summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/compaction/compaction_iterator.cc
blob: 9f54f781384a7d5f8ace4ec110057aca6f8b3602 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#include "db/compaction/compaction_iterator.h"

#include <iterator>
#include <limits>

#include "db/blob/blob_fetcher.h"
#include "db/blob/blob_file_builder.h"
#include "db/blob/blob_index.h"
#include "db/blob/prefetch_buffer_collection.h"
#include "db/snapshot_checker.h"
#include "logging/logging.h"
#include "port/likely.h"
#include "rocksdb/listener.h"
#include "table/internal_iterator.h"
#include "test_util/sync_point.h"

namespace ROCKSDB_NAMESPACE {
CompactionIterator::CompactionIterator(
    InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
    SequenceNumber last_sequence, std::vector<SequenceNumber>* snapshots,
    SequenceNumber earliest_write_conflict_snapshot,
    SequenceNumber job_snapshot, const SnapshotChecker* snapshot_checker,
    Env* env, bool report_detailed_time, bool expect_valid_internal_key,
    CompactionRangeDelAggregator* range_del_agg,
    BlobFileBuilder* blob_file_builder, bool allow_data_in_errors,
    bool enforce_single_del_contracts,
    const std::atomic<bool>& manual_compaction_canceled,
    const Compaction* compaction, const CompactionFilter* compaction_filter,
    const std::atomic<bool>* shutting_down,
    const std::shared_ptr<Logger> info_log,
    const std::string* full_history_ts_low,
    const SequenceNumber preserve_time_min_seqno,
    const SequenceNumber preclude_last_level_min_seqno)
    : CompactionIterator(
          input, cmp, merge_helper, last_sequence, snapshots,
          earliest_write_conflict_snapshot, job_snapshot, snapshot_checker, env,
          report_detailed_time, expect_valid_internal_key, range_del_agg,
          blob_file_builder, allow_data_in_errors, enforce_single_del_contracts,
          manual_compaction_canceled,
          std::unique_ptr<CompactionProxy>(
              compaction ? new RealCompaction(compaction) : nullptr),
          compaction_filter, shutting_down, info_log, full_history_ts_low,
          preserve_time_min_seqno, preclude_last_level_min_seqno) {}

CompactionIterator::CompactionIterator(
    InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
    SequenceNumber /*last_sequence*/, std::vector<SequenceNumber>* snapshots,
    SequenceNumber earliest_write_conflict_snapshot,
    SequenceNumber job_snapshot, const SnapshotChecker* snapshot_checker,
    Env* env, bool report_detailed_time, bool expect_valid_internal_key,
    CompactionRangeDelAggregator* range_del_agg,
    BlobFileBuilder* blob_file_builder, bool allow_data_in_errors,
    bool enforce_single_del_contracts,
    const std::atomic<bool>& manual_compaction_canceled,
    std::unique_ptr<CompactionProxy> compaction,
    const CompactionFilter* compaction_filter,
    const std::atomic<bool>* shutting_down,
    const std::shared_ptr<Logger> info_log,
    const std::string* full_history_ts_low,
    const SequenceNumber preserve_time_min_seqno,
    const SequenceNumber preclude_last_level_min_seqno)
    : input_(input, cmp,
             !compaction || compaction->DoesInputReferenceBlobFiles()),
      cmp_(cmp),
      merge_helper_(merge_helper),
      snapshots_(snapshots),
      earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
      job_snapshot_(job_snapshot),
      snapshot_checker_(snapshot_checker),
      env_(env),
      clock_(env_->GetSystemClock().get()),
      report_detailed_time_(report_detailed_time),
      expect_valid_internal_key_(expect_valid_internal_key),
      range_del_agg_(range_del_agg),
      blob_file_builder_(blob_file_builder),
      compaction_(std::move(compaction)),
      compaction_filter_(compaction_filter),
      shutting_down_(shutting_down),
      manual_compaction_canceled_(manual_compaction_canceled),
      bottommost_level_(!compaction_ ? false
                                     : compaction_->bottommost_level() &&
                                           !compaction_->allow_ingest_behind()),
      // snapshots_ cannot be nullptr, but we will assert later in the body of
      // the constructor.
      visible_at_tip_(snapshots_ ? snapshots_->empty() : false),
      earliest_snapshot_(!snapshots_ || snapshots_->empty()
                             ? kMaxSequenceNumber
                             : snapshots_->at(0)),
      info_log_(info_log),
      allow_data_in_errors_(allow_data_in_errors),
      enforce_single_del_contracts_(enforce_single_del_contracts),
      timestamp_size_(cmp_ ? cmp_->timestamp_size() : 0),
      full_history_ts_low_(full_history_ts_low),
      current_user_key_sequence_(0),
      current_user_key_snapshot_(0),
      merge_out_iter_(merge_helper_),
      blob_garbage_collection_cutoff_file_number_(
          ComputeBlobGarbageCollectionCutoffFileNumber(compaction_.get())),
      blob_fetcher_(CreateBlobFetcherIfNeeded(compaction_.get())),
      prefetch_buffers_(
          CreatePrefetchBufferCollectionIfNeeded(compaction_.get())),
      current_key_committed_(false),
      cmp_with_history_ts_low_(0),
      level_(compaction_ == nullptr ? 0 : compaction_->level()),
      preserve_time_min_seqno_(preserve_time_min_seqno),
      preclude_last_level_min_seqno_(preclude_last_level_min_seqno) {
  assert(snapshots_ != nullptr);
  assert(preserve_time_min_seqno_ <= preclude_last_level_min_seqno_);

  if (compaction_ != nullptr) {
    level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0);
  }
#ifndef NDEBUG
  // findEarliestVisibleSnapshot assumes this ordering.
  for (size_t i = 1; i < snapshots_->size(); ++i) {
    assert(snapshots_->at(i - 1) < snapshots_->at(i));
  }
  assert(timestamp_size_ == 0 || !full_history_ts_low_ ||
         timestamp_size_ == full_history_ts_low_->size());
#endif
  input_.SetPinnedItersMgr(&pinned_iters_mgr_);
  TEST_SYNC_POINT_CALLBACK("CompactionIterator:AfterInit", compaction_.get());
}

CompactionIterator::~CompactionIterator() {
  // input_ Iterator lifetime is longer than pinned_iters_mgr_ lifetime
  input_.SetPinnedItersMgr(nullptr);
}

void CompactionIterator::ResetRecordCounts() {
  iter_stats_.num_record_drop_user = 0;
  iter_stats_.num_record_drop_hidden = 0;
  iter_stats_.num_record_drop_obsolete = 0;
  iter_stats_.num_record_drop_range_del = 0;
  iter_stats_.num_range_del_drop_obsolete = 0;
  iter_stats_.num_optimized_del_drop_obsolete = 0;
}

void CompactionIterator::SeekToFirst() {
  NextFromInput();
  PrepareOutput();
}

void CompactionIterator::Next() {
  // If there is a merge output, return it before continuing to process the
  // input.
  if (merge_out_iter_.Valid()) {
    merge_out_iter_.Next();

