summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/cache/lru_cache.cc
blob: c8e4d29bab6ec337668ec5f7334bebfc890267c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "cache/lru_cache.h"

#include <cassert>
#include <cstdint>
#include <cstdio>
#include <cstdlib>

#include "monitoring/perf_context_imp.h"
#include "monitoring/statistics.h"
#include "port/lang.h"
#include "util/distributed_mutex.h"

namespace ROCKSDB_NAMESPACE {
namespace lru_cache {

// A distinct pointer value for marking "dummy" cache entries
void* const kDummyValueMarker = const_cast<char*>("kDummyValueMarker");

LRUHandleTable::LRUHandleTable(int max_upper_hash_bits)
    : length_bits_(/* historical starting size*/ 4),
      list_(new LRUHandle* [size_t{1} << length_bits_] {}),
      elems_(0),
      max_length_bits_(max_upper_hash_bits) {}

LRUHandleTable::~LRUHandleTable() {
  ApplyToEntriesRange(
      [](LRUHandle* h) {
        if (!h->HasRefs()) {
          h->Free();
        }
      },
      0, size_t{1} << length_bits_);
}

LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) {
  return *FindPointer(key, hash);
}

LRUHandle* LRUHandleTable::Insert(LRUHandle* h) {
  LRUHandle** ptr = FindPointer(h->key(), h->hash);
  LRUHandle* old = *ptr;
  h->next_hash = (old == nullptr ? nullptr : old->next_hash);
  *ptr = h;
  if (old == nullptr) {
    ++elems_;
    if ((elems_ >> length_bits_) > 0) {  // elems_ >= length
      // Since each cache entry is fairly large, we aim for a small
      // average linked list length (<= 1).
      Resize();
    }
  }
  return old;
}

LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) {
  LRUHandle** ptr = FindPointer(key, hash);
  LRUHandle* result = *ptr;
  if (result != nullptr) {
    *ptr = result->next_hash;
    --elems_;
  }
  return result;
}

LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) {
  LRUHandle** ptr = &list_[hash >> (32 - length_bits_)];
  while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
    ptr = &(*ptr)->next_hash;
  }
  return ptr;
}

void LRUHandleTable::Resize() {
  if (length_bits_ >= max_length_bits_) {
    // Due to reaching limit of hash information, if we made the table bigger,
    // we would allocate more addresses but only the same number would be used.
    return;
  }
  if (length_bits_ >= 31) {
    // Avoid undefined behavior shifting uint32_t by 32.
    return;
  }

  uint32_t old_length = uint32_t{1} << length_bits_;
  int new_length_bits = length_bits_ + 1;
  std::unique_ptr<LRUHandle* []> new_list {
    new LRUHandle* [size_t{1} << new_length_bits] {}
  };
  uint32_t count = 0;
  for (uint32_t i = 0; i < old_length; i++) {
    LRUHandle* h = list_[i];
    while (h != nullptr) {
      LRUHandle* next = h->next_hash;
      uint32_t hash = h->hash;
      LRUHandle** ptr = &new_list[hash >> (32 - new_length_bits)];
      h->next_hash = *ptr;
      *ptr = h;
      h = next;
      count++;
    }
  }
  assert(elems_ == count);
  list_ = std::move(new_list);
  length_bits_ = new_length_bits;
}

LRUCacheShard::LRUCacheShard(size_t capacity, bool strict_capacity_limit,
                             double high_pri_pool_ratio,
                             double low_pri_pool_ratio, bool use_adaptive_mutex,
                             CacheMetadataChargePolicy metadata_charge_policy,
                             int max_upper_hash_bits,
                             SecondaryCache* secondary_cache)
    : CacheShardBase(metadata_charge_policy),
      capacity_(0),
      high_pri_pool_usage_(0),
      low_pri_pool_usage_(0),
      strict_capacity_limit_(strict_capacity_limit),
      high_pri_pool_ratio_(high_pri_pool_ratio),
      high_pri_pool_capacity_(0),
      low_pri_pool_ratio_(low_pri_pool_ratio),
      low_pri_pool_capacity_(0),
      table_(max_upper_hash_bits),
      usage_(0),
      lru_usage_(0),
      mutex_(use_adaptive_mutex),
      secondary_cache_(secondary_cache) {
  // Make empty circular linked list.
  lru_.next = &lru_;
  lru_.prev = &lru_;
  lru_low_pri_ = &lru_;
  lru_bottom_pri_ = &lru_;
  SetCapacity(capacity);
}

