summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/compaction/compaction_job_stats_test.cc
blob: 9302707780b10cae2dfde92492854102aee63b85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include <algorithm>
#include <cinttypes>
#include <iostream>
#include <mutex>
#include <queue>
#include <set>
#include <thread>
#include <unordered_set>
#include <utility>

#include "db/db_impl/db_impl.h"
#include "db/dbformat.h"
#include "db/job_context.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "env/mock_env.h"
#include "file/filename.h"
#include "monitoring/statistics.h"
#include "monitoring/thread_status_util.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/experimental.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "rocksdb/thread_status.h"
#include "rocksdb/utilities/checkpoint.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/mock_table.h"
#include "table/plain/plain_table_factory.h"
#include "table/scoped_arena_iterator.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/cast_util.h"
#include "util/compression.h"
#include "util/hash.h"
#include "util/mutexlock.h"
#include "util/rate_limiter.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"

#if !defined(IOS_CROSS_COMPILE)
#ifndef ROCKSDB_LITE
namespace ROCKSDB_NAMESPACE {

static std::string RandomString(Random* rnd, int len, double ratio) {
  std::string r;
  test::CompressibleString(rnd, ratio, len, &r);
  return r;
}

std::string Key(uint64_t key, int length) {
  const int kBufSize = 1000;
  char buf[kBufSize];
  if (length > kBufSize) {
    length = kBufSize;
  }
  snprintf(buf, kBufSize, "%0*" PRIu64, length, key);
  return std::string(buf);
}

class CompactionJobStatsTest : public testing::Test,
                               public testing::WithParamInterface<bool> {
 public:
  std::string dbname_;
  std::string alternative_wal_dir_;
  Env* env_;
  DB* db_;
  std::vector<ColumnFamilyHandle*> handles_;
  uint32_t max_subcompactions_;

  Options last_options_;

  CompactionJobStatsTest() : env_(Env::Default()) {
    env_->SetBackgroundThreads(1, Env::LOW);
    env_->SetBackgroundThreads(1, Env::HIGH);
    dbname_ = test::PerThreadDBPath("compaction_job_stats_test");
    alternative_wal_dir_ = dbname_ + "/wal";
    Options options;
    options.create_if_missing = true;
    max_subcompactions_ = GetParam();
    options.max_subcompactions = max_subcompactions_;
    auto delete_options = options;
    delete_options.wal_dir = alternative_wal_dir_;
    EXPECT_OK(DestroyDB(dbname_, delete_options));
    // Destroy it for not alternative WAL dir is used.
    EXPECT_OK(DestroyDB(dbname_, options));
    db_ = nullptr;
    Reopen(options);
  }

  ~CompactionJobStatsTest() override {
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({});
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
    Close();
    Options options;
    options.db_paths.emplace_back(dbname_, 0);
    options.db_paths.emplace_back(dbname_ + "_2", 0);
    options.db_paths.emplace_back(dbname_ + "_3", 0);
    options.db_paths.emplace_back(dbname_ + "_4", 0);
    EXPECT_OK(DestroyDB(dbname_, options));
  }

  // Required if inheriting from testing::WithParamInterface<>
  static void SetUpTestCase() {}
  static void TearDownTestCase() {}

  DBImpl* dbfull() { return static_cast_with_check<DBImpl>(db_); }

  void CreateColumnFamilies(const std::vector<std::string>& cfs,
                            const Options& options) {
    ColumnFamilyOptions cf_opts(options);
    size_t cfi = handles_.size();
    handles_.resize(cfi + cfs.size());
    for (auto cf : cfs) {
      ASSERT_OK(db_->CreateColumnFamily(cf_opts, cf, &handles_[cfi++]));
    }
  }

  void CreateAndReopenWithCF(const std::vector<std::string>& cfs,
                             const Options& options) {
    CreateColumnFamilies(cfs, options);
    std::vector<std::string> cfs_plus_default = cfs;
    cfs_plus_default.insert(cfs_plus_default.begin(), kDefaultColumnFamilyName);
    ReopenWithColumnFamilies(cfs_plus_default, options);
  }

  void ReopenWithColumnFamilies(const std::vector<std::string>& cfs,
                                const std::vector<Options>& options) {
    ASSERT_OK(TryReopenWithColumnFamilies(cfs, options));
  }

  void ReopenWithColumnFamilies(const std::vector<std::string>& cfs,
                                const Options& options) {
    ASSERT_OK(TryReopenWithColumnFamilies(cfs, options));
  }

