summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/compaction/compaction_outputs.cc
blob: e74378e2a9cca10b8869efc3c6dc0692cf1598e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
//  Copyright (c) Meta Platforms, Inc. and affiliates.
//
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/compaction/compaction_outputs.h"

#include "db/builder.h"

namespace ROCKSDB_NAMESPACE {

void CompactionOutputs::NewBuilder(const TableBuilderOptions& tboptions) {
  builder_.reset(NewTableBuilder(tboptions, file_writer_.get()));
}

Status CompactionOutputs::Finish(const Status& intput_status,
                                 const SeqnoToTimeMapping& seqno_time_mapping) {
  FileMetaData* meta = GetMetaData();
  assert(meta != nullptr);
  Status s = intput_status;
  if (s.ok()) {
    std::string seqno_time_mapping_str;
    seqno_time_mapping.Encode(seqno_time_mapping_str, meta->fd.smallest_seqno,
                              meta->fd.largest_seqno, meta->file_creation_time);
    builder_->SetSeqnoTimeTableProperties(seqno_time_mapping_str,
                                          meta->oldest_ancester_time);
    s = builder_->Finish();

  } else {
    builder_->Abandon();
  }
  Status io_s = builder_->io_status();
  if (s.ok()) {
    s = io_s;
  } else {
    io_s.PermitUncheckedError();
  }
  const uint64_t current_bytes = builder_->FileSize();
  if (s.ok()) {
    meta->fd.file_size = current_bytes;
    meta->marked_for_compaction = builder_->NeedCompact();
  }
  current_output().finished = true;
  stats_.bytes_written += current_bytes;
  stats_.num_output_files = outputs_.size();

  return s;
}

IOStatus CompactionOutputs::WriterSyncClose(const Status& input_status,
                                            SystemClock* clock,
                                            Statistics* statistics,
                                            bool use_fsync) {
  IOStatus io_s;
  if (input_status.ok()) {
    StopWatch sw(clock, statistics, COMPACTION_OUTFILE_SYNC_MICROS);
    io_s = file_writer_->Sync(use_fsync);
  }
  if (input_status.ok() && io_s.ok()) {
    io_s = file_writer_->Close();
  }

  if (input_status.ok() && io_s.ok()) {
    FileMetaData* meta = GetMetaData();
    meta->file_checksum = file_writer_->GetFileChecksum();
    meta->file_checksum_func_name = file_writer_->GetFileChecksumFuncName();
  }

  file_writer_.reset();

  return io_s;
}

size_t CompactionOutputs::UpdateGrandparentBoundaryInfo(
    const Slice& internal_key) {
  size_t curr_key_boundary_switched_num = 0;
  const std::vector<FileMetaData*>& grandparents = compaction_->grandparents();

  if (grandparents.empty()) {
    return curr_key_boundary_switched_num;
  }
  assert(!internal_key.empty());
  InternalKey ikey;
  ikey.DecodeFrom(internal_key);
  assert(ikey.Valid());

  const Comparator* ucmp = compaction_->column_family_data()->user_comparator();

  // Move the grandparent_index_ to the file containing the current user_key.
  // If there are multiple files containing the same user_key, make sure the
  // index points to the last file containing the key.
  while (grandparent_index_ < grandparents.size()) {
    if (being_grandparent_gap_) {
      if (sstableKeyCompare(ucmp, ikey,
                            grandparents[grandparent_index_]->smallest) < 0) {
        break;
      }
      if (seen_key_) {
        curr_key_boundary_switched_num++;
        grandparent_overlapped_bytes_ +=
            grandparents[grandparent_index_]->fd.GetFileSize();
        grandparent_boundary_switched_num_++;
      }
      being_grandparent_gap_ = false;
    } else {
      int cmp_result = sstableKeyCompare(
          ucmp, ikey, grandparents[grandparent_index_]->largest);
      // If it's same key, make sure grandparent_index_ is pointing to the last
      // one.
      if (cmp_result < 0 ||
          (cmp_result == 0 &&
           (grandparent_index_ == grandparents.size() - 1 ||
            sstableKeyCompare(ucmp, ikey,
                              grandparents[grandparent_index_ + 1]->smallest) <
                0))) {
        break;
      }
      if (seen_key_) {
        curr_key_boundary_switched_num++;
        grandparent_boundary_switched_num_++;
      }
      being_grandparent_gap_ = true;
      grandparent_index_++;
    }
  }