void LRUCacheShard::EraseUnRefEntries() {
  autovector<LRUHandle*> last_reference_list;
  {
    DMutexLock l(mutex_);
    while (lru_.next != &lru_) {
      LRUHandle* old = lru_.next;
      // LRU list contains only elements which can be evicted.
      assert(old->InCache() && !old->HasRefs());
      LRU_Remove(old);
      table_.Remove(old->key(), old->hash);
      old->SetInCache(false);
      assert(usage_ >= old->total_charge);
      usage_ -= old->total_charge;
      last_reference_list.push_back(old);
    }
  }

  for (auto entry : last_reference_list) {
    entry->Free();
  }
}

void LRUCacheShard::ApplyToSomeEntries(
    const std::function<void(const Slice& key, void* value, size_t charge,
                             DeleterFn deleter)>& callback,
    size_t average_entries_per_lock, size_t* state) {
  // The state is essentially going to be the starting hash, which works
  // nicely even if we resize between calls because we use upper-most
  // hash bits for table indexes.
  DMutexLock l(mutex_);
  int length_bits = table_.GetLengthBits();
  size_t length = size_t{1} << length_bits;

  assert(average_entries_per_lock > 0);
  // Assuming we are called with same average_entries_per_lock repeatedly,
  // this simplifies some logic (index_end will not overflow).
  assert(average_entries_per_lock < length || *state == 0);

  size_t index_begin = *state >> (sizeof(size_t) * 8u - length_bits);
  size_t index_end = index_begin + average_entries_per_lock;
  if (index_end >= length) {
    // Going to end
    index_end = length;
    *state = SIZE_MAX;
  } else {
    *state = index_end << (sizeof(size_t) * 8u - length_bits);
  }

  table_.ApplyToEntriesRange(
      [callback,
       metadata_charge_policy = metadata_charge_policy_](LRUHandle* h) {
        DeleterFn deleter = h->IsSecondaryCacheCompatible()
                                ? h->info_.helper->del_cb
                                : h->info_.deleter;
        callback(h->key(), h->value, h->GetCharge(metadata_charge_policy),
                 deleter);
      },
      index_begin, index_end);
}

void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri,
                                    LRUHandle** lru_bottom_pri) {
  DMutexLock l(mutex_);
  *lru = &lru_;
  *lru_low_pri = lru_low_pri_;
  *lru_bottom_pri = lru_bottom_pri_;
}

size_t LRUCacheShard::TEST_GetLRUSize() {
  DMutexLock l(mutex_);
  LRUHandle* lru_handle = lru_.next;
  size_t lru_size = 0;
  while (lru_handle != &lru_) {
    lru_size++;
    lru_handle = lru_handle->next;
  }
  return lru_size;
}

double LRUCacheShard::GetHighPriPoolRatio() {
  DMutexLock l(mutex_);
  return high_pri_pool_ratio_;
}

double LRUCacheShard::GetLowPriPoolRatio() {
  DMutexLock l(mutex_);
  return low_pri_pool_ratio_;
}

void LRUCacheShard::LRU_Remove(LRUHandle* e) {
  assert(e->next != nullptr);
  assert(e->prev != nullptr);
  if (lru_low_pri_ == e) {
    lru_low_pri_ = e->prev;
  }
  if (lru_bottom_pri_ == e) {
    lru_bottom_pri_ = e->prev;
  }
  e->next->prev = e->prev;
  e->prev->next = e->next;
  e->prev = e->next = nullptr;
  assert(lru_usage_ >= e->total_charge);
  lru_usage_ -= e->total_charge;
  assert(!e->InHighPriPool() || !e->InLowPriPool());
  if (e->InHighPriPool()) {
    assert(high_pri_pool_usage_ >= e->total_charge);
    high_pri_pool_usage_ -= e->total_charge;
  } else if (e->InLowPriPool()) {
    assert(low_pri_pool_usage_ >= e->total_charge);
    low_pri_pool_usage_ -= e->total_charge;
  }
}