  Status TryReopenWithColumnFamilies(const std::vector<std::string>& cfs,
                                     const std::vector<Options>& options) {
    Close();
    EXPECT_EQ(cfs.size(), options.size());
    std::vector<ColumnFamilyDescriptor> column_families;
    for (size_t i = 0; i < cfs.size(); ++i) {
      column_families.push_back(ColumnFamilyDescriptor(cfs[i], options[i]));
    }
    DBOptions db_opts = DBOptions(options[0]);
    return DB::Open(db_opts, dbname_, column_families, &handles_, &db_);
  }

  Status TryReopenWithColumnFamilies(const std::vector<std::string>& cfs,
                                     const Options& options) {
    Close();
    std::vector<Options> v_opts(cfs.size(), options);
    return TryReopenWithColumnFamilies(cfs, v_opts);
  }

  void Reopen(const Options& options) { ASSERT_OK(TryReopen(options)); }

  void Close() {
    for (auto h : handles_) {
      delete h;
    }
    handles_.clear();
    delete db_;
    db_ = nullptr;
  }

  void DestroyAndReopen(const Options& options) {
    // Destroy using last options
    Destroy(last_options_);
    ASSERT_OK(TryReopen(options));
  }

  void Destroy(const Options& options) {
    Close();
    ASSERT_OK(DestroyDB(dbname_, options));
  }

  Status ReadOnlyReopen(const Options& options) {
    return DB::OpenForReadOnly(options, dbname_, &db_);
  }

  Status TryReopen(const Options& options) {
    Close();
    last_options_ = options;
    return DB::Open(options, dbname_, &db_);
  }

  Status Flush(int cf = 0) {
    if (cf == 0) {
      return db_->Flush(FlushOptions());
    } else {
      return db_->Flush(FlushOptions(), handles_[cf]);
    }
  }

  Status Put(const Slice& k, const Slice& v, WriteOptions wo = WriteOptions()) {
    return db_->Put(wo, k, v);
  }

  Status Put(int cf, const Slice& k, const Slice& v,
             WriteOptions wo = WriteOptions()) {
    return db_->Put(wo, handles_[cf], k, v);
  }

  Status Delete(const std::string& k) { return db_->Delete(WriteOptions(), k); }

  Status Delete(int cf, const std::string& k) {
    return db_->Delete(WriteOptions(), handles_[cf], k);
  }

  std::string Get(const std::string& k, const Snapshot* snapshot = nullptr) {
    ReadOptions options;
    options.verify_checksums = true;
    options.snapshot = snapshot;
    std::string result;
    Status s = db_->Get(options, k, &result);
    if (s.IsNotFound()) {
      result = "NOT_FOUND";
    } else if (!s.ok()) {
      result = s.ToString();
    }
    return result;
  }

  std::string Get(int cf, const std::string& k,
                  const Snapshot* snapshot = nullptr) {
    ReadOptions options;
    options.verify_checksums = true;
    options.snapshot = snapshot;
    std::string result;
    Status s = db_->Get(options, handles_[cf], k, &result);
    if (s.IsNotFound()) {
      result = "NOT_FOUND";
    } else if (!s.ok()) {
      result = s.ToString();
    }
    return result;
  }

  int NumTableFilesAtLevel(int level, int cf = 0) {
    std::string property;
    if (cf == 0) {
      // default cfd
      EXPECT_TRUE(db_->GetProperty(
          "rocksdb.num-files-at-level" + std::to_string(level), &property));
    } else {
      EXPECT_TRUE(db_->GetProperty(
          handles_[cf], "rocksdb.num-files-at-level" + std::to_string(level),
          &property));
    }
    return atoi(property.c_str());
  }

  // Return spread of files per level
  std::string FilesPerLevel(int cf = 0) {
    int num_levels =
        (cf == 0) ? db_->NumberLevels() : db_->NumberLevels(handles_[1]);
    std::string result;
    size_t last_non_zero_offset = 0;
    for (int level = 0; level < num_levels; level++) {
      int f = NumTableFilesAtLevel(level, cf);
      char buf[100];
      snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f);
      result += buf;
      if (f > 0) {
        last_non_zero_offset = result.size();
      }
    }
    result.resize(last_non_zero_offset);
    return result;
  }

