter has no effect
          // so we don't need to undo it. Furthermore, we cannot safely undo
          // it because we did not acquire a read reference to lock the
          // entry in a Shareable state.
        }
        (void)old_meta;
        return false;
      },
      [&](HandleImpl* h) {
        return h->displacements.load(std::memory_order_relaxed) == 0;
      },
      [&](HandleImpl* /*h*/) {}, probe);

  return e;
}

bool HyperClockTable::Release(HandleImpl* h, bool useful,
                              bool erase_if_last_ref) {
  // In contrast with LRUCache's Release, this function won't delete the handle
  // when the cache is above capacity and the reference is the last one. Space
  // is only freed up by EvictFromClock (called by Insert when space is needed)
  // and Erase. We do this to avoid an extra atomic read of the variable usage_.

  uint64_t old_meta;
  if (useful) {
    // Increment release counter to indicate was used
    old_meta = h->meta.fetch_add(ClockHandle::kReleaseIncrement,
                                 std::memory_order_release);
  } else {
    // Decrement acquire counter to pretend it never happened
    old_meta = h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                 std::memory_order_release);
  }

  assert((old_meta >> ClockHandle::kStateShift) &
         ClockHandle::kStateShareableBit);
  // No underflow
  assert(((old_meta >> ClockHandle::kAcquireCounterShift) &
          ClockHandle::kCounterMask) !=
         ((old_meta >> ClockHandle::kReleaseCounterShift) &
          ClockHandle::kCounterMask));

  if (erase_if_last_ref || UNLIKELY(old_meta >> ClockHandle::kStateShift ==
                                    ClockHandle::kStateInvisible)) {
    // Update for last fetch_add op
    if (useful) {
      old_meta += ClockHandle::kReleaseIncrement;
    } else {
      old_meta -= ClockHandle::kAcquireIncrement;
    }
    // Take ownership if no refs
    do {
      if (GetRefcount(old_meta) != 0) {
        // Not last ref at some point in time during this Release call
        // Correct for possible (but rare) overflow
        CorrectNearOverflow(old_meta, h->meta);
        return false;
      }
      if ((old_meta & (uint64_t{ClockHandle::kStateShareableBit}
                       << ClockHandle::kStateShift)) == 0) {
        // Someone else took ownership
        return false;
      }
      // Note that there's a small chance that we release, another thread
      // replaces this entry with another, reaches zero refs, and then we end
      // up erasing that other entry. That's an acceptable risk / imprecision.
    } while (!h->meta.compare_exchange_weak(
        old_meta,
        uint64_t{ClockHandle::kStateConstruction} << ClockHandle::kStateShift,
        std::memory_order_acquire));
    // Took ownership
    size_t total_charge = h->GetTotalCharge();
    if (UNLIKELY(h->IsDetached())) {
      h->FreeData();
      // Delete detached handle
      delete h;
      detached_usage_.fetch_sub(total_charge, std::memory_order_relaxed);
      usage_.fetch_sub(total_charge, std::memory_order_relaxed);
    } else {
      Rollback(h->hashed_key, h);
      FreeDataMarkEmpty(*h);
      ReclaimEntryUsage(total_charge);
    }
    return true;
  } else {
    // Correct for possible (but rare) overflow
    CorrectNearOverflow(old_meta, h->meta);
    return false;
  }
}

void HyperClockTable::Ref(HandleImpl& h) {
  // Increment acquire counter
  uint64_t old_meta = h.meta.fetch_add(ClockHandle::kAcquireIncrement,
                                       std::memory_order_acquire);

  assert((old_meta >> ClockHandle::kStateShift) &
         ClockHandle::kStateShareableBit);
  // Must have already had a reference
  assert(GetRefcount(old_meta) > 0);
  (void)old_meta;
}

void HyperClockTable::TEST_RefN(HandleImpl& h, size_t n) {
  // Increment acquire counter
  uint64_t old_meta = h.meta.fetch_add(n * ClockHandle::kAcquireIncrement,
                                       std::memory_order_acquire);

  assert((old_meta >> ClockHandle::kStateShift) &
         ClockHandle::kStateShareableBit);
  (void)old_meta;
}

void HyperClockTable::TEST_ReleaseN(HandleImpl* h, size_t n) {
  if (n > 0) {
    // Split into n - 1 and 1 steps.
    uint64_t old_meta = h->meta.fetch_add(
        (n - 1) * ClockHandle::kReleaseIncrement, std::memory_order_acquire);
    assert((old_meta >> ClockHandle::kStateShift) &
           ClockHandle::kStateShareableBit);
    (void)old_meta;