void LRUCacheShard::LRU_Insert(LRUHandle* e) {
  assert(e->next == nullptr);
  assert(e->prev == nullptr);
  if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) {
    // Inset "e" to head of LRU list.
    e->next = &lru_;
    e->prev = lru_.prev;
    e->prev->next = e;
    e->next->prev = e;
    e->SetInHighPriPool(true);
    e->SetInLowPriPool(false);
    high_pri_pool_usage_ += e->total_charge;
    MaintainPoolSize();
  } else if (low_pri_pool_ratio_ > 0 &&
             (e->IsHighPri() || e->IsLowPri() || e->HasHit())) {
    // Insert "e" to the head of low-pri pool.
    e->next = lru_low_pri_->next;
    e->prev = lru_low_pri_;
    e->prev->next = e;
    e->next->prev = e;
    e->SetInHighPriPool(false);
    e->SetInLowPriPool(true);
    low_pri_pool_usage_ += e->total_charge;
    MaintainPoolSize();
    lru_low_pri_ = e;
  } else {
    // Insert "e" to the head of bottom-pri pool.
    e->next = lru_bottom_pri_->next;
    e->prev = lru_bottom_pri_;
    e->prev->next = e;
    e->next->prev = e;
    e->SetInHighPriPool(false);
    e->SetInLowPriPool(false);
    // if the low-pri pool is empty, lru_low_pri_ also needs to be updated.
    if (lru_bottom_pri_ == lru_low_pri_) {
      lru_low_pri_ = e;
    }
    lru_bottom_pri_ = e;
  }
  lru_usage_ += e->total_charge;
}

void LRUCacheShard::MaintainPoolSize() {
  while (high_pri_pool_usage_ > high_pri_pool_capacity_) {
    // Overflow last entry in high-pri pool to low-pri pool.
    lru_low_pri_ = lru_low_pri_->next;
    assert(lru_low_pri_ != &lru_);
    lru_low_pri_->SetInHighPriPool(false);
    lru_low_pri_->SetInLowPriPool(true);
    assert(high_pri_pool_usage_ >= lru_low_pri_->total_charge);
    high_pri_pool_usage_ -= lru_low_pri_->total_charge;
    low_pri_pool_usage_ += lru_low_pri_->total_charge;
  }

  while (low_pri_pool_usage_ > low_pri_pool_capacity_) {
    // Overflow last entry in low-pri pool to bottom-pri pool.
    lru_bottom_pri_ = lru_bottom_pri_->next;
    assert(lru_bottom_pri_ != &lru_);
    lru_bottom_pri_->SetInHighPriPool(false);
    lru_bottom_pri_->SetInLowPriPool(false);
    assert(low_pri_pool_usage_ >= lru_bottom_pri_->total_charge);
    low_pri_pool_usage_ -= lru_bottom_pri_->total_charge;
  }
}

void LRUCacheShard::EvictFromLRU(size_t charge,
                                 autovector<LRUHandle*>* deleted) {
  while ((usage_ + charge) > capacity_ && lru_.next != &lru_) {
    LRUHandle* old = lru_.next;
    // LRU list contains only elements which can be evicted.
    assert(old->InCache() && !old->HasRefs());
    LRU_Remove(old);
    table_.Remove(old->key(), old->hash);
    old->SetInCache(false);
    assert(usage_ >= old->total_charge);
    usage_ -= old->total_charge;
    deleted->push_back(old);
  }
}