  Status Size(uint64_t* size, const Slice& start, const Slice& limit,
              int cf = 0) {
    Range r(start, limit);
    if (cf == 0) {
      return db_->GetApproximateSizes(&r, 1, size);
    } else {
      return db_->GetApproximateSizes(handles_[1], &r, 1, size);
    }
  }

  void Compact(int cf, const Slice& start, const Slice& limit,
               uint32_t target_path_id) {
    CompactRangeOptions compact_options;
    compact_options.target_path_id = target_path_id;
    ASSERT_OK(db_->CompactRange(compact_options, handles_[cf], &start, &limit));
  }

  void Compact(int cf, const Slice& start, const Slice& limit) {
    ASSERT_OK(
        db_->CompactRange(CompactRangeOptions(), handles_[cf], &start, &limit));
  }

  void Compact(const Slice& start, const Slice& limit) {
    ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &start, &limit));
  }

  void TEST_Compact(int level, int cf, const Slice& start, const Slice& limit) {
    ASSERT_OK(dbfull()->TEST_CompactRange(level, &start, &limit, handles_[cf],
                                          true /* disallow trivial move */));
  }

  // Do n memtable compactions, each of which produces an sstable
  // covering the range [small,large].
  void MakeTables(int n, const std::string& small, const std::string& large,
                  int cf = 0) {
    for (int i = 0; i < n; i++) {
      ASSERT_OK(Put(cf, small, "begin"));
      ASSERT_OK(Put(cf, large, "end"));
      ASSERT_OK(Flush(cf));
    }
  }

  static void SetDeletionCompactionStats(CompactionJobStats* stats,
                                         uint64_t input_deletions,
                                         uint64_t expired_deletions,
                                         uint64_t records_replaced) {
    stats->num_input_deletion_records = input_deletions;
    stats->num_expired_deletion_records = expired_deletions;
    stats->num_records_replaced = records_replaced;
  }

  void MakeTableWithKeyValues(Random* rnd, uint64_t smallest, uint64_t largest,
                              int key_size, int value_size, uint64_t interval,
                              double ratio, int cf = 0) {
    for (auto key = smallest; key < largest; key += interval) {
      ASSERT_OK(Put(cf, Slice(Key(key, key_size)),
                    Slice(RandomString(rnd, value_size, ratio))));
    }
    ASSERT_OK(Flush(cf));
  }

  // This function behaves with the implicit understanding that two
  // rounds of keys are inserted into the database, as per the behavior
  // of the DeletionStatsTest.
  void SelectivelyDeleteKeys(uint64_t smallest, uint64_t largest,
                             uint64_t interval, int deletion_interval,
                             int key_size, uint64_t cutoff_key_num,
                             CompactionJobStats* stats, int cf = 0) {
    // interval needs to be >= 2 so that deletion entries can be inserted
    // that are intended to not result in an actual key deletion by using
    // an offset of 1 from another existing key
    ASSERT_GE(interval, 2);

    uint64_t ctr = 1;
    uint32_t deletions_made = 0;
    uint32_t num_deleted = 0;
    uint32_t num_expired = 0;
    for (auto key = smallest; key <= largest; key += interval, ctr++) {
      if (ctr % deletion_interval == 0) {
        ASSERT_OK(Delete(cf, Key(key, key_size)));
        deletions_made++;
        num_deleted++;

        if (key > cutoff_key_num) {
          num_expired++;
        }
      }
    }

    // Insert some deletions for keys that don't exist that
    // are both in and out of the key range
    ASSERT_OK(Delete(cf, Key(smallest + 1, key_size)));
    deletions_made++;

    ASSERT_OK(Delete(cf, Key(smallest - 1, key_size)));
    deletions_made++;
    num_expired++;

    ASSERT_OK(Delete(cf, Key(smallest - 9, key_size)));
    deletions_made++;
    num_expired++;

    ASSERT_OK(Flush(cf));
    SetDeletionCompactionStats(stats, deletions_made, num_expired, num_deleted);
  }
};

// An EventListener which helps verify the compaction results in
// test CompactionJobStatsTest.
class CompactionJobStatsChecker : public EventListener {
 public:
  CompactionJobStatsChecker()
      : compression_enabled_(false), verify_next_comp_io_stats_(false) {}

  size_t NumberOfUnverifiedStats() { return expected_stats_.size(); }

  void set_verify_next_comp_io_stats(bool v) { verify_next_comp_io_stats_ = v; }

  // Once a compaction completed, this function will verify the returned
  // CompactionJobInfo with the oldest CompactionJobInfo added earlier
  // in "expected_stats_" which has not yet being used for verification.
  void OnCompactionCompleted(DB* /*db*/, const CompactionJobInfo& ci) override {
    if (verify_next_comp_io_stats_) {
      ASSERT_GT(ci.stats.file_write_nanos, 0);
      ASSERT_GT(ci.stats.file_range_sync_nanos, 0);
      ASSERT_GT(ci.stats.file_fsync_nanos, 0);
      ASSERT_GT(ci.stats.file_prepare_write_nanos, 0);
      verify_next_comp_io_stats_ = false;
    }

    std::lock_guard<std::mutex> lock(mutex_);
    if (expected_stats_.size()) {
      Verify(ci.stats, expected_stats_.front());
      expected_stats_.pop();
    }
  }