  // If the first key is in the middle of a grandparent file, adding it to the
  // overlap
  if (!seen_key_ && !being_grandparent_gap_) {
    assert(grandparent_overlapped_bytes_ == 0);
    grandparent_overlapped_bytes_ =
        GetCurrentKeyGrandparentOverlappedBytes(internal_key);
  }

  seen_key_ = true;
  return curr_key_boundary_switched_num;
}

uint64_t CompactionOutputs::GetCurrentKeyGrandparentOverlappedBytes(
    const Slice& internal_key) const {
  // no overlap with any grandparent file
  if (being_grandparent_gap_) {
    return 0;
  }
  uint64_t overlapped_bytes = 0;

  const std::vector<FileMetaData*>& grandparents = compaction_->grandparents();
  const Comparator* ucmp = compaction_->column_family_data()->user_comparator();
  InternalKey ikey;
  ikey.DecodeFrom(internal_key);
#ifndef NDEBUG
  // make sure the grandparent_index_ is pointing to the last files containing
  // the current key.
  int cmp_result =
      sstableKeyCompare(ucmp, ikey, grandparents[grandparent_index_]->largest);
  assert(
      cmp_result < 0 ||
      (cmp_result == 0 &&
       (grandparent_index_ == grandparents.size() - 1 ||
        sstableKeyCompare(
            ucmp, ikey, grandparents[grandparent_index_ + 1]->smallest) < 0)));
  assert(sstableKeyCompare(ucmp, ikey,
                           grandparents[grandparent_index_]->smallest) >= 0);
#endif
  overlapped_bytes += grandparents[grandparent_index_]->fd.GetFileSize();

  // go backwards to find all overlapped files, one key can overlap multiple
  // files. In the following example, if the current output key is `c`, and one
  // compaction file was cut before `c`, current `c` can overlap with 3 files:
  //  [a b]               [c...
  // [b, b] [c, c] [c, c] [c, d]
  for (int64_t i = static_cast<int64_t>(grandparent_index_) - 1;
       i >= 0 && sstableKeyCompare(ucmp, ikey, grandparents[i]->largest) == 0;
       i--) {
    overlapped_bytes += grandparents[i]->fd.GetFileSize();
  }

  return overlapped_bytes;
}

bool CompactionOutputs::ShouldStopBefore(const CompactionIterator& c_iter) {
  assert(c_iter.Valid());

  // always update grandparent information like overlapped file number, size
  // etc.
  const Slice& internal_key = c_iter.key();
  const uint64_t previous_overlapped_bytes = grandparent_overlapped_bytes_;
  size_t num_grandparent_boundaries_crossed =
      UpdateGrandparentBoundaryInfo(internal_key);

  if (!HasBuilder()) {
    return false;
  }

  // If there's user defined partitioner, check that first
  if (partitioner_ && partitioner_->ShouldPartition(PartitionerRequest(
                          last_key_for_partitioner_, c_iter.user_key(),
                          current_output_file_size_)) == kRequired) {
    return true;
  }

  // files output to Level 0 won't be split
  if (compaction_->output_level() == 0) {
    return false;
  }

  // reach the max file size
  if (current_output_file_size_ >= compaction_->max_output_file_size()) {
    return true;
  }

  const InternalKeyComparator* icmp =
      &compaction_->column_family_data()->internal_comparator();

  // Check if it needs to split for RoundRobin
  // Invalid local_output_split_key indicates that we do not need to split
  if (local_output_split_key_ != nullptr && !is_split_) {
    // Split occurs when the next key is larger than/equal to the cursor
    if (icmp->Compare(internal_key, local_output_split_key_->Encode()) >= 0) {
      is_split_ = true;
      return true;
    }
  }

  // only check if the current key is going to cross the grandparents file
  // boundary (either the file beginning or ending).
  if (num_grandparent_boundaries_crossed > 0) {
    // Cut the file before the current key if the size of the current output
    // file + its overlapped grandparent files is bigger than
    // max_compaction_bytes. Which is to prevent future bigger than
    // max_compaction_bytes compaction from the current output level.
    if (grandparent_overlapped_bytes_ + current_output_file_size_ >
        compaction_->max_compaction_bytes()) {
      return true;
    }