    Release(h, /*useful*/ true, /*erase_if_last_ref*/ false);
  }
}

void HyperClockTable::Erase(const UniqueId64x2& hashed_key) {
  size_t probe = 0;
  (void)FindSlot(
      hashed_key,
      [&](HandleImpl* h) {
        // Could be multiple entries in rare cases. Erase them all.
        // Optimistically increment acquire counter
        uint64_t old_meta = h->meta.fetch_add(ClockHandle::kAcquireIncrement,
                                              std::memory_order_acquire);
        // Check if it's an entry visible to lookups
        if ((old_meta >> ClockHandle::kStateShift) ==
            ClockHandle::kStateVisible) {
          // Acquired a read reference
          if (h->hashed_key == hashed_key) {
            // Match. Set invisible.
            old_meta =
                h->meta.fetch_and(~(uint64_t{ClockHandle::kStateVisibleBit}
                                    << ClockHandle::kStateShift),
                                  std::memory_order_acq_rel);
            // Apply update to local copy
            old_meta &= ~(uint64_t{ClockHandle::kStateVisibleBit}
                          << ClockHandle::kStateShift);
            for (;;) {
              uint64_t refcount = GetRefcount(old_meta);
              assert(refcount > 0);
              if (refcount > 1) {
                // Not last ref at some point in time during this Erase call
                // Pretend we never took the reference
                h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                  std::memory_order_release);
                break;
              } else if (h->meta.compare_exchange_weak(
                             old_meta,
                             uint64_t{ClockHandle::kStateConstruction}
                                 << ClockHandle::kStateShift,
                             std::memory_order_acq_rel)) {
                // Took ownership
                assert(hashed_key == h->hashed_key);
                size_t total_charge = h->GetTotalCharge();
                FreeDataMarkEmpty(*h);
                ReclaimEntryUsage(total_charge);
                // We already have a copy of hashed_key in this case, so OK to
                // delay Rollback until after releasing the entry
                Rollback(hashed_key, h);
                break;
              }
            }
          } else {
            // Mismatch. Pretend we never took the reference
            h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                              std::memory_order_release);
          }
        } else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
                            ClockHandle::kStateInvisible)) {
          // Pretend we never took the reference
          // WART: there's a tiny chance we release last ref to invisible
          // entry here. If that happens, we let eviction take care of it.
          h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                            std::memory_order_release);
        } else {
          // For other states, incrementing the acquire counter has no effect
          // so we don't need to undo it.
        }
        return false;
      },
      [&](HandleImpl* h) {
        return h->displacements.load(std::memory_order_relaxed) == 0;
      },
      [&](HandleImpl* /*h*/) {}, probe);
}

void HyperClockTable::ConstApplyToEntriesRange(
    std::function<void(const HandleImpl&)> func, size_t index_begin,
    size_t index_end, bool apply_if_will_be_deleted) const {
  uint64_t check_state_mask = ClockHandle::kStateShareableBit;
  if (!apply_if_will_be_deleted) {
    check_state_mask |= ClockHandle::kStateVisibleBit;
  }

  for (size_t i = index_begin; i < index_end; i++) {
    HandleImpl& h = array_[i];

    // Note: to avoid using compare_exchange, we have to be extra careful.
    uint64_t old_meta = h.meta.load(std::memory_order_relaxed);
    // Check if it's an entry visible to lookups
    if ((old_meta >> ClockHandle::kStateShift) & check_state_mask) {
      // Increment acquire counter. Note: it's possible that the entry has
      // completely changed since we loaded old_meta, but incrementing acquire
      // count is always safe. (Similar to optimistic Lookup here.)
      old_meta = h.meta.fetch_add(ClockHandle::kAcquireIncrement,
                                  std::memory_order_acquire);
      // Check whether we actually acquired a reference.
      if ((old_meta >> ClockHandle::kStateShift) &
          ClockHandle::kStateShareableBit) {
        // Apply func if appropriate
        if ((old_meta >> ClockHandle::kStateShift) & check_state_mask) {
          func(h);
        }
        // Pretend we never took the reference
        h.meta.fetch_sub(ClockHandle::kAcquireIncrement,
                         std::memory_order_release);
        // No net change, so don't need to check for overflow
      } else {
        // For other states, incrementing the acquire counter has no effect
        // so we don't need to undo it. Furthermore, we cannot safely undo
        // it because we did not acquire a read reference to lock the
        // entry in a Shareable state.
      }
    }
  }
}