    // Check if we returned all records of the merge output.
    if (merge_out_iter_.Valid()) {
      key_ = merge_out_iter_.key();
      value_ = merge_out_iter_.value();
      Status s = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
      // MergeUntil stops when it encounters a corrupt key and does not
      // include them in the result, so we expect the keys here to be valid.
      if (!s.ok()) {
        ROCKS_LOG_FATAL(
            info_log_, "Invalid ikey %s in compaction. %s",
            allow_data_in_errors_ ? key_.ToString(true).c_str() : "hidden",
            s.getState());
        assert(false);
      }

      // Keep current_key_ in sync.
      if (0 == timestamp_size_) {
        current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
      } else {
        Slice ts = ikey_.GetTimestamp(timestamp_size_);
        current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type, &ts);
      }
      key_ = current_key_.GetInternalKey();
      ikey_.user_key = current_key_.GetUserKey();
      validity_info_.SetValid(ValidContext::kMerge1);
    } else {
      // We consumed all pinned merge operands, release pinned iterators
      pinned_iters_mgr_.ReleasePinnedData();
      // MergeHelper moves the iterator to the first record after the merged
      // records, so even though we reached the end of the merge output, we do
      // not want to advance the iterator.
      NextFromInput();
    }
  } else {
    // Only advance the input iterator if there is no merge output and the
    // iterator is not already at the next record.
    if (!at_next_) {
      AdvanceInputIter();
    }
    NextFromInput();
  }

  if (Valid()) {
    // Record that we've outputted a record for the current key.
    has_outputted_key_ = true;
  }

  PrepareOutput();
}

bool CompactionIterator::InvokeFilterIfNeeded(bool* need_skip,
                                              Slice* skip_until) {
  // TODO: support compaction filter for wide-column entities
  if (!compaction_filter_ ||
      (ikey_.type != kTypeValue && ikey_.type != kTypeBlobIndex)) {
    return true;
  }
  bool error = false;
  // If the user has specified a compaction filter and the sequence
  // number is greater than any external snapshot, then invoke the
  // filter. If the return value of the compaction filter is true,
  // replace the entry with a deletion marker.
  CompactionFilter::Decision filter = CompactionFilter::Decision::kUndetermined;
  compaction_filter_value_.clear();
  compaction_filter_skip_until_.Clear();
  CompactionFilter::ValueType value_type =
      ikey_.type == kTypeValue ? CompactionFilter::ValueType::kValue
                               : CompactionFilter::ValueType::kBlobIndex;
  // Hack: pass internal key to BlobIndexCompactionFilter since it needs
  // to get sequence number.
  assert(compaction_filter_);
  Slice& filter_key =
      (ikey_.type == kTypeValue ||
       !compaction_filter_->IsStackedBlobDbInternalCompactionFilter())
          ? ikey_.user_key
          : key_;
  {
    StopWatchNano timer(clock_, report_detailed_time_);
    if (kTypeBlobIndex == ikey_.type) {
      filter = compaction_filter_->FilterBlobByKey(
          level_, filter_key, &compaction_filter_value_,
          compaction_filter_skip_until_.rep());
      if (CompactionFilter::Decision::kUndetermined == filter &&
          !compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
        if (compaction_ == nullptr) {
          status_ =
              Status::Corruption("Unexpected blob index outside of compaction");
          validity_info_.Invalidate();
          return false;
        }

        TEST_SYNC_POINT_CALLBACK(
            "CompactionIterator::InvokeFilterIfNeeded::TamperWithBlobIndex",
            &value_);

        // For integrated BlobDB impl, CompactionIterator reads blob value.
        // For Stacked BlobDB impl, the corresponding CompactionFilter's
        // FilterV2 method should read the blob value.
        BlobIndex blob_index;
        Status s = blob_index.DecodeFrom(value_);
        if (!s.ok()) {
          status_ = s;
          validity_info_.Invalidate();
          return false;
        }

        FilePrefetchBuffer* prefetch_buffer =
            prefetch_buffers_ ? prefetch_buffers_->GetOrCreatePrefetchBuffer(
                                    blob_index.file_number())
                              : nullptr;

        uint64_t bytes_read = 0;

        assert(blob_fetcher_);

        s = blob_fetcher_->FetchBlob(ikey_.user_key, blob_index,
                                     prefetch_buffer, &blob_value_,
                                     &bytes_read);
        if (!s.ok()) {
          status_ = s;
          validity_info_.Invalidate();
          return false;
        }

        ++iter_stats_.num_blobs_read;
        iter_stats_.total_blob_bytes_read += bytes_read;

        value_type = CompactionFilter::ValueType::kValue;
      }
    }
    if (CompactionFilter::Decision::kUndetermined == filter) {
      filter = compaction_filter_->FilterV2(
          level_, filter_key, value_type,
          blob_value_.empty() ? value_ : blob_value_, &compaction_filter_value_,
          compaction_filter_skip_until_.rep());
    }
    iter_stats_.total_filter_time +=
        env_ != nullptr && report_detailed_time_ ? timer.ElapsedNanos() : 0;
  }

  if (CompactionFilter::Decision::kUndetermined == filter) {
    // Should not reach here, since FilterV2 should never return kUndetermined.
    status_ =
        Status::NotSupported("FilterV2() should never return kUndetermined");
    validity_info_.Invalidate();
    return false;
  }

  if (filter == CompactionFilter::Decision::kRemoveAndSkipUntil &&
      cmp_->Compare(*compaction_filter_skip_until_.rep(), ikey_.user_key) <=
          0) {
    // Can't skip to a key smaller than the current one.
    // Keep the key as per FilterV2 documentation.
    filter = CompactionFilter::Decision::kKeep;
  }