  // A helper function which verifies whether two CompactionJobStats
  // match.  The verification of all compaction stats are done by
  // ASSERT_EQ except for the total input / output bytes, which we
  // use ASSERT_GE and ASSERT_LE with a reasonable bias ---
  // 10% in uncompressed case and 20% when compression is used.
  virtual void Verify(const CompactionJobStats& current_stats,
                      const CompactionJobStats& stats) {
    // time
    ASSERT_GT(current_stats.elapsed_micros, 0U);

    ASSERT_EQ(current_stats.num_input_records, stats.num_input_records);
    ASSERT_EQ(current_stats.num_input_files, stats.num_input_files);
    ASSERT_EQ(current_stats.num_input_files_at_output_level,
              stats.num_input_files_at_output_level);

    ASSERT_EQ(current_stats.num_output_records, stats.num_output_records);
    ASSERT_EQ(current_stats.num_output_files, stats.num_output_files);

    ASSERT_EQ(current_stats.is_full_compaction, stats.is_full_compaction);
    ASSERT_EQ(current_stats.is_manual_compaction, stats.is_manual_compaction);

    // file size
    double kFileSizeBias = compression_enabled_ ? 0.20 : 0.10;
    ASSERT_GE(current_stats.total_input_bytes * (1.00 + kFileSizeBias),
              stats.total_input_bytes);
    ASSERT_LE(current_stats.total_input_bytes,
              stats.total_input_bytes * (1.00 + kFileSizeBias));
    ASSERT_GE(current_stats.total_output_bytes * (1.00 + kFileSizeBias),
              stats.total_output_bytes);
    ASSERT_LE(current_stats.total_output_bytes,
              stats.total_output_bytes * (1.00 + kFileSizeBias));
    ASSERT_EQ(current_stats.total_input_raw_key_bytes,
              stats.total_input_raw_key_bytes);
    ASSERT_EQ(current_stats.total_input_raw_value_bytes,
              stats.total_input_raw_value_bytes);

    ASSERT_EQ(current_stats.num_records_replaced, stats.num_records_replaced);

    ASSERT_EQ(current_stats.num_corrupt_keys, stats.num_corrupt_keys);

    ASSERT_EQ(std::string(current_stats.smallest_output_key_prefix),
              std::string(stats.smallest_output_key_prefix));
    ASSERT_EQ(std::string(current_stats.largest_output_key_prefix),
              std::string(stats.largest_output_key_prefix));
  }

  // Add an expected compaction stats, which will be used to
  // verify the CompactionJobStats returned by the OnCompactionCompleted()
  // callback.
  void AddExpectedStats(const CompactionJobStats& stats) {
    std::lock_guard<std::mutex> lock(mutex_);
    expected_stats_.push(stats);
  }

  void EnableCompression(bool flag) { compression_enabled_ = flag; }

  bool verify_next_comp_io_stats() const { return verify_next_comp_io_stats_; }

 private:
  std::mutex mutex_;
  std::queue<CompactionJobStats> expected_stats_;
  bool compression_enabled_;
  bool verify_next_comp_io_stats_;
};

// An EventListener which helps verify the compaction statistics in
// the test DeletionStatsTest.
class CompactionJobDeletionStatsChecker : public CompactionJobStatsChecker {
 public:
  // Verifies whether two CompactionJobStats match.
  void Verify(const CompactionJobStats& current_stats,
              const CompactionJobStats& stats) override {
    ASSERT_EQ(current_stats.num_input_deletion_records,
              stats.num_input_deletion_records);
    ASSERT_EQ(current_stats.num_expired_deletion_records,
              stats.num_expired_deletion_records);
    ASSERT_EQ(current_stats.num_records_replaced, stats.num_records_replaced);