void HyperClockTable::EraseUnRefEntries() {
  for (size_t i = 0; i <= this->length_bits_mask_; i++) {
    HandleImpl& h = array_[i];

    uint64_t old_meta = h.meta.load(std::memory_order_relaxed);
    if (old_meta & (uint64_t{ClockHandle::kStateShareableBit}
                    << ClockHandle::kStateShift) &&
        GetRefcount(old_meta) == 0 &&
        h.meta.compare_exchange_strong(old_meta,
                                       uint64_t{ClockHandle::kStateConstruction}
                                           << ClockHandle::kStateShift,
                                       std::memory_order_acquire)) {
      // Took ownership
      size_t total_charge = h.GetTotalCharge();
      Rollback(h.hashed_key, &h);
      FreeDataMarkEmpty(h);
      ReclaimEntryUsage(total_charge);
    }
  }
}

inline HyperClockTable::HandleImpl* HyperClockTable::FindSlot(
    const UniqueId64x2& hashed_key, std::function<bool(HandleImpl*)> match_fn,
    std::function<bool(HandleImpl*)> abort_fn,
    std::function<void(HandleImpl*)> update_fn, size_t& probe) {
  // NOTE: upper 32 bits of hashed_key[0] is used for sharding
  //
  // We use double-hashing probing. Every probe in the sequence is a
  // pseudorandom integer, computed as a linear function of two random hashes,
  // which we call base and increment. Specifically, the i-th probe is base + i
  // * increment modulo the table size.
  size_t base = static_cast<size_t>(hashed_key[1]);
  // We use an odd increment, which is relatively prime with the power-of-two
  // table size. This implies that we cycle back to the first probe only
  // after probing every slot exactly once.
  // TODO: we could also reconsider linear probing, though locality benefits
  // are limited because each slot is a full cache line
  size_t increment = static_cast<size_t>(hashed_key[0]) | 1U;
  size_t current = ModTableSize(base + probe * increment);
  while (probe <= length_bits_mask_) {
    HandleImpl* h = &array_[current];
    if (match_fn(h)) {
      probe++;
      return h;
    }
    if (abort_fn(h)) {
      return nullptr;
    }
    probe++;
    update_fn(h);
    current = ModTableSize(current + increment);
  }
  // We looped back.
  return nullptr;
}

inline void HyperClockTable::Rollback(const UniqueId64x2& hashed_key,
                                      const HandleImpl* h) {
  size_t current = ModTableSize(hashed_key[1]);
  size_t increment = static_cast<size_t>(hashed_key[0]) | 1U;
  while (&array_[current] != h) {
    array_[current].displacements.fetch_sub(1, std::memory_order_relaxed);
    current = ModTableSize(current + increment);
  }
}

inline void HyperClockTable::ReclaimEntryUsage(size_t total_charge) {
  auto old_occupancy = occupancy_.fetch_sub(1U, std::memory_order_release);
  (void)old_occupancy;
  // No underflow
  assert(old_occupancy > 0);
  auto old_usage = usage_.fetch_sub(total_charge, std::memory_order_relaxed);
  (void)old_usage;
  // No underflow
  assert(old_usage >= total_charge);
}

inline void HyperClockTable::Evict(size_t requested_charge,
                                   size_t* freed_charge, size_t* freed_count) {
  // precondition
  assert(requested_charge > 0);

  // TODO: make a tuning parameter?
  constexpr size_t step_size = 4;

  // First (concurrent) increment clock pointer
  uint64_t old_clock_pointer =
      clock_pointer_.fetch_add(step_size, std::memory_order_relaxed);