  if (filter == CompactionFilter::Decision::kRemove) {
    // convert the current key to a delete; key_ is pointing into
    // current_key_ at this point, so updating current_key_ updates key()
    ikey_.type = kTypeDeletion;
    current_key_.UpdateInternalKey(ikey_.sequence, kTypeDeletion);
    // no value associated with delete
    value_.clear();
    iter_stats_.num_record_drop_user++;
  } else if (filter == CompactionFilter::Decision::kPurge) {
    // convert the current key to a single delete; key_ is pointing into
    // current_key_ at this point, so updating current_key_ updates key()
    ikey_.type = kTypeSingleDeletion;
    current_key_.UpdateInternalKey(ikey_.sequence, kTypeSingleDeletion);
    // no value associated with single delete
    value_.clear();
    iter_stats_.num_record_drop_user++;
  } else if (filter == CompactionFilter::Decision::kChangeValue) {
    if (ikey_.type == kTypeBlobIndex) {
      // value transfer from blob file to inlined data
      ikey_.type = kTypeValue;
      current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
    }
    value_ = compaction_filter_value_;
  } else if (filter == CompactionFilter::Decision::kRemoveAndSkipUntil) {
    *need_skip = true;
    compaction_filter_skip_until_.ConvertFromUserKey(kMaxSequenceNumber,
                                                     kValueTypeForSeek);
    *skip_until = compaction_filter_skip_until_.Encode();
  } else if (filter == CompactionFilter::Decision::kChangeBlobIndex) {
    // Only the StackableDB-based BlobDB impl's compaction filter should return
    // kChangeBlobIndex. Decision about rewriting blob and changing blob index
    // in the integrated BlobDB impl is made in subsequent call to
    // PrepareOutput() and its callees.
    if (!compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
      status_ = Status::NotSupported(
          "Only stacked BlobDB's internal compaction filter can return "
          "kChangeBlobIndex.");
      validity_info_.Invalidate();
      return false;
    }
    if (ikey_.type == kTypeValue) {
      // value transfer from inlined data to blob file
      ikey_.type = kTypeBlobIndex;
      current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
    }
    value_ = compaction_filter_value_;
  } else if (filter == CompactionFilter::Decision::kIOError) {
    if (!compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
      status_ = Status::NotSupported(
          "CompactionFilter for integrated BlobDB should not return kIOError");
      validity_info_.Invalidate();
      return false;
    }
    status_ = Status::IOError("Failed to access blob during compaction filter");
    error = true;
  }
  return !error;
}

void CompactionIterator::NextFromInput() {
  at_next_ = false;
  validity_info_.Invalidate();

  while (!Valid() && input_.Valid() && !IsPausingManualCompaction() &&
         !IsShuttingDown()) {
    key_ = input_.key();
    value_ = input_.value();
    blob_value_.Reset();
    iter_stats_.num_input_records++;

    Status pik_status = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
    if (!pik_status.ok()) {
      iter_stats_.num_input_corrupt_records++;

      // If `expect_valid_internal_key_` is false, return the corrupted key
      // and let the caller decide what to do with it.
      if (expect_valid_internal_key_) {
        status_ = pik_status;
        return;
      }
      key_ = current_key_.SetInternalKey(key_);
      has_current_user_key_ = false;
      current_user_key_sequence_ = kMaxSequenceNumber;
      current_user_key_snapshot_ = 0;
      validity_info_.SetValid(ValidContext::kParseKeyError);
      break;
    }
    TEST_SYNC_POINT_CALLBACK("CompactionIterator:ProcessKV", &ikey_);

    // Update input statistics
    if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion ||
        ikey_.type == kTypeDeletionWithTimestamp) {
      iter_stats_.num_input_deletion_records++;
    }
    iter_stats_.total_input_raw_key_bytes += key_.size();
    iter_stats_.total_input_raw_value_bytes += value_.size();

    // If need_skip is true, we should seek the input iterator
    // to internal key skip_until and continue from there.
    bool need_skip = false;
    // Points either into compaction_filter_skip_until_ or into
    // merge_helper_->compaction_filter_skip_until_.
    Slice skip_until;

    bool user_key_equal_without_ts = false;
    int cmp_ts = 0;
    if (has_current_user_key_) {
      user_key_equal_without_ts =
          cmp_->EqualWithoutTimestamp(ikey_.user_key, current_user_key_);
      // if timestamp_size_ > 0, then curr_ts_ has been initialized by a
      // previous key.
      cmp_ts = timestamp_size_ ? cmp_->CompareTimestamp(
                                     ExtractTimestampFromUserKey(
                                         ikey_.user_key, timestamp_size_),
                                     curr_ts_)
                               : 0;
    }

    // Check whether the user key changed. After this if statement current_key_
    // is a copy of the current input key (maybe converted to a delete by the
    // compaction filter). ikey_.user_key is pointing to the copy.
    if (!has_current_user_key_ || !user_key_equal_without_ts || cmp_ts != 0) {
      // First occurrence of this user key
      // Copy key for output
      key_ = current_key_.SetInternalKey(key_, &ikey_);

      int prev_cmp_with_ts_low =
          !full_history_ts_low_ ? 0
          : curr_ts_.empty()
              ? 0
              : cmp_->CompareTimestamp(curr_ts_, *full_history_ts_low_);

      // If timestamp_size_ > 0, then copy from ikey_ to curr_ts_ for the use
      // in next iteration to compare with the timestamp of next key.
      UpdateTimestampAndCompareWithFullHistoryLow();

      // If
      // (1) !has_current_user_key_, OR
      // (2) timestamp is disabled, OR
      // (3) all history will be preserved, OR
      // (4) user key (excluding timestamp) is different from previous key, OR
      // (5) timestamp is NO older than *full_history_ts_low_, OR
      // (6) timestamp is the largest one older than full_history_ts_low_,
      // then current_user_key_ must be treated as a different user key.
      // This means, if a user key (excluding ts) is the same as the previous
      // user key, and its ts is older than *full_history_ts_low_, then we
      // consider this key for GC, e.g. it may be dropped if certain conditions
      // match.
      if (!has_current_user_key_ || !timestamp_size_ || !full_history_ts_low_ ||
          !user_key_equal_without_ts || cmp_with_history_ts_low_ >= 0 ||
          prev_cmp_with_ts_low >= 0) {
        // Initialize for future comparison for rule (A) and etc.
        current_user_key_sequence_ = kMaxSequenceNumber;
        current_user_key_snapshot_ = 0;
        has_current_user_key_ = true;
      }
      current_user_key_ = ikey_.user_key;

      has_outputted_key_ = false;

      last_key_seq_zeroed_ = false;

      current_key_committed_ = KeyCommitted(ikey_.sequence);

      // Apply the compaction filter to the first committed version of the user
      // key.
      if (current_key_committed_ &&
          !InvokeFilterIfNeeded(&need_skip, &skip_until)) {
        break;
      }
    } else {
      // Update the current key to reflect the new sequence number/type without
      // copying the user key.
      // TODO(rven): Compaction filter does not process keys in this path
      // Need to have the compaction filter process multiple versions
      // if we have versions on both sides of a snapshot
      current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
      key_ = current_key_.GetInternalKey();
      ikey_.user_key = current_key_.GetUserKey();