void LRUCacheShard::TryInsertIntoSecondaryCache(
    autovector<LRUHandle*> evicted_handles) {
  for (auto entry : evicted_handles) {
    if (secondary_cache_ && entry->IsSecondaryCacheCompatible() &&
        !entry->IsInSecondaryCache()) {
      secondary_cache_->Insert(entry->key(), entry->value, entry->info_.helper)
          .PermitUncheckedError();
    }
    // Free the entries here outside of mutex for performance reasons.
    entry->Free();
  }
}

void LRUCacheShard::SetCapacity(size_t capacity) {
  autovector<LRUHandle*> last_reference_list;
  {
    DMutexLock l(mutex_);
    capacity_ = capacity;
    high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
    low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_;
    EvictFromLRU(0, &last_reference_list);
  }

  TryInsertIntoSecondaryCache(last_reference_list);
}

void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) {
  DMutexLock l(mutex_);
  strict_capacity_limit_ = strict_capacity_limit;
}

Status LRUCacheShard::InsertItem(LRUHandle* e, LRUHandle** handle,
                                 bool free_handle_on_fail) {
  Status s = Status::OK();
  autovector<LRUHandle*> last_reference_list;

  {
    DMutexLock l(mutex_);

    // Free the space following strict LRU policy until enough space
    // is freed or the lru list is empty.
    EvictFromLRU(e->total_charge, &last_reference_list);

    if ((usage_ + e->total_charge) > capacity_ &&
        (strict_capacity_limit_ || handle == nullptr)) {
      e->SetInCache(false);
      if (handle == nullptr) {
        // Don't insert the entry but still return ok, as if the entry inserted
        // into cache and get evicted immediately.
        last_reference_list.push_back(e);
      } else {
        if (free_handle_on_fail) {
          free(e);
          *handle = nullptr;
        }
        s = Status::MemoryLimit("Insert failed due to LRU cache being full.");
      }
    } else {
      // Insert into the cache. Note that the cache might get larger than its
      // capacity if not enough space was freed up.
      LRUHandle* old = table_.Insert(e);
      usage_ += e->total_charge;
      if (old != nullptr) {
        s = Status::OkOverwritten();
        assert(old->InCache());
        old->SetInCache(false);
        if (!old->HasRefs()) {
          // old is on LRU because it's in cache and its reference count is 0.
          LRU_Remove(old);
          assert(usage_ >= old->total_charge);
          usage_ -= old->total_charge;
          last_reference_list.push_back(old);
        }
      }
      if (handle == nullptr) {
        LRU_Insert(e);
      } else {
        // If caller already holds a ref, no need to take one here.
        if (!e->HasRefs()) {
          e->Ref();
        }
        *handle = e;
      }
    }
  }

  TryInsertIntoSecondaryCache(last_reference_list);

  return s;
}

void LRUCacheShard::Promote(LRUHandle* e) {
  SecondaryCacheResultHandle* secondary_handle = e->sec_handle;

  assert(secondary_handle->IsReady());
  // e is not thread-shared here; OK to modify "immutable" fields as well as
  // "mutable" (normally requiring mutex)
  e->SetIsPending(false);
  e->value = secondary_handle->Value();
  assert(e->total_charge == 0);
  size_t value_size = secondary_handle->Size();
  delete secondary_handle;

  if (e->value) {
    e->CalcTotalCharge(value_size, metadata_charge_policy_);
    Status s;
    if (e->IsStandalone()) {
      assert(secondary_cache_ && secondary_cache_->SupportForceErase());

      // Insert a dummy handle and return a standalone handle to caller.
      // Charge the standalone handle.
      autovector<LRUHandle*> last_reference_list;
      bool free_standalone_handle{false};
      {
        DMutexLock l(mutex_);

        // Free the space following strict LRU policy until enough space
        // is freed or the lru list is empty.
        EvictFromLRU(e->total_charge, &last_reference_list);

        if ((usage_ + e->total_charge) > capacity_ && strict_capacity_limit_) {
          free_standalone_handle = true;
        } else {
          usage_ += e->total_charge;
        }
      }