  // Cap the eviction effort at this thread (along with those operating in
  // parallel) circling through the whole structure kMaxCountdown times.
  // In other words, this eviction run must find something/anything that is
  // unreferenced at start of and during the eviction run that isn't reclaimed
  // by a concurrent eviction run.
  uint64_t max_clock_pointer =
      old_clock_pointer + (ClockHandle::kMaxCountdown << length_bits_);

  for (;;) {
    for (size_t i = 0; i < step_size; i++) {
      HandleImpl& h = array_[ModTableSize(Lower32of64(old_clock_pointer + i))];
      bool evicting = ClockUpdate(h);
      if (evicting) {
        Rollback(h.hashed_key, &h);
        *freed_charge += h.GetTotalCharge();
        *freed_count += 1;
        FreeDataMarkEmpty(h);
      }
    }

    // Loop exit condition
    if (*freed_charge >= requested_charge) {
      return;
    }
    if (old_clock_pointer >= max_clock_pointer) {
      return;
    }

    // Advance clock pointer (concurrently)
    old_clock_pointer =
        clock_pointer_.fetch_add(step_size, std::memory_order_relaxed);
  }
}

template <class Table>
ClockCacheShard<Table>::ClockCacheShard(
    size_t capacity, bool strict_capacity_limit,
    CacheMetadataChargePolicy metadata_charge_policy,
    const typename Table::Opts& opts)
    : CacheShardBase(metadata_charge_policy),
      table_(capacity, strict_capacity_limit, metadata_charge_policy, opts),
      capacity_(capacity),
      strict_capacity_limit_(strict_capacity_limit) {
  // Initial charge metadata should not exceed capacity
  assert(table_.GetUsage() <= capacity_ || capacity_ < sizeof(HandleImpl));
}

template <class Table>
void ClockCacheShard<Table>::EraseUnRefEntries() {
  table_.EraseUnRefEntries();
}

template <class Table>
void ClockCacheShard<Table>::ApplyToSomeEntries(
    const std::function<void(const Slice& key, void* value, size_t charge,
                             DeleterFn deleter)>& callback,
    size_t average_entries_per_lock, size_t* state) {
  // The state is essentially going to be the starting hash, which works
  // nicely even if we resize between calls because we use upper-most
  // hash bits for table indexes.
  size_t length_bits = table_.GetLengthBits();
  size_t length = table_.GetTableSize();

  assert(average_entries_per_lock > 0);
  // Assuming we are called with same average_entries_per_lock repeatedly,
  // this simplifies some logic (index_end will not overflow).
  assert(average_entries_per_lock < length || *state == 0);

  size_t index_begin = *state >> (sizeof(size_t) * 8u - length_bits);
  size_t index_end = index_begin + average_entries_per_lock;
  if (index_end >= length) {
    // Going to end.
    index_end = length;
    *state = SIZE_MAX;
  } else {
    *state = index_end << (sizeof(size_t) * 8u - length_bits);
  }

  table_.ConstApplyToEntriesRange(
      [callback](const HandleImpl& h) {
        UniqueId64x2 unhashed;
        callback(ReverseHash(h.hashed_key, &unhashed), h.value,
                 h.GetTotalCharge(), h.deleter);
      },
      index_begin, index_end, false);
}

int HyperClockTable::CalcHashBits(
    size_t capacity, size_t estimated_value_size,
    CacheMetadataChargePolicy metadata_charge_policy) {
  double average_slot_charge = estimated_value_size * kLoadFactor;
  if (metadata_charge_policy == kFullChargeCacheMetadata) {
    average_slot_charge += sizeof(HandleImpl);
  }
  assert(average_slot_charge > 0.0);
  uint64_t num_slots =
      static_cast<uint64_t>(capacity / average_slot_charge + 0.999999);

  int hash_bits = FloorLog2((num_slots << 1) - 1);
  if (metadata_charge_policy == kFullChargeCacheMetadata) {
    // For very small estimated value sizes, it's possible to overshoot
    while (hash_bits > 0 &&
           uint64_t{sizeof(HandleImpl)} << hash_bits > capacity) {
      hash_bits--;
    }
  }
  return hash_bits;
}

template <class Table>
void ClockCacheShard<Table>::SetCapacity(size_t capacity) {
  capacity_.store(capacity, std::memory_order_relaxed);
  // next Insert will take care of any necessary evictions
}