      // Note that newer version of a key is ordered before older versions. If a
      // newer version of a key is committed, so as the older version. No need
      // to query snapshot_checker_ in that case.
      if (UNLIKELY(!current_key_committed_)) {
        assert(snapshot_checker_ != nullptr);
        current_key_committed_ = KeyCommitted(ikey_.sequence);
        // Apply the compaction filter to the first committed version of the
        // user key.
        if (current_key_committed_ &&
            !InvokeFilterIfNeeded(&need_skip, &skip_until)) {
          break;
        }
      }
    }

    if (UNLIKELY(!current_key_committed_)) {
      assert(snapshot_checker_ != nullptr);
      validity_info_.SetValid(ValidContext::kCurrentKeyUncommitted);
      break;
    }

    // If there are no snapshots, then this kv affect visibility at tip.
    // Otherwise, search though all existing snapshots to find the earliest
    // snapshot that is affected by this kv.
    SequenceNumber last_sequence = current_user_key_sequence_;
    current_user_key_sequence_ = ikey_.sequence;
    SequenceNumber last_snapshot = current_user_key_snapshot_;
    SequenceNumber prev_snapshot = 0;  // 0 means no previous snapshot
    current_user_key_snapshot_ =
        visible_at_tip_
            ? earliest_snapshot_
            : findEarliestVisibleSnapshot(ikey_.sequence, &prev_snapshot);

    if (need_skip) {
      // This case is handled below.
    } else if (clear_and_output_next_key_) {
      // In the previous iteration we encountered a single delete that we could
      // not compact out.  We will keep this Put, but can drop it's data.
      // (See Optimization 3, below.)
      if (ikey_.type != kTypeValue && ikey_.type != kTypeBlobIndex &&
          ikey_.type != kTypeWideColumnEntity) {
        ROCKS_LOG_FATAL(info_log_, "Unexpected key %s for compaction output",
                        ikey_.DebugString(allow_data_in_errors_, true).c_str());
        assert(false);
      }
      if (current_user_key_snapshot_ < last_snapshot) {
        ROCKS_LOG_FATAL(info_log_,
                        "key %s, current_user_key_snapshot_ (%" PRIu64
                        ") < last_snapshot (%" PRIu64 ")",
                        ikey_.DebugString(allow_data_in_errors_, true).c_str(),
                        current_user_key_snapshot_, last_snapshot);
        assert(false);
      }

      if (ikey_.type == kTypeBlobIndex || ikey_.type == kTypeWideColumnEntity) {
        ikey_.type = kTypeValue;
        current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
      }

      value_.clear();
      validity_info_.SetValid(ValidContext::kKeepSDAndClearPut);
      clear_and_output_next_key_ = false;
    } else if (ikey_.type == kTypeSingleDeletion) {
      // We can compact out a SingleDelete if:
      // 1) We encounter the corresponding PUT -OR- we know that this key
      //    doesn't appear past this output level
      // =AND=
      // 2) We've already returned a record in this snapshot -OR-
      //    there are no earlier earliest_write_conflict_snapshot.
      //
      // A note about 2) above:
      // we try to determine whether there is any earlier write conflict
      // checking snapshot by calling DefinitelyInSnapshot() with seq and
      // earliest_write_conflict_snapshot as arguments. For write-prepared
      // and write-unprepared transactions, if earliest_write_conflict_snapshot
      // is evicted from WritePreparedTxnDB::commit_cache, then
      // DefinitelyInSnapshot(seq, earliest_write_conflict_snapshot) returns
      // false, even if the seq is actually visible within
      // earliest_write_conflict_snapshot. Consequently, CompactionIterator
      // may try to zero out its sequence number, thus hitting assertion error
      // in debug mode or cause incorrect DBIter return result.
      // We observe that earliest_write_conflict_snapshot >= earliest_snapshot,
      // and the seq zeroing logic depends on
      // DefinitelyInSnapshot(seq, earliest_snapshot). Therefore, if we cannot
      // determine whether seq is **definitely** in
      // earliest_write_conflict_snapshot, then we can additionally check if
      // seq is definitely in earliest_snapshot. If the latter holds, then the
      // former holds too.
      //
      // Rule 1 is needed for SingleDelete correctness.  Rule 2 is needed to
      // allow Transactions to do write-conflict checking (if we compacted away
      // all keys, then we wouldn't know that a write happened in this
      // snapshot).  If there is no earlier snapshot, then we know that there
      // are no active transactions that need to know about any writes.
      //
      // Optimization 3:
      // If we encounter a SingleDelete followed by a PUT and Rule 2 is NOT
      // true, then we must output a SingleDelete.  In this case, we will decide
      // to also output the PUT.  While we are compacting less by outputting the
      // PUT now, hopefully this will lead to better compaction in the future
      // when Rule 2 is later true (Ie, We are hoping we can later compact out
      // both the SingleDelete and the Put, while we couldn't if we only
      // outputted the SingleDelete now).
      // In this case, we can save space by removing the PUT's value as it will
      // never be read.
      //
      // Deletes and Merges are not supported on the same key that has a
      // SingleDelete as it is not possible to correctly do any partial
      // compaction of such a combination of operations.  The result of mixing
      // those operations for a given key is documented as being undefined.  So
      // we can choose how to handle such a combinations of operations.  We will
      // try to compact out as much as we can in these cases.
      // We will report counts on these anomalous cases.
      //
      // Note: If timestamp is enabled, then record will be eligible for
      // deletion, only if, along with above conditions (Rule 1 and Rule 2)
      // full_history_ts_low_ is specified and timestamp for that key is less
      // than *full_history_ts_low_. If it's not eligible for deletion, then we
      // will output the SingleDelete. For Optimization 3 also, if
      // full_history_ts_low_ is specified and timestamp for the key is less
      // than *full_history_ts_low_ then only optimization will be applied.

      // The easiest way to process a SingleDelete during iteration is to peek
      // ahead at the next key.
      const bool is_timestamp_eligible_for_gc =
          (timestamp_size_ == 0 ||
           (full_history_ts_low_ && cmp_with_history_ts_low_ < 0));

      ParsedInternalKey next_ikey;
      AdvanceInputIter();

      // Check whether the next key exists, is not corrupt, and is the same key
      // as the single delete.
      if (input_.Valid() &&
          ParseInternalKey(input_.key(), &next_ikey, allow_data_in_errors_)
              .ok() &&
          cmp_->EqualWithoutTimestamp(ikey_.user_key, next_ikey.user_key)) {
#ifndef NDEBUG
        const Compaction* c =
            compaction_ ? compaction_->real_compaction() : nullptr;
#endif
        TEST_SYNC_POINT_CALLBACK(
            "CompactionIterator::NextFromInput:SingleDelete:1",
            const_cast<Compaction*>(c));
        if (last_key_seq_zeroed_) {
          ++iter_stats_.num_record_drop_hidden;
          ++iter_stats_.num_record_drop_obsolete;
          assert(bottommost_level_);
          AdvanceInputIter();
        } else if (prev_snapshot == 0 ||
                   DefinitelyNotInSnapshot(next_ikey.sequence, prev_snapshot)) {
          // Check whether the next key belongs to the same snapshot as the
          // SingleDelete.