      TryInsertIntoSecondaryCache(last_reference_list);
      if (free_standalone_handle) {
        e->Unref();
        e->Free();
        e = nullptr;
      } else {
        PERF_COUNTER_ADD(block_cache_standalone_handle_count, 1);
      }

      // Insert a dummy handle into the primary cache. This dummy handle is
      // not IsSecondaryCacheCompatible().
      // FIXME? This should not overwrite an existing non-dummy entry in the
      // rare case that one exists
      Cache::Priority priority =
          e->IsHighPri() ? Cache::Priority::HIGH : Cache::Priority::LOW;
      s = Insert(e->key(), e->hash, kDummyValueMarker, /*charge=*/0,
                 /*deleter=*/nullptr, /*helper=*/nullptr, /*handle=*/nullptr,
                 priority);
    } else {
      e->SetInCache(true);
      LRUHandle* handle = e;
      // This InsertItem() could fail if the cache is over capacity and
      // strict_capacity_limit_ is true. In such a case, we don't want
      // InsertItem() to free the handle, since the item is already in memory
      // and the caller will most likely just read it from disk if we erase it
      // here.
      s = InsertItem(e, &handle, /*free_handle_on_fail=*/false);
      if (s.ok()) {
        PERF_COUNTER_ADD(block_cache_real_handle_count, 1);
      }
    }

    if (!s.ok()) {
      // Item is in memory, but not accounted against the cache capacity.
      // When the handle is released, the item should get deleted.
      assert(!e->InCache());
    }
  } else {
    // Secondary cache lookup failed. The caller will take care of detecting
    // this and eventually releasing e.
    assert(!e->value);
    assert(!e->InCache());
  }
}

LRUHandle* LRUCacheShard::Lookup(const Slice& key, uint32_t hash,
                                 const Cache::CacheItemHelper* helper,
                                 const Cache::CreateCallback& create_cb,
                                 Cache::Priority priority, bool wait,
                                 Statistics* stats) {
  LRUHandle* e = nullptr;
  bool found_dummy_entry{false};
  {
    DMutexLock l(mutex_);
    e = table_.Lookup(key, hash);
    if (e != nullptr) {
      assert(e->InCache());
      if (e->value == kDummyValueMarker) {
        // For a dummy handle, if it was retrieved from secondary cache,
        // it may still exist in secondary cache.
        // If the handle exists in secondary cache, the value should be
        // erased from sec cache and be inserted into primary cache.
        found_dummy_entry = true;
        // Let the dummy entry be overwritten
        e = nullptr;
      } else {
        if (!e->HasRefs()) {
          // The entry is in LRU since it's in hash and has no external
          // references.
          LRU_Remove(e);
        }
        e->Ref();
        e->SetHit();
      }
    }
  }

  // If handle table lookup failed or the handle is a dummy one, allocate
  // a handle outside the mutex if we re going to lookup in the secondary cache.
  //
  // When a block is firstly Lookup from CompressedSecondaryCache, we just
  // insert a dummy block into the primary cache (charging the actual size of
  // the block) and don't erase the block from CompressedSecondaryCache. A
  // standalone handle is returned to the caller. Only if the block is hit
  // again, we erase it from CompressedSecondaryCache and add it into the
  // primary cache.
  if (!e && secondary_cache_ && helper && helper->saveto_cb) {
    // For objects from the secondary cache, we expect the caller to provide
    // a way to create/delete the primary cache object. The only case where
    // a deleter would not be required is for dummy entries inserted for
    // accounting purposes, which we won't demote to the secondary cache
    // anyway.
    assert(create_cb && helper->del_cb);
    bool is_in_sec_cache{false};
    std::unique_ptr<SecondaryCacheResultHandle> secondary_handle =
        secondary_cache_->Lookup(key, create_cb, wait, found_dummy_entry,
                                 is_in_sec_cache);
    if (secondary_handle != nullptr) {
      e = static_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size()));