template <class Table>
void ClockCacheShard<Table>::SetStrictCapacityLimit(
    bool strict_capacity_limit) {
  strict_capacity_limit_.store(strict_capacity_limit,
                               std::memory_order_relaxed);
  // next Insert will take care of any necessary evictions
}

template <class Table>
Status ClockCacheShard<Table>::Insert(const Slice& key,
                                      const UniqueId64x2& hashed_key,
                                      void* value, size_t charge,
                                      Cache::DeleterFn deleter,
                                      HandleImpl** handle,
                                      Cache::Priority priority) {
  if (UNLIKELY(key.size() != kCacheKeySize)) {
    return Status::NotSupported("ClockCache only supports key size " +
                                std::to_string(kCacheKeySize) + "B");
  }
  ClockHandleBasicData proto;
  proto.hashed_key = hashed_key;
  proto.value = value;
  proto.deleter = deleter;
  proto.total_charge = charge;
  Status s = table_.Insert(
      proto, handle, priority, capacity_.load(std::memory_order_relaxed),
      strict_capacity_limit_.load(std::memory_order_relaxed));
  return s;
}

template <class Table>
typename ClockCacheShard<Table>::HandleImpl* ClockCacheShard<Table>::Lookup(
    const Slice& key, const UniqueId64x2& hashed_key) {
  if (UNLIKELY(key.size() != kCacheKeySize)) {
    return nullptr;
  }
  return table_.Lookup(hashed_key);
}

template <class Table>
bool ClockCacheShard<Table>::Ref(HandleImpl* h) {
  if (h == nullptr) {
    return false;
  }
  table_.Ref(*h);
  return true;
}

template <class Table>
bool ClockCacheShard<Table>::Release(HandleImpl* handle, bool useful,
                                     bool erase_if_last_ref) {
  if (handle == nullptr) {
    return false;
  }
  return table_.Release(handle, useful, erase_if_last_ref);
}

template <class Table>
void ClockCacheShard<Table>::TEST_RefN(HandleImpl* h, size_t n) {
  table_.TEST_RefN(*h, n);
}

template <class Table>
void ClockCacheShard<Table>::TEST_ReleaseN(HandleImpl* h, size_t n) {
  table_.TEST_ReleaseN(h, n);
}

template <class Table>
bool ClockCacheShard<Table>::Release(HandleImpl* handle,
                                     bool erase_if_last_ref) {
  return Release(handle, /*useful=*/true, erase_if_last_ref);
}

template <class Table>
void ClockCacheShard<Table>::Erase(const Slice& key,
                                   const UniqueId64x2& hashed_key) {
  if (UNLIKELY(key.size() != kCacheKeySize)) {
    return;
  }
  table_.Erase(hashed_key);
}

template <class Table>
size_t ClockCacheShard<Table>::GetUsage() const {
  return table_.GetUsage();
}

template <class Table>
size_t ClockCacheShard<Table>::GetDetachedUsage() const {
  return table_.GetDetachedUsage();
}

template <class Table>
size_t ClockCacheShard<Table>::GetCapacity() const {
  return capacity_;
}

template <class Table>
size_t ClockCacheShard<Table>::GetPinnedUsage() const {
  // Computes the pinned usage by scanning the whole hash table. This
  // is slow, but avoids keeping an exact counter on the clock usage,
  // i.e., the number of not externally referenced elements.
  // Why avoid this counter? Because Lookup removes elements from the clock
  // list, so it would need to update the pinned usage every time,
  // which creates additional synchronization costs.
  size_t table_pinned_usage = 0;
  const bool charge_metadata =
      metadata_charge_policy_ == kFullChargeCacheMetadata;
  table_.ConstApplyToEntriesRange(
      [&table_pinned_usage, charge_metadata](const HandleImpl& h) {
        uint64_t meta = h.meta.load(std::memory_order_relaxed);
        uint64_t refcount = GetRefcount(meta);
        // Holding one ref for ConstApplyToEntriesRange
        assert(refcount > 0);
        if (refcount > 1) {
          table_pinned_usage += h.GetTotalCharge();
          if (charge_metadata) {
            table_pinned_usage += sizeof(HandleImpl);
          }
        }
      },
      0, table_.GetTableSize(), true);

  return table_pinned_usage + table_.GetDetachedUsage();
}

template <class Table>
size_t ClockCacheShard<Table>::GetOccupancyCount() const {
  return table_.GetOccupancy();
}

template <class Table>
size_t ClockCacheShard<Table>::GetOccupancyLimit() const {
  return table_.GetOccupancyLimit();
}

template <class Table>
size_t ClockCacheShard<Table>::GetTableAddressCount() const {
  return table_.GetTableSize();
}