    ASSERT_EQ(current_stats.num_corrupt_keys, stats.num_corrupt_keys);
  }
};

namespace {

uint64_t EstimatedFileSize(uint64_t num_records, size_t key_size,
                           size_t value_size, double compression_ratio = 1.0,
                           size_t block_size = 4096,
                           int bloom_bits_per_key = 10) {
  const size_t kPerKeyOverhead = 8;
  const size_t kFooterSize = 512;

  uint64_t data_size = static_cast<uint64_t>(
      num_records *
      (key_size + value_size * compression_ratio + kPerKeyOverhead));

  return data_size + kFooterSize +
         num_records * bloom_bits_per_key / 8        // filter block
         + data_size * (key_size + 8) / block_size;  // index block
}

namespace {

void CopyPrefix(const Slice& src, size_t prefix_length, std::string* dst) {
  assert(prefix_length > 0);
  size_t length = src.size() > prefix_length ? prefix_length : src.size();
  dst->assign(src.data(), length);
}

}  // namespace

CompactionJobStats NewManualCompactionJobStats(
    const std::string& smallest_key, const std::string& largest_key,
    size_t num_input_files, size_t num_input_files_at_output_level,
    uint64_t num_input_records, size_t key_size, size_t value_size,
    size_t num_output_files, uint64_t num_output_records,
    double compression_ratio, uint64_t num_records_replaced,
    bool is_full = false, bool is_manual = true) {
  CompactionJobStats stats;
  stats.Reset();

  stats.num_input_records = num_input_records;
  stats.num_input_files = num_input_files;
  stats.num_input_files_at_output_level = num_input_files_at_output_level;

  stats.num_output_records = num_output_records;
  stats.num_output_files = num_output_files;

  stats.total_input_bytes =
      EstimatedFileSize(num_input_records / num_input_files, key_size,
                        value_size, compression_ratio) *
      num_input_files;
  stats.total_output_bytes =
      EstimatedFileSize(num_output_records / num_output_files, key_size,
                        value_size, compression_ratio) *
      num_output_files;
  stats.total_input_raw_key_bytes = num_input_records * (key_size + 8);
  stats.total_input_raw_value_bytes = num_input_records * value_size;

  stats.is_full_compaction = is_full;
  stats.is_manual_compaction = is_manual;

  stats.num_records_replaced = num_records_replaced;

  CopyPrefix(smallest_key, CompactionJobStats::kMaxPrefixLength,
             &stats.smallest_output_key_prefix);
  CopyPrefix(largest_key, CompactionJobStats::kMaxPrefixLength,
             &stats.largest_output_key_prefix);

  return stats;
}

CompressionType GetAnyCompression() {
  if (Snappy_Supported()) {
    return kSnappyCompression;
  } else if (Zlib_Supported()) {
    return kZlibCompression;
  } else if (BZip2_Supported()) {
    return kBZip2Compression;
  } else if (LZ4_Supported()) {
    return kLZ4Compression;
  } else if (XPRESS_Supported()) {
    return kXpressCompression;
  }

  return kNoCompression;
}

}  // namespace

TEST_P(CompactionJobStatsTest, CompactionJobStatsTest) {
  Random rnd(301);
  const int kBufSize = 100;
  char buf[kBufSize];
  uint64_t key_base = 100000000l;
  // Note: key_base must be multiple of num_keys_per_L0_file
  int num_keys_per_L0_file = 100;
  const int kTestScale = 8;
  const int kKeySize = 10;
  const int kValueSize = 1000;
  const double kCompressionRatio = 0.5;
  double compression_ratio = 1.0;
  uint64_t key_interval = key_base / num_keys_per_L0_file;

  // Whenever a compaction completes, this listener will try to
  // verify whether the returned CompactionJobStats matches
  // what we expect.  The expected CompactionJobStats is added
  // via AddExpectedStats().
  auto* stats_checker = new CompactionJobStatsChecker();
  Options options;
  options.listeners.emplace_back(stats_checker);
  options.create_if_missing = true;
  // just enough setting to hold off auto-compaction.
  options.level0_file_num_compaction_trigger = kTestScale + 1;
  options.num_levels = 3;
  options.compression = kNoCompression;
  options.max_subcompactions = max_subcompactions_;
  options.bytes_per_sync = 512 * 1024;

  options.report_bg_io_stats = true;
  for (int test = 0; test < 2; ++test) {
    DestroyAndReopen(options);
    CreateAndReopenWithCF({"pikachu"}, options);

    // 1st Phase: generate "num_L0_files" L0 files.
    int num_L0_files = 0;
    for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
         start_key += key_base) {
      MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1,
                             kKeySize, kValueSize, key_interval,
                             compression_ratio, 1);
      snprintf(buf, kBufSize, "%d", ++num_L0_files);
      ASSERT_EQ(std::string(buf), FilesPerLevel(1));
    }
    ASSERT_EQ(std::to_string(num_L0_files), FilesPerLevel(1));