      e->m_flags = 0;
      e->im_flags = 0;
      e->SetSecondaryCacheCompatible(true);
      e->info_.helper = helper;
      e->key_length = key.size();
      e->hash = hash;
      e->refs = 0;
      e->next = e->prev = nullptr;
      e->SetPriority(priority);
      memcpy(e->key_data, key.data(), key.size());
      e->value = nullptr;
      e->sec_handle = secondary_handle.release();
      e->total_charge = 0;
      e->Ref();
      e->SetIsInSecondaryCache(is_in_sec_cache);
      e->SetIsStandalone(secondary_cache_->SupportForceErase() &&
                         !found_dummy_entry);

      if (wait) {
        Promote(e);
        if (e) {
          if (!e->value) {
            // The secondary cache returned a handle, but the lookup failed.
            e->Unref();
            e->Free();
            e = nullptr;
          } else {
            PERF_COUNTER_ADD(secondary_cache_hit_count, 1);
            RecordTick(stats, SECONDARY_CACHE_HITS);
          }
        }
      } else {
        // If wait is false, we always return a handle and let the caller
        // release the handle after checking for success or failure.
        e->SetIsPending(true);
        // This may be slightly inaccurate, if the lookup eventually fails.
        // But the probability is very low.
        PERF_COUNTER_ADD(secondary_cache_hit_count, 1);
        RecordTick(stats, SECONDARY_CACHE_HITS);
      }
    } else {
      // Caller will most likely overwrite the dummy entry with an Insert
      // after this Lookup fails
      assert(e == nullptr);
    }
  }
  return e;
}

bool LRUCacheShard::Ref(LRUHandle* e) {
  DMutexLock l(mutex_);
  // To create another reference - entry must be already externally referenced.
  assert(e->HasRefs());
  // Pending handles are not for sharing
  assert(!e->IsPending());
  e->Ref();
  return true;
}

void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) {
  DMutexLock l(mutex_);
  high_pri_pool_ratio_ = high_pri_pool_ratio;
  high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
  MaintainPoolSize();
}

void LRUCacheShard::SetLowPriorityPoolRatio(double low_pri_pool_ratio) {
  DMutexLock l(mutex_);
  low_pri_pool_ratio_ = low_pri_pool_ratio;
  low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_;
  MaintainPoolSize();
}

bool LRUCacheShard::Release(LRUHandle* e, bool /*useful*/,
                            bool erase_if_last_ref) {
  if (e == nullptr) {
    return false;
  }
  bool last_reference = false;
  // Must Wait or WaitAll first on pending handles. Otherwise, would leak
  // a secondary cache handle.
  assert(!e->IsPending());
  {
    DMutexLock l(mutex_);
    last_reference = e->Unref();
    if (last_reference && e->InCache()) {
      // The item is still in cache, and nobody else holds a reference to it.
      if (usage_ > capacity_ || erase_if_last_ref) {
        // The LRU list must be empty since the cache is full.
        assert(lru_.next == &lru_ || erase_if_last_ref);
        // Take this opportunity and remove the item.
        table_.Remove(e->key(), e->hash);
        e->SetInCache(false);
      } else {
        // Put the item back on the LRU list, and don't free it.
        LRU_Insert(e);
        last_reference = false;
      }
    }
    // If it was the last reference, then decrement the cache usage.
    if (last_reference) {
      assert(usage_ >= e->total_charge);
      usage_ -= e->total_charge;
    }
  }

  // Free the entry here outside of mutex for performance reasons.
  if (last_reference) {
    e->Free();
  }
  return last_reference;
}

Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value,
                             size_t charge,
                             void (*deleter)(const Slice& key, void* value),
                             const Cache::CacheItemHelper* helper,
                             LRUHandle** handle, Cache::Priority priority) {
  // Allocate the memory here outside of the mutex.
  // If the cache is full, we'll have to release it.
  // It shouldn't happen very often though.
  LRUHandle* e =
      static_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size()));