          TEST_SYNC_POINT_CALLBACK(
              "CompactionIterator::NextFromInput:SingleDelete:2", nullptr);
          if (next_ikey.type == kTypeSingleDeletion) {
            // We encountered two SingleDeletes for same key in a row. This
            // could be due to unexpected user input. If write-(un)prepared
            // transaction is used, this could also be due to releasing an old
            // snapshot between a Put and its matching SingleDelete.
            // Skip the first SingleDelete and let the next iteration decide
            // how to handle the second SingleDelete.

            // First SingleDelete has been skipped since we already called
            // input_.Next().
            ++iter_stats_.num_record_drop_obsolete;
            ++iter_stats_.num_single_del_mismatch;
          } else if (next_ikey.type == kTypeDeletion) {
            std::ostringstream oss;
            oss << "Found SD and type: " << static_cast<int>(next_ikey.type)
                << " on the same key, violating the contract "
                   "of SingleDelete. Check your application to make sure the "
                   "application does not mix SingleDelete and Delete for "
                   "the same key. If you are using "
                   "write-prepared/write-unprepared transactions, and use "
                   "SingleDelete to delete certain keys, then make sure "
                   "TransactionDBOptions::rollback_deletion_type_callback is "
                   "configured properly. Mixing SD and DEL can lead to "
                   "undefined behaviors";
            ++iter_stats_.num_record_drop_obsolete;
            ++iter_stats_.num_single_del_mismatch;
            if (enforce_single_del_contracts_) {
              ROCKS_LOG_ERROR(info_log_, "%s", oss.str().c_str());
              validity_info_.Invalidate();
              status_ = Status::Corruption(oss.str());
              return;
            }
            ROCKS_LOG_WARN(info_log_, "%s", oss.str().c_str());
          } else if (!is_timestamp_eligible_for_gc) {
            // We cannot drop the SingleDelete as timestamp is enabled, and
            // timestamp of this key is greater than or equal to
            // *full_history_ts_low_. We will output the SingleDelete.
            validity_info_.SetValid(ValidContext::kKeepTsHistory);
          } else if (has_outputted_key_ ||
                     DefinitelyInSnapshot(ikey_.sequence,
                                          earliest_write_conflict_snapshot_) ||
                     (earliest_snapshot_ < earliest_write_conflict_snapshot_ &&
                      DefinitelyInSnapshot(ikey_.sequence,
                                           earliest_snapshot_))) {
            // Found a matching value, we can drop the single delete and the
            // value.  It is safe to drop both records since we've already
            // outputted a key in this snapshot, or there is no earlier
            // snapshot (Rule 2 above).

            // Note: it doesn't matter whether the second key is a Put or if it
            // is an unexpected Merge or Delete.  We will compact it out
            // either way. We will maintain counts of how many mismatches
            // happened
            if (next_ikey.type != kTypeValue &&
                next_ikey.type != kTypeBlobIndex &&
                next_ikey.type != kTypeWideColumnEntity) {
              ++iter_stats_.num_single_del_mismatch;
            }

            ++iter_stats_.num_record_drop_hidden;
            ++iter_stats_.num_record_drop_obsolete;
            // Already called input_.Next() once.  Call it a second time to
            // skip past the second key.
            AdvanceInputIter();
          } else {
            // Found a matching value, but we cannot drop both keys since
            // there is an earlier snapshot and we need to leave behind a record
            // to know that a write happened in this snapshot (Rule 2 above).
            // Clear the value and output the SingleDelete. (The value will be
            // outputted on the next iteration.)

            // Setting valid_ to true will output the current SingleDelete
            validity_info_.SetValid(ValidContext::kKeepSDForConflictCheck);

            // Set up the Put to be outputted in the next iteration.
            // (Optimization 3).
            clear_and_output_next_key_ = true;
            TEST_SYNC_POINT_CALLBACK(
                "CompactionIterator::NextFromInput:KeepSDForWW",
                /*arg=*/nullptr);
          }
        } else {
          // We hit the next snapshot without hitting a put, so the iterator
          // returns the single delete.
          validity_info_.SetValid(ValidContext::kKeepSDForSnapshot);
          TEST_SYNC_POINT_CALLBACK(
              "CompactionIterator::NextFromInput:SingleDelete:3",
              const_cast<Compaction*>(c));
        }
      } else {
        // We are at the end of the input, could not parse the next key, or hit
        // a different key. The iterator returns the single delete if the key
        // possibly exists beyond the current output level.  We set
        // has_current_user_key to false so that if the iterator is at the next
        // key, we do not compare it again against the previous key at the next
        // iteration. If the next key is corrupt, we return before the
        // comparison, so the value of has_current_user_key does not matter.
        has_current_user_key_ = false;
        if (compaction_ != nullptr &&
            DefinitelyInSnapshot(ikey_.sequence, earliest_snapshot_) &&
            compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
                                                       &level_ptrs_) &&
            is_timestamp_eligible_for_gc) {
          // Key doesn't exist outside of this range.
          // Can compact out this SingleDelete.
          ++iter_stats_.num_record_drop_obsolete;
          ++iter_stats_.num_single_del_fallthru;
          if (!bottommost_level_) {
            ++iter_stats_.num_optimized_del_drop_obsolete;
          }
        } else if (last_key_seq_zeroed_) {
          // Skip.
          ++iter_stats_.num_record_drop_hidden;
          ++iter_stats_.num_record_drop_obsolete;
          assert(bottommost_level_);
        } else {
          // Output SingleDelete
          validity_info_.SetValid(ValidContext::kKeepSD);
        }
      }

      if (Valid()) {
        at_next_ = true;
      }
    } else if (last_snapshot == current_user_key_snapshot_ ||
               (last_snapshot > 0 &&
                last_snapshot < current_user_key_snapshot_)) {
      // If the earliest snapshot is which this key is visible in
      // is the same as the visibility of a previous instance of the
      // same key, then this kv is not visible in any snapshot.
      // Hidden by an newer entry for same user key
      //
      // Note: Dropping this key will not affect TransactionDB write-conflict
      // checking since there has already been a record returned for this key
      // in this snapshot.
      if (last_sequence < current_user_key_sequence_) {
        ROCKS_LOG_FATAL(info_log_,
                        "key %s, last_sequence (%" PRIu64
                        ") < current_user_key_sequence_ (%" PRIu64 ")",
                        ikey_.DebugString(allow_data_in_errors_, true).c_str(),
                        last_sequence, current_user_key_sequence_);
        assert(false);
      }