    // 2nd Phase: perform L0 -> L1 compaction.
    int L0_compaction_count = 6;
    int count = 1;
    std::string smallest_key;
    std::string largest_key;
    for (uint64_t start_key = key_base;
         start_key <= key_base * L0_compaction_count;
         start_key += key_base, count++) {
      smallest_key = Key(start_key, 10);
      largest_key = Key(start_key + key_base - key_interval, 10);
      stats_checker->AddExpectedStats(NewManualCompactionJobStats(
          smallest_key, largest_key, 1, 0, num_keys_per_L0_file, kKeySize,
          kValueSize, 1, num_keys_per_L0_file, compression_ratio, 0));
      ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
      TEST_Compact(0, 1, smallest_key, largest_key);
      snprintf(buf, kBufSize, "%d,%d", num_L0_files - count, count);
      ASSERT_EQ(std::string(buf), FilesPerLevel(1));
    }

    // compact two files into one in the last L0 -> L1 compaction
    int num_remaining_L0 = num_L0_files - L0_compaction_count;
    smallest_key = Key(key_base * (L0_compaction_count + 1), 10);
    largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10);
    stats_checker->AddExpectedStats(NewManualCompactionJobStats(
        smallest_key, largest_key, num_remaining_L0, 0,
        num_keys_per_L0_file * num_remaining_L0, kKeySize, kValueSize, 1,
        num_keys_per_L0_file * num_remaining_L0, compression_ratio, 0));
    ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
    TEST_Compact(0, 1, smallest_key, largest_key);

    int num_L1_files = num_L0_files - num_remaining_L0 + 1;
    num_L0_files = 0;
    snprintf(buf, kBufSize, "%d,%d", num_L0_files, num_L1_files);
    ASSERT_EQ(std::string(buf), FilesPerLevel(1));

    // 3rd Phase: generate sparse L0 files (wider key-range, same num of keys)
    int sparseness = 2;
    for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
         start_key += key_base * sparseness) {
      MakeTableWithKeyValues(
          &rnd, start_key, start_key + key_base * sparseness - 1, kKeySize,
          kValueSize, key_base * sparseness / num_keys_per_L0_file,
          compression_ratio, 1);
      snprintf(buf, kBufSize, "%d,%d", ++num_L0_files, num_L1_files);
      ASSERT_EQ(std::string(buf), FilesPerLevel(1));
    }

    // 4th Phase: perform L0 -> L1 compaction again, expect higher write amp
    // When subcompactions are enabled, the number of output files increases
    // by 1 because multiple threads are consuming the input and generating
    // output files without coordinating to see if the output could fit into
    // a smaller number of files like it does when it runs sequentially
    int num_output_files = options.max_subcompactions > 1 ? 2 : 1;
    for (uint64_t start_key = key_base; num_L0_files > 1;
         start_key += key_base * sparseness) {
      smallest_key = Key(start_key, 10);
      largest_key = Key(start_key + key_base * sparseness - key_interval, 10);
      stats_checker->AddExpectedStats(NewManualCompactionJobStats(
          smallest_key, largest_key, 3, 2, num_keys_per_L0_file * 3, kKeySize,
          kValueSize, num_output_files,
          num_keys_per_L0_file * 2,  // 1/3 of the data will be updated.
          compression_ratio, num_keys_per_L0_file));
      ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
      Compact(1, smallest_key, largest_key);
      if (options.max_subcompactions == 1) {
        --num_L1_files;
      }
      snprintf(buf, kBufSize, "%d,%d", --num_L0_files, num_L1_files);
      ASSERT_EQ(std::string(buf), FilesPerLevel(1));
    }

    // 5th Phase: Do a full compaction, which involves in two sub-compactions.
    // Here we expect to have 1 L0 files and 4 L1 files
    // In the first sub-compaction, we expect L0 compaction.
    smallest_key = Key(key_base, 10);
    largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10);
    stats_checker->AddExpectedStats(NewManualCompactionJobStats(
        Key(key_base * (kTestScale + 1 - sparseness), 10), largest_key, 2, 1,
        num_keys_per_L0_file * 3, kKeySize, kValueSize, 1,
        num_keys_per_L0_file * 2, compression_ratio, num_keys_per_L0_file));
    ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
    Compact(1, smallest_key, largest_key);

    num_L1_files = options.max_subcompactions > 1 ? 7 : 4;
    char L1_buf[4];
    snprintf(L1_buf, sizeof(L1_buf), "0,%d", num_L1_files);
    std::string L1_files(L1_buf);
    ASSERT_EQ(L1_files, FilesPerLevel(1));
    options.compression = GetAnyCompression();
    if (options.compression == kNoCompression) {
      break;
    }
    stats_checker->EnableCompression(true);
    compression_ratio = kCompressionRatio;

    for (int i = 0; i < 5; i++) {
      ASSERT_OK(Put(1, Slice(Key(key_base + i, 10)),
                    Slice(RandomString(&rnd, 512 * 1024, 1))));
    }