  e->value = value;
  e->m_flags = 0;
  e->im_flags = 0;
  if (helper) {
    // Use only one of the two parameters
    assert(deleter == nullptr);
    // value == nullptr is reserved for indicating failure for when secondary
    // cache compatible
    assert(value != nullptr);
    e->SetSecondaryCacheCompatible(true);
    e->info_.helper = helper;
  } else {
    e->info_.deleter = deleter;
  }
  e->key_length = key.size();
  e->hash = hash;
  e->refs = 0;
  e->next = e->prev = nullptr;
  e->SetInCache(true);
  e->SetPriority(priority);
  memcpy(e->key_data, key.data(), key.size());
  e->CalcTotalCharge(charge, metadata_charge_policy_);

  return InsertItem(e, handle, /* free_handle_on_fail */ true);
}

void LRUCacheShard::Erase(const Slice& key, uint32_t hash) {
  LRUHandle* e;
  bool last_reference = false;
  {
    DMutexLock l(mutex_);
    e = table_.Remove(key, hash);
    if (e != nullptr) {
      assert(e->InCache());
      e->SetInCache(false);
      if (!e->HasRefs()) {
        // The entry is in LRU since it's in hash and has no external references
        LRU_Remove(e);
        assert(usage_ >= e->total_charge);
        usage_ -= e->total_charge;
        last_reference = true;
      }
    }
  }

  // Free the entry here outside of mutex for performance reasons.
  // last_reference will only be true if e != nullptr.
  if (last_reference) {
    e->Free();
  }
}

bool LRUCacheShard::IsReady(LRUHandle* e) {
  bool ready = true;
  if (e->IsPending()) {
    assert(secondary_cache_);
    assert(e->sec_handle);
    ready = e->sec_handle->IsReady();
  }
  return ready;
}

size_t LRUCacheShard::GetUsage() const {
  DMutexLock l(mutex_);
  return usage_;
}

size_t LRUCacheShard::GetPinnedUsage() const {
  DMutexLock l(mutex_);
  assert(usage_ >= lru_usage_);
  return usage_ - lru_usage_;
}

size_t LRUCacheShard::GetOccupancyCount() const {
  DMutexLock l(mutex_);
  return table_.GetOccupancyCount();
}

size_t LRUCacheShard::GetTableAddressCount() const {
  DMutexLock l(mutex_);
  return size_t{1} << table_.GetLengthBits();
}

void LRUCacheShard::AppendPrintableOptions(std::string& str) const {
  const int kBufferSize = 200;
  char buffer[kBufferSize];
  {
    DMutexLock l(mutex_);
    snprintf(buffer, kBufferSize, "    high_pri_pool_ratio: %.3lf\n",
             high_pri_pool_ratio_);
    snprintf(buffer + strlen(buffer), kBufferSize - strlen(buffer),
             "    low_pri_pool_ratio: %.3lf\n", low_pri_pool_ratio_);
  }
  str.append(buffer);
}

LRUCache::LRUCache(size_t capacity, int num_shard_bits,
                   bool strict_capacity_limit, double high_pri_pool_ratio,
                   double low_pri_pool_ratio,
                   std::shared_ptr<MemoryAllocator> allocator,
                   bool use_adaptive_mutex,
                   CacheMetadataChargePolicy metadata_charge_policy,
                   std::shared_ptr<SecondaryCache> _secondary_cache)
    : ShardedCache(capacity, num_shard_bits, strict_capacity_limit,
                   std::move(allocator)),
      secondary_cache_(std::move(_secondary_cache)) {
  size_t per_shard = GetPerShardCapacity();
  SecondaryCache* secondary_cache = secondary_cache_.get();
  InitShards([=](LRUCacheShard* cs) {
    new (cs) LRUCacheShard(
        per_shard, strict_capacity_limit, high_pri_pool_ratio,
        low_pri_pool_ratio, use_adaptive_mutex, metadata_charge_policy,
        /* max_upper_hash_bits */ 32 - num_shard_bits, secondary_cache);
  });
}

void* LRUCache::Value(Handle* handle) {
  auto h = reinterpret_cast<const LRUHandle*>(handle);
  assert(!h->IsPending() || h->value == nullptr);
  assert(h->value != kDummyValueMarker);
  return h->value;
}

size_t LRUCache::GetCharge(Handle* handle) const {
  return reinterpret_cast<const LRUHandle*>(handle)->GetCharge(
      GetShard(0).metadata_charge_policy_);
}