      ++iter_stats_.num_record_drop_hidden;  // rule (A)
      AdvanceInputIter();
    } else if (compaction_ != nullptr &&
               (ikey_.type == kTypeDeletion ||
                (ikey_.type == kTypeDeletionWithTimestamp &&
                 cmp_with_history_ts_low_ < 0)) &&
               DefinitelyInSnapshot(ikey_.sequence, earliest_snapshot_) &&
               compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
                                                          &level_ptrs_)) {
      // TODO(noetzli): This is the only place where we use compaction_
      // (besides the constructor). We should probably get rid of this
      // dependency and find a way to do similar filtering during flushes.
      //
      // For this user key:
      // (1) there is no data in higher levels
      // (2) data in lower levels will have larger sequence numbers
      // (3) data in layers that are being compacted here and have
      //     smaller sequence numbers will be dropped in the next
      //     few iterations of this loop (by rule (A) above).
      // Therefore this deletion marker is obsolete and can be dropped.
      //
      // Note:  Dropping this Delete will not affect TransactionDB
      // write-conflict checking since it is earlier than any snapshot.
      //
      // It seems that we can also drop deletion later than earliest snapshot
      // given that:
      // (1) The deletion is earlier than earliest_write_conflict_snapshot, and
      // (2) No value exist earlier than the deletion.
      //
      // Note also that a deletion marker of type kTypeDeletionWithTimestamp
      // will be treated as a different user key unless the timestamp is older
      // than *full_history_ts_low_.
      ++iter_stats_.num_record_drop_obsolete;
      if (!bottommost_level_) {
        ++iter_stats_.num_optimized_del_drop_obsolete;
      }
      AdvanceInputIter();
    } else if ((ikey_.type == kTypeDeletion ||
                (ikey_.type == kTypeDeletionWithTimestamp &&
                 cmp_with_history_ts_low_ < 0)) &&
               bottommost_level_) {
      // Handle the case where we have a delete key at the bottom most level
      // We can skip outputting the key iff there are no subsequent puts for
      // this key
      assert(!compaction_ || compaction_->KeyNotExistsBeyondOutputLevel(
                                 ikey_.user_key, &level_ptrs_));
      ParsedInternalKey next_ikey;
      AdvanceInputIter();
#ifndef NDEBUG
      const Compaction* c =
          compaction_ ? compaction_->real_compaction() : nullptr;
#endif
      TEST_SYNC_POINT_CALLBACK(
          "CompactionIterator::NextFromInput:BottommostDelete:1",
          const_cast<Compaction*>(c));
      // Skip over all versions of this key that happen to occur in the same
      // snapshot range as the delete.
      //
      // Note that a deletion marker of type kTypeDeletionWithTimestamp will be
      // considered to have a different user key unless the timestamp is older
      // than *full_history_ts_low_.
      while (!IsPausingManualCompaction() && !IsShuttingDown() &&
             input_.Valid() &&
             (ParseInternalKey(input_.key(), &next_ikey, allow_data_in_errors_)
                  .ok()) &&
             cmp_->EqualWithoutTimestamp(ikey_.user_key, next_ikey.user_key) &&
             (prev_snapshot == 0 ||
              DefinitelyNotInSnapshot(next_ikey.sequence, prev_snapshot))) {
        AdvanceInputIter();
      }
      // If you find you still need to output a row with this key, we need to
      // output the delete too
      if (input_.Valid() &&
          (ParseInternalKey(input_.key(), &next_ikey, allow_data_in_errors_)
               .ok()) &&
          cmp_->EqualWithoutTimestamp(ikey_.user_key, next_ikey.user_key)) {
        validity_info_.SetValid(ValidContext::kKeepDel);
        at_next_ = true;
      }
    } else if (ikey_.type == kTypeMerge) {
      if (!merge_helper_->HasOperator()) {
        status_ = Status::InvalidArgument(
            "merge_operator is not properly initialized.");
        return;
      }

      pinned_iters_mgr_.StartPinning();

      // We know the merge type entry is not hidden, otherwise we would
      // have hit (A)
      // We encapsulate the merge related state machine in a different
      // object to minimize change to the existing flow.
      Status s = merge_helper_->MergeUntil(
          &input_, range_del_agg_, prev_snapshot, bottommost_level_,
          allow_data_in_errors_, blob_fetcher_.get(), full_history_ts_low_,
          prefetch_buffers_.get(), &iter_stats_);
      merge_out_iter_.SeekToFirst();

      if (!s.ok() && !s.IsMergeInProgress()) {
        status_ = s;
        return;
      } else if (merge_out_iter_.Valid()) {
        // NOTE: key, value, and ikey_ refer to old entries.
        //       These will be correctly set below.
        key_ = merge_out_iter_.key();
        value_ = merge_out_iter_.value();
        pik_status = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
        // MergeUntil stops when it encounters a corrupt key and does not
        // include them in the result, so we expect the keys here to valid.
        if (!pik_status.ok()) {
          ROCKS_LOG_FATAL(
              info_log_, "Invalid key %s in compaction. %s",
              allow_data_in_errors_ ? key_.ToString(true).c_str() : "hidden",
              pik_status.getState());
          assert(false);
        }
        // Keep current_key_ in sync.
        current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
        key_ = current_key_.GetInternalKey();
        ikey_.user_key = current_key_.GetUserKey();
        validity_info_.SetValid(ValidContext::kMerge2);
      } else {
        // all merge operands were filtered out. reset the user key, since the
        // batch consumed by the merge operator should not shadow any keys
        // coming after the merges
        has_current_user_key_ = false;
        pinned_iters_mgr_.ReleasePinnedData();

        if (merge_helper_->FilteredUntil(&skip_until)) {
          need_skip = true;
        }
      }
    } else {
      // 1. new user key -OR-
      // 2. different snapshot stripe
      // If user-defined timestamp is enabled, we consider keys for GC if they
      // are below history_ts_low_. CompactionRangeDelAggregator::ShouldDelete()
      // only considers range deletions that are at or below history_ts_low_ and
      // trim_ts_. We drop keys here that are below history_ts_low_ and are
      // covered by a range tombstone that is at or below history_ts_low_ and
      // trim_ts.
      bool should_delete = false;
      if (!timestamp_size_ || cmp_with_history_ts_low_ < 0) {
        should_delete = range_del_agg_->ShouldDelete(
            key_, RangeDelPositioningMode::kForwardTraversal);
      }
      if (should_delete) {
        ++iter_stats_.num_record_drop_hidden;
        ++iter_stats_.num_record_drop_range_del;
        AdvanceInputIter();
      } else {
        validity_info_.SetValid(ValidContext::kNewUserKey);
      }
    }

    if (need_skip) {
      SkipUntil(skip_until);
    }
  }

  if (!Valid() && IsShuttingDown()) {
    status_ = Status::ShutdownInProgress();
  }

  if (IsPausingManualCompaction()) {
    status_ = Status::Incomplete(Status::SubCode::kManualCompactionPaused);
  }