// Explicit instantiation
template class ClockCacheShard<HyperClockTable>;

HyperClockCache::HyperClockCache(
    size_t capacity, size_t estimated_value_size, int num_shard_bits,
    bool strict_capacity_limit,
    CacheMetadataChargePolicy metadata_charge_policy,
    std::shared_ptr<MemoryAllocator> memory_allocator)
    : ShardedCache(capacity, num_shard_bits, strict_capacity_limit,
                   std::move(memory_allocator)) {
  assert(estimated_value_size > 0 ||
         metadata_charge_policy != kDontChargeCacheMetadata);
  // TODO: should not need to go through two levels of pointer indirection to
  // get to table entries
  size_t per_shard = GetPerShardCapacity();
  InitShards([=](Shard* cs) {
    HyperClockTable::Opts opts;
    opts.estimated_value_size = estimated_value_size;
    new (cs)
        Shard(per_shard, strict_capacity_limit, metadata_charge_policy, opts);
  });
}

void* HyperClockCache::Value(Handle* handle) {
  return reinterpret_cast<const HandleImpl*>(handle)->value;
}

size_t HyperClockCache::GetCharge(Handle* handle) const {
  return reinterpret_cast<const HandleImpl*>(handle)->GetTotalCharge();
}

Cache::DeleterFn HyperClockCache::GetDeleter(Handle* handle) const {
  auto h = reinterpret_cast<const HandleImpl*>(handle);
  return h->deleter;
}

namespace {

// For each cache shard, estimate what the table load factor would be if
// cache filled to capacity with average entries. This is considered
// indicative of a potential problem if the shard is essentially operating
// "at limit", which we define as high actual usage (>80% of capacity)
// or actual occupancy very close to limit (>95% of limit).
// Also, for each shard compute the recommended estimated_entry_charge,
// and keep the minimum one for use as overall recommendation.
void AddShardEvaluation(const HyperClockCache::Shard& shard,
                        std::vector<double>& predicted_load_factors,
                        size_t& min_recommendation) {
  size_t usage = shard.GetUsage() - shard.GetDetachedUsage();
  size_t capacity = shard.GetCapacity();
  double usage_ratio = 1.0 * usage / capacity;

  size_t occupancy = shard.GetOccupancyCount();
  size_t occ_limit = shard.GetOccupancyLimit();
  double occ_ratio = 1.0 * occupancy / occ_limit;
  if (usage == 0 || occupancy == 0 || (usage_ratio < 0.8 && occ_ratio < 0.95)) {
    // Skip as described above
    return;
  }

  // If filled to capacity, what would the occupancy ratio be?
  double ratio = occ_ratio / usage_ratio;
  // Given max load factor, what that load factor be?
  double lf = ratio * kStrictLoadFactor;
  predicted_load_factors.push_back(lf);

  // Update min_recommendation also
  size_t recommendation = usage / occupancy;
  min_recommendation = std::min(min_recommendation, recommendation);
}

}  // namespace

void HyperClockCache::ReportProblems(
    const std::shared_ptr<Logger>& info_log) const {
  uint32_t shard_count = GetNumShards();
  std::vector<double> predicted_load_factors;
  size_t min_recommendation = SIZE_MAX;
  const_cast<HyperClockCache*>(this)->ForEachShard(
      [&](HyperClockCache::Shard* shard) {
        AddShardEvaluation(*shard, predicted_load_factors, min_recommendation);
      });

  if (predicted_load_factors.empty()) {
    // None operating "at limit" -> nothing to report
    return;
  }
  std::sort(predicted_load_factors.begin(), predicted_load_factors.end());