Cache::DeleterFn LRUCache::GetDeleter(Handle* handle) const {
  auto h = reinterpret_cast<const LRUHandle*>(handle);
  if (h->IsSecondaryCacheCompatible()) {
    return h->info_.helper->del_cb;
  } else {
    return h->info_.deleter;
  }
}

size_t LRUCache::TEST_GetLRUSize() {
  return SumOverShards([](LRUCacheShard& cs) { return cs.TEST_GetLRUSize(); });
}

double LRUCache::GetHighPriPoolRatio() {
  return GetShard(0).GetHighPriPoolRatio();
}

void LRUCache::WaitAll(std::vector<Handle*>& handles) {
  if (secondary_cache_) {
    std::vector<SecondaryCacheResultHandle*> sec_handles;
    sec_handles.reserve(handles.size());
    for (Handle* handle : handles) {
      if (!handle) {
        continue;
      }
      LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
      if (!lru_handle->IsPending()) {
        continue;
      }
      sec_handles.emplace_back(lru_handle->sec_handle);
    }
    secondary_cache_->WaitAll(sec_handles);
    for (Handle* handle : handles) {
      if (!handle) {
        continue;
      }
      LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
      if (!lru_handle->IsPending()) {
        continue;
      }
      GetShard(lru_handle->hash).Promote(lru_handle);
    }
  }
}

void LRUCache::AppendPrintableOptions(std::string& str) const {
  ShardedCache::AppendPrintableOptions(str);  // options from shard
  if (secondary_cache_) {
    str.append("  secondary_cache:\n");
    str.append(secondary_cache_->GetPrintableOptions());
  }
}

}  // namespace lru_cache

std::shared_ptr<Cache> NewLRUCache(
    size_t capacity, int num_shard_bits, bool strict_capacity_limit,
    double high_pri_pool_ratio,
    std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
    CacheMetadataChargePolicy metadata_charge_policy,
    const std::shared_ptr<SecondaryCache>& secondary_cache,
    double low_pri_pool_ratio) {
  if (num_shard_bits >= 20) {
    return nullptr;  // The cache cannot be sharded into too many fine pieces.
  }
  if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) {
    // Invalid high_pri_pool_ratio
    return nullptr;
  }
  if (low_pri_pool_ratio < 0.0 || low_pri_pool_ratio > 1.0) {
    // Invalid low_pri_pool_ratio
    return nullptr;
  }
  if (low_pri_pool_ratio + high_pri_pool_ratio > 1.0) {
    // Invalid high_pri_pool_ratio and low_pri_pool_ratio combination
    return nullptr;
  }
  if (num_shard_bits < 0) {
    num_shard_bits = GetDefaultCacheShardBits(capacity);
  }
  return std::make_shared<LRUCache>(
      capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio,
      low_pri_pool_ratio, std::move(memory_allocator), use_adaptive_mutex,
      metadata_charge_policy, secondary_cache);
}

std::shared_ptr<Cache> NewLRUCache(const LRUCacheOptions& cache_opts) {
  return NewLRUCache(cache_opts.capacity, cache_opts.num_shard_bits,
                     cache_opts.strict_capacity_limit,
                     cache_opts.high_pri_pool_ratio,
                     cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
                     cache_opts.metadata_charge_policy,
                     cache_opts.secondary_cache, cache_opts.low_pri_pool_ratio);
}

std::shared_ptr<Cache> NewLRUCache(
    size_t capacity, int num_shard_bits, bool strict_capacity_limit,
    double high_pri_pool_ratio,
    std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
    CacheMetadataChargePolicy metadata_charge_policy,
    double low_pri_pool_ratio) {
  return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit,
                     high_pri_pool_ratio, memory_allocator, use_adaptive_mutex,
                     metadata_charge_policy, nullptr, low_pri_pool_ratio);
}
}  // namespace ROCKSDB_NAMESPACE