  // Propagate corruption status from memtable itereator
  if (!input_.Valid() && input_.status().IsCorruption()) {
    status_ = input_.status();
  }
}

bool CompactionIterator::ExtractLargeValueIfNeededImpl() {
  if (!blob_file_builder_) {
    return false;
  }

  blob_index_.clear();
  const Status s = blob_file_builder_->Add(user_key(), value_, &blob_index_);

  if (!s.ok()) {
    status_ = s;
    validity_info_.Invalidate();

    return false;
  }

  if (blob_index_.empty()) {
    return false;
  }

  value_ = blob_index_;

  return true;
}

void CompactionIterator::ExtractLargeValueIfNeeded() {
  assert(ikey_.type == kTypeValue);

  if (!ExtractLargeValueIfNeededImpl()) {
    return;
  }

  ikey_.type = kTypeBlobIndex;
  current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
}

void CompactionIterator::GarbageCollectBlobIfNeeded() {
  assert(ikey_.type == kTypeBlobIndex);

  if (!compaction_) {
    return;
  }

  // GC for integrated BlobDB
  if (compaction_->enable_blob_garbage_collection()) {
    TEST_SYNC_POINT_CALLBACK(
        "CompactionIterator::GarbageCollectBlobIfNeeded::TamperWithBlobIndex",
        &value_);

    BlobIndex blob_index;

    {
      const Status s = blob_index.DecodeFrom(value_);

      if (!s.ok()) {
        status_ = s;
        validity_info_.Invalidate();

        return;
      }
    }

    if (blob_index.file_number() >=
        blob_garbage_collection_cutoff_file_number_) {
      return;
    }

    FilePrefetchBuffer* prefetch_buffer =
        prefetch_buffers_ ? prefetch_buffers_->GetOrCreatePrefetchBuffer(
                                blob_index.file_number())
                          : nullptr;

    uint64_t bytes_read = 0;

    {
      assert(blob_fetcher_);

      const Status s = blob_fetcher_->FetchBlob(
          user_key(), blob_index, prefetch_buffer, &blob_value_, &bytes_read);

      if (!s.ok()) {
        status_ = s;
        validity_info_.Invalidate();

        return;
      }
    }

    ++iter_stats_.num_blobs_read;
    iter_stats_.total_blob_bytes_read += bytes_read;

    ++iter_stats_.num_blobs_relocated;
    iter_stats_.total_blob_bytes_relocated += blob_index.size();

    value_ = blob_value_;

    if (ExtractLargeValueIfNeededImpl()) {
      return;
    }

    ikey_.type = kTypeValue;
    current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);

    return;
  }

  // GC for stacked BlobDB
  if (compaction_filter_ &&
      compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
    const auto blob_decision = compaction_filter_->PrepareBlobOutput(
        user_key(), value_, &compaction_filter_value_);

    if (blob_decision == CompactionFilter::BlobDecision::kCorruption) {
      status_ =
          Status::Corruption("Corrupted blob reference encountered during GC");
      validity_info_.Invalidate();

      return;
    }

    if (blob_decision == CompactionFilter::BlobDecision::kIOError) {
      status_ = Status::IOError("Could not relocate blob during GC");
      validity_info_.Invalidate();

      return;
    }

    if (blob_decision == CompactionFilter::BlobDecision::kChangeValue) {
      value_ = compaction_filter_value_;

      return;
    }
  }
}

void CompactionIterator::DecideOutputLevel() {
  assert(compaction_->SupportsPerKeyPlacement());
#ifndef NDEBUG
  // Could be overridden by unittest
  PerKeyPlacementContext context(level_, ikey_.user_key, value_,
                                 ikey_.sequence);
  TEST_SYNC_POINT_CALLBACK("CompactionIterator::PrepareOutput.context",
                           &context);
  output_to_penultimate_level_ = context.output_to_penultimate_level;
#else
  output_to_penultimate_level_ = false;
#endif  // NDEBUG

  // if the key is newer than the cutoff sequence or within the earliest
  // snapshot, it should output to the penultimate level.
  if (ikey_.sequence > preclude_last_level_min_seqno_ ||
      ikey_.sequence > earliest_snapshot_) {
    output_to_penultimate_level_ = true;
  }

  if (output_to_penultimate_level_) {
    // If it's decided to output to the penultimate level, but unsafe to do so,
    // still output to the last level. For example, moving the data from a lower
    // level to a higher level outside of the higher-level input key range is
    // considered unsafe, because the key may conflict with higher-level SSTs
    // not from this compaction.
    // TODO: add statistic for declined output_to_penultimate_level
    bool safe_to_penultimate_level =
        compaction_->WithinPenultimateLevelOutputRange(ikey_.user_key);
    if (!safe_to_penultimate_level) {
      output_to_penultimate_level_ = false;
      // It could happen when disable/enable `last_level_temperature` while
      // holding a snapshot. When `last_level_temperature` is not set
      // (==kUnknown), the data newer than any snapshot is pushed to the last
      // level, but when the per_key_placement feature is enabled on the fly,
      // the data later than the snapshot has to be moved to the penultimate
      // level, which may or may not be safe. So the user needs to make sure all
      // snapshot is released before enabling `last_level_temperature` feature
      // We will migrate the feature to `last_level_temperature` and maybe make
      // it not dynamically changeable.
      if (ikey_.sequence > earliest_snapshot_) {
        status_ = Status::Corruption(
            "Unsafe to store Seq later than snapshot in the last level if "
            "per_key_placement is enabled");
      }
    }
  }
}

void CompactionIterator::PrepareOutput() {
  if (Valid()) {
    if (ikey_.type == kTypeValue) {
      ExtractLargeValueIfNeeded();
    } else if (ikey_.type == kTypeBlobIndex) {
      GarbageCollectBlobIfNeeded();
    }

    if (compaction_ != nullptr && compaction_->SupportsPerKeyPlacement()) {
      DecideOutputLevel();
    }