    ASSERT_OK(Flush(1));
    ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_WaitForCompact());

    stats_checker->set_verify_next_comp_io_stats(true);
    std::atomic<bool> first_prepare_write(true);
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
        "WritableFileWriter::Append:BeforePrepareWrite", [&](void* /*arg*/) {
          if (first_prepare_write.load()) {
            options.env->SleepForMicroseconds(3);
            first_prepare_write.store(false);
          }
        });

    std::atomic<bool> first_flush(true);
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
        "WritableFileWriter::Flush:BeforeAppend", [&](void* /*arg*/) {
          if (first_flush.load()) {
            options.env->SleepForMicroseconds(3);
            first_flush.store(false);
          }
        });

    std::atomic<bool> first_sync(true);
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
        "WritableFileWriter::SyncInternal:0", [&](void* /*arg*/) {
          if (first_sync.load()) {
            options.env->SleepForMicroseconds(3);
            first_sync.store(false);
          }
        });

    std::atomic<bool> first_range_sync(true);
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
        "WritableFileWriter::RangeSync:0", [&](void* /*arg*/) {
          if (first_range_sync.load()) {
            options.env->SleepForMicroseconds(3);
            first_range_sync.store(false);
          }
        });
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();

    Compact(1, smallest_key, largest_key);

    ASSERT_TRUE(!stats_checker->verify_next_comp_io_stats());
    ASSERT_TRUE(!first_prepare_write.load());
    ASSERT_TRUE(!first_flush.load());
    ASSERT_TRUE(!first_sync.load());
    ASSERT_TRUE(!first_range_sync.load());
    ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
  }
  ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U);
}

TEST_P(CompactionJobStatsTest, DeletionStatsTest) {
  Random rnd(301);
  uint64_t key_base = 100000l;
  // Note: key_base must be multiple of num_keys_per_L0_file
  int num_keys_per_L0_file = 20;
  const int kTestScale = 8;  // make sure this is even
  const int kKeySize = 10;
  const int kValueSize = 100;
  double compression_ratio = 1.0;
  uint64_t key_interval = key_base / num_keys_per_L0_file;
  uint64_t largest_key_num = key_base * (kTestScale + 1) - key_interval;
  uint64_t cutoff_key_num = key_base * (kTestScale / 2 + 1) - key_interval;
  const std::string smallest_key = Key(key_base - 10, kKeySize);
  const std::string largest_key = Key(largest_key_num + 10, kKeySize);

  // Whenever a compaction completes, this listener will try to
  // verify whether the returned CompactionJobStats matches
  // what we expect.
  auto* stats_checker = new CompactionJobDeletionStatsChecker();
  Options options;
  options.listeners.emplace_back(stats_checker);
  options.create_if_missing = true;
  options.level0_file_num_compaction_trigger = kTestScale + 1;
  options.num_levels = 3;
  options.compression = kNoCompression;
  options.max_bytes_for_level_multiplier = 2;
  options.max_subcompactions = max_subcompactions_;

  DestroyAndReopen(options);
  CreateAndReopenWithCF({"pikachu"}, options);

  // Stage 1: Generate several L0 files and then send them to L2 by
  // using CompactRangeOptions and CompactRange(). These files will
  // have a strict subset of the keys from the full key-range
  for (uint64_t start_key = key_base; start_key <= key_base * kTestScale / 2;
       start_key += key_base) {
    MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize,
                           kValueSize, key_interval, compression_ratio, 1);
  }

  CompactRangeOptions cr_options;
  cr_options.change_level = true;
  cr_options.target_level = 2;
  ASSERT_OK(db_->CompactRange(cr_options, handles_[1], nullptr, nullptr));
  ASSERT_GT(NumTableFilesAtLevel(2, 1), 0);

  // Stage 2: Generate files including keys from the entire key range
  for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
       start_key += key_base) {
    MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize,
                           kValueSize, key_interval, compression_ratio, 1);
  }