  // First, if the average load factor is within spec, we aren't going to
  // complain about a few shards being out of spec.
  // NOTE: this is only the average among cache shards operating "at limit,"
  // which should be representative of what we care about. It it normal, even
  // desirable, for a cache to operate "at limit" so this should not create
  // selection bias. See AddShardEvaluation().
  // TODO: Consider detecting cases where decreasing the number of shards
  // would be good, e.g. serious imbalance among shards.
  double average_load_factor =
      std::accumulate(predicted_load_factors.begin(),
                      predicted_load_factors.end(), 0.0) /
      shard_count;

  constexpr double kLowSpecLoadFactor = kLoadFactor / 2;
  constexpr double kMidSpecLoadFactor = kLoadFactor / 1.414;
  if (average_load_factor > kLoadFactor) {
    // Out of spec => Consider reporting load factor too high
    // Estimate effective overall capacity loss due to enforcing occupancy limit
    double lost_portion = 0.0;
    int over_count = 0;
    for (double lf : predicted_load_factors) {
      if (lf > kStrictLoadFactor) {
        ++over_count;
        lost_portion += (lf - kStrictLoadFactor) / lf / shard_count;
      }
    }
    // >= 20% loss -> error
    // >= 10% loss -> consistent warning
    // >= 1% loss -> intermittent warning
    InfoLogLevel level = InfoLogLevel::INFO_LEVEL;
    bool report = true;
    if (lost_portion > 0.2) {
      level = InfoLogLevel::ERROR_LEVEL;
    } else if (lost_portion > 0.1) {
      level = InfoLogLevel::WARN_LEVEL;
    } else if (lost_portion > 0.01) {
      int report_percent = static_cast<int>(lost_portion * 100.0);
      if (Random::GetTLSInstance()->PercentTrue(report_percent)) {
        level = InfoLogLevel::WARN_LEVEL;
      }
    } else {
      // don't report
      report = false;
    }
    if (report) {
      ROCKS_LOG_AT_LEVEL(
          info_log, level,
          "HyperClockCache@%p unable to use estimated %.1f%% capacity because "
          "of "
          "full occupancy in %d/%u cache shards (estimated_entry_charge too "
          "high). Recommend estimated_entry_charge=%zu",
          this, lost_portion * 100.0, over_count, (unsigned)shard_count,
          min_recommendation);
    }
  } else if (average_load_factor < kLowSpecLoadFactor) {
    // Out of spec => Consider reporting load factor too low
    // But cautiously because low is not as big of a problem.

    // Only report if highest occupancy shard is also below
    // spec and only if average is substantially out of spec
    if (predicted_load_factors.back() < kLowSpecLoadFactor &&
        average_load_factor < kLowSpecLoadFactor / 1.414) {
      InfoLogLevel level = InfoLogLevel::INFO_LEVEL;
      if (average_load_factor < kLowSpecLoadFactor / 2) {
        level = InfoLogLevel::WARN_LEVEL;
      }
      ROCKS_LOG_AT_LEVEL(
          info_log, level,
          "HyperClockCache@%p table has low occupancy at full capacity. Higher "
          "estimated_entry_charge (about %.1fx) would likely improve "
          "performance. Recommend estimated_entry_charge=%zu",
          this, kMidSpecLoadFactor / average_load_factor, min_recommendation);
    }
  }
}

}  // namespace clock_cache

// DEPRECATED (see public API)
std::shared_ptr<Cache> NewClockCache(
    size_t capacity, int num_shard_bits, bool strict_capacity_limit,
    CacheMetadataChargePolicy metadata_charge_policy) {
  return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit,
                     /* high_pri_pool_ratio */ 0.5, nullptr,
                     kDefaultToAdaptiveMutex, metadata_charge_policy,
                     /* low_pri_pool_ratio */ 0.0);
}

std::shared_ptr<Cache> HyperClockCacheOptions::MakeSharedCache() const {
  auto my_num_shard_bits = num_shard_bits;
  if (my_num_shard_bits >= 20) {
    return nullptr;  // The cache cannot be sharded into too many fine pieces.
  }
  if (my_num_shard_bits < 0) {
    // Use larger shard size to reduce risk of large entries clustering
    // or skewing individual shards.
    constexpr size_t min_shard_size = 32U * 1024U * 1024U;
    my_num_shard_bits = GetDefaultCacheShardBits(capacity, min_shard_size);
  }
  return std::make_shared<clock_cache::HyperClockCache>(
      capacity, estimated_entry_charge, my_num_shard_bits,
      strict_capacity_limit, metadata_charge_policy, memory_allocator);
}

}  // namespace ROCKSDB_NAMESPACE