    // Zeroing out the sequence number leads to better compression.
    // If this is the bottommost level (no files in lower levels)
    // and the earliest snapshot is larger than this seqno
    // and the userkey differs from the last userkey in compaction
    // then we can squash the seqno to zero.
    //
    // This is safe for TransactionDB write-conflict checking since transactions
    // only care about sequence number larger than any active snapshots.
    //
    // Can we do the same for levels above bottom level as long as
    // KeyNotExistsBeyondOutputLevel() return true?
    if (Valid() && compaction_ != nullptr &&
        !compaction_->allow_ingest_behind() && bottommost_level_ &&
        DefinitelyInSnapshot(ikey_.sequence, earliest_snapshot_) &&
        ikey_.type != kTypeMerge && current_key_committed_ &&
        !output_to_penultimate_level_ &&
        ikey_.sequence < preserve_time_min_seqno_) {
      if (ikey_.type == kTypeDeletion ||
          (ikey_.type == kTypeSingleDeletion && timestamp_size_ == 0)) {
        ROCKS_LOG_FATAL(
            info_log_,
            "Unexpected key %s for seq-zero optimization. "
            "earliest_snapshot %" PRIu64
            ", earliest_write_conflict_snapshot %" PRIu64
            " job_snapshot %" PRIu64
            ". timestamp_size: %d full_history_ts_low_ %s. validity %x",
            ikey_.DebugString(allow_data_in_errors_, true).c_str(),
            earliest_snapshot_, earliest_write_conflict_snapshot_,
            job_snapshot_, static_cast<int>(timestamp_size_),
            full_history_ts_low_ != nullptr
                ? Slice(*full_history_ts_low_).ToString(true).c_str()
                : "null",
            validity_info_.rep);
        assert(false);
      }
      ikey_.sequence = 0;
      last_key_seq_zeroed_ = true;
      TEST_SYNC_POINT_CALLBACK("CompactionIterator::PrepareOutput:ZeroingSeq",
                               &ikey_);
      if (!timestamp_size_) {
        current_key_.UpdateInternalKey(0, ikey_.type);
      } else if (full_history_ts_low_ && cmp_with_history_ts_low_ < 0) {
        // We can also zero out timestamp for better compression.
        // For the same user key (excluding timestamp), the timestamp-based
        // history can be collapsed to save some space if the timestamp is
        // older than *full_history_ts_low_.
        const std::string kTsMin(timestamp_size_, static_cast<char>(0));
        const Slice ts_slice = kTsMin;
        ikey_.SetTimestamp(ts_slice);
        current_key_.UpdateInternalKey(0, ikey_.type, &ts_slice);
      }
    }
  }
}

inline SequenceNumber CompactionIterator::findEarliestVisibleSnapshot(
    SequenceNumber in, SequenceNumber* prev_snapshot) {
  assert(snapshots_->size());
  if (snapshots_->size() == 0) {
    ROCKS_LOG_FATAL(info_log_,
                    "No snapshot left in findEarliestVisibleSnapshot");
  }
  auto snapshots_iter =
      std::lower_bound(snapshots_->begin(), snapshots_->end(), in);
  assert(prev_snapshot != nullptr);
  if (snapshots_iter == snapshots_->begin()) {
    *prev_snapshot = 0;
  } else {
    *prev_snapshot = *std::prev(snapshots_iter);
    if (*prev_snapshot >= in) {
      ROCKS_LOG_FATAL(info_log_,
                      "*prev_snapshot (%" PRIu64 ") >= in (%" PRIu64
                      ") in findEarliestVisibleSnapshot",
                      *prev_snapshot, in);
      assert(false);
    }
  }
  if (snapshot_checker_ == nullptr) {
    return snapshots_iter != snapshots_->end() ? *snapshots_iter
                                               : kMaxSequenceNumber;
  }
  bool has_released_snapshot = !released_snapshots_.empty();
  for (; snapshots_iter != snapshots_->end(); ++snapshots_iter) {
    auto cur = *snapshots_iter;
    if (in > cur) {
      ROCKS_LOG_FATAL(info_log_,
                      "in (%" PRIu64 ") > cur (%" PRIu64
                      ") in findEarliestVisibleSnapshot",
                      in, cur);
      assert(false);
    }
    // Skip if cur is in released_snapshots.
    if (has_released_snapshot && released_snapshots_.count(cur) > 0) {
      continue;
    }
    auto res = snapshot_checker_->CheckInSnapshot(in, cur);
    if (res == SnapshotCheckerResult::kInSnapshot) {
      return cur;
    } else if (res == SnapshotCheckerResult::kSnapshotReleased) {
      released_snapshots_.insert(cur);
    }
    *prev_snapshot = cur;
  }
  return kMaxSequenceNumber;
}

uint64_t CompactionIterator::ComputeBlobGarbageCollectionCutoffFileNumber(
    const CompactionProxy* compaction) {
  if (!compaction) {
    return 0;
  }

  if (!compaction->enable_blob_garbage_collection()) {
    return 0;
  }

  const Version* const version = compaction->input_version();
  assert(version);

  const VersionStorageInfo* const storage_info = version->storage_info();
  assert(storage_info);

  const auto& blob_files = storage_info->GetBlobFiles();

  const size_t cutoff_index = static_cast<size_t>(
      compaction->blob_garbage_collection_age_cutoff() * blob_files.size());

  if (cutoff_index >= blob_files.size()) {
    return std::numeric_limits<uint64_t>::max();
  }

  const auto& meta = blob_files[cutoff_index];
  assert(meta);

  return meta->GetBlobFileNumber();
}

std::unique_ptr<BlobFetcher> CompactionIterator::CreateBlobFetcherIfNeeded(
    const CompactionProxy* compaction) {
  if (!compaction) {
    return nullptr;
  }

  const Version* const version = compaction->input_version();
  if (!version) {
    return nullptr;
  }

  ReadOptions read_options;
  read_options.fill_cache = false;

  return std::unique_ptr<BlobFetcher>(new BlobFetcher(version, read_options));
}

std::unique_ptr<PrefetchBufferCollection>
CompactionIterator::CreatePrefetchBufferCollectionIfNeeded(
    const CompactionProxy* compaction) {
  if (!compaction) {
    return nullptr;
  }

  if (!compaction->input_version()) {
    return nullptr;
  }

  if (compaction->allow_mmap_reads()) {
    return nullptr;
  }

  const uint64_t readahead_size = compaction->blob_compaction_readahead_size();
  if (!readahead_size) {
    return nullptr;
  }

  return std::unique_ptr<PrefetchBufferCollection>(
      new PrefetchBufferCollection(readahead_size));
}

}  // namespace ROCKSDB_NAMESPACE