  // Send these L0 files to L1
  TEST_Compact(0, 1, smallest_key, largest_key);
  ASSERT_GT(NumTableFilesAtLevel(1, 1), 0);

  // Add a new record and flush so now there is a L0 file
  // with a value too (not just deletions from the next step)
  ASSERT_OK(Put(1, Key(key_base - 6, kKeySize), "test"));
  ASSERT_OK(Flush(1));

  // Stage 3: Generate L0 files with some deletions so now
  // there are files with the same key range in L0, L1, and L2
  int deletion_interval = 3;
  CompactionJobStats first_compaction_stats;
  SelectivelyDeleteKeys(key_base, largest_key_num, key_interval,
                        deletion_interval, kKeySize, cutoff_key_num,
                        &first_compaction_stats, 1);

  stats_checker->AddExpectedStats(first_compaction_stats);

  // Stage 4: Trigger compaction and verify the stats
  TEST_Compact(0, 1, smallest_key, largest_key);
}

namespace {
int GetUniversalCompactionInputUnits(uint32_t num_flushes) {
  uint32_t compaction_input_units;
  for (compaction_input_units = 1; num_flushes >= compaction_input_units;
       compaction_input_units *= 2) {
    if ((num_flushes & compaction_input_units) != 0) {
      return compaction_input_units > 1 ? compaction_input_units : 0;
    }
  }
  return 0;
}
}  // namespace

TEST_P(CompactionJobStatsTest, UniversalCompactionTest) {
  Random rnd(301);
  uint64_t key_base = 100000000l;
  // Note: key_base must be multiple of num_keys_per_L0_file
  int num_keys_per_table = 100;
  const uint32_t kTestScale = 6;
  const int kKeySize = 10;
  const int kValueSize = 900;
  double compression_ratio = 1.0;
  uint64_t key_interval = key_base / num_keys_per_table;

  auto* stats_checker = new CompactionJobStatsChecker();
  Options options;
  options.listeners.emplace_back(stats_checker);
  options.create_if_missing = true;
  options.num_levels = 3;
  options.compression = kNoCompression;
  options.level0_file_num_compaction_trigger = 2;
  options.target_file_size_base = num_keys_per_table * 1000;
  options.compaction_style = kCompactionStyleUniversal;
  options.compaction_options_universal.size_ratio = 1;
  options.compaction_options_universal.max_size_amplification_percent = 1000;
  options.max_subcompactions = max_subcompactions_;

  DestroyAndReopen(options);
  CreateAndReopenWithCF({"pikachu"}, options);

  // Generates the expected CompactionJobStats for each compaction
  for (uint32_t num_flushes = 2; num_flushes <= kTestScale; num_flushes++) {
    // Here we treat one newly flushed file as an unit.
    //
    // For example, if a newly flushed file is 100k, and a compaction has
    // 4 input units, then this compaction inputs 400k.
    uint32_t num_input_units = GetUniversalCompactionInputUnits(num_flushes);
    if (num_input_units == 0) {
      continue;
    }
    // A full compaction only happens when the number of flushes equals to
    // the number of compaction input runs.
    bool is_full = num_flushes == num_input_units;
    // The following statement determines the expected smallest key
    // based on whether it is a full compaction.
    uint64_t smallest_key = is_full ? key_base : key_base * (num_flushes - 1);

    stats_checker->AddExpectedStats(NewManualCompactionJobStats(
        Key(smallest_key, 10),
        Key(smallest_key + key_base * num_input_units - key_interval, 10),
        num_input_units, num_input_units > 2 ? num_input_units / 2 : 0,
        num_keys_per_table * num_input_units, kKeySize, kValueSize,
        num_input_units, num_keys_per_table * num_input_units, 1.0, 0, is_full,
        false));
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
  }
  ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 3U);

  for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
       start_key += key_base) {
    MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize,
                           kValueSize, key_interval, compression_ratio, 1);
    ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_WaitForCompact());
  }
  ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U);
}

INSTANTIATE_TEST_CASE_P(CompactionJobStatsTest, CompactionJobStatsTest,
                        ::testing::Values(1, 4));
}  // namespace ROCKSDB_NAMESPACE

int main(int argc, char** argv) {
  ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}

#else
#include <stdio.h>

int main(int /*argc*/, char** /*argv*/) {
  fprintf(stderr, "SKIPPED, not supported in ROCKSDB_LITE\n");
  return 0;
}

#endif  // !ROCKSDB_LITE

#else

int main(int /*argc*/, char** /*argv*/) { return 0; }
#endif  // !defined(IOS_CROSS_COMPILE)