    // Cut the file if including the key is going to add a skippable file on
    // the grandparent level AND its size is reasonably big (1/8 of target file
    // size). For example, if it's compacting the files L0 + L1:
    //  L0:  [1,   21]
    //  L1:    [3,   23]
    //  L2: [2, 4] [11, 15] [22, 24]
    // Without this break, it will output as:
    //  L1: [1,3, 21,23]
    // With this break, it will output as (assuming [11, 15] at L2 is bigger
    // than 1/8 of target size):
    //  L1: [1,3] [21,23]
    // Then for the future compactions, [11,15] won't be included.
    // For random datasets (either evenly distributed or skewed), it rarely
    // triggers this condition, but if the user is adding 2 different datasets
    // without any overlap, it may likely happen.
    // More details, check PR #1963
    const size_t num_skippable_boundaries_crossed =
        being_grandparent_gap_ ? 2 : 3;
    if (compaction_->immutable_options()->compaction_style ==
            kCompactionStyleLevel &&
        compaction_->immutable_options()->level_compaction_dynamic_file_size &&
        num_grandparent_boundaries_crossed >=
            num_skippable_boundaries_crossed &&
        grandparent_overlapped_bytes_ - previous_overlapped_bytes >
            compaction_->target_output_file_size() / 8) {
      return true;
    }

    // Pre-cut the output file if it's reaching a certain size AND it's at the
    // boundary of a grandparent file. It can reduce the future compaction size,
    // the cost is having smaller files.
    // The pre-cut size threshold is based on how many grandparent boundaries
    // it has seen before. Basically, if it has seen no boundary at all, then it
    // will pre-cut at 50% target file size. Every boundary it has seen
    // increases the threshold by 5%, max at 90%, which it will always cut.
    // The idea is based on if it has seen more boundaries before, it will more
    // likely to see another boundary (file cutting opportunity) before the
    // target file size. The test shows it can generate larger files than a
    // static threshold like 75% and has a similar write amplification
    // improvement.
    if (compaction_->immutable_options()->compaction_style ==
            kCompactionStyleLevel &&
        compaction_->immutable_options()->level_compaction_dynamic_file_size &&
        current_output_file_size_ >=
            ((compaction_->target_output_file_size() + 99) / 100) *
                (50 + std::min(grandparent_boundary_switched_num_ * 5,
                               size_t{40}))) {
      return true;
    }
  }

  // check ttl file boundaries if there's any
  if (!files_to_cut_for_ttl_.empty()) {
    if (cur_files_to_cut_for_ttl_ != -1) {
      // Previous key is inside the range of a file
      if (icmp->Compare(internal_key,
                        files_to_cut_for_ttl_[cur_files_to_cut_for_ttl_]
                            ->largest.Encode()) > 0) {
        next_files_to_cut_for_ttl_ = cur_files_to_cut_for_ttl_ + 1;
        cur_files_to_cut_for_ttl_ = -1;
        return true;
      }
    } else {
      // Look for the key position
      while (next_files_to_cut_for_ttl_ <
             static_cast<int>(files_to_cut_for_ttl_.size())) {
        if (icmp->Compare(internal_key,
                          files_to_cut_for_ttl_[next_files_to_cut_for_ttl_]
                              ->smallest.Encode()) >= 0) {
          if (icmp->Compare(internal_key,
                            files_to_cut_for_ttl_[next_files_to_cut_for_ttl_]
                                ->largest.Encode()) <= 0) {
            // With in the current file
            cur_files_to_cut_for_ttl_ = next_files_to_cut_for_ttl_;
            return true;
          }
          // Beyond the current file
          next_files_to_cut_for_ttl_++;
        } else {
          // Still fall into the gap
          break;
        }
      }
    }
  }

  return false;
}

Status CompactionOutputs::AddToOutput(
    const CompactionIterator& c_iter,
    const CompactionFileOpenFunc& open_file_func,
    const CompactionFileCloseFunc& close_file_func) {
  Status s;
  const Slice& key = c_iter.key();

  if (ShouldStopBefore(c_iter) && HasBuilder()) {
    s = close_file_func(*this, c_iter.InputStatus(), key);
    if (!s.ok()) {
      return s;
    }
    // reset grandparent information
    grandparent_boundary_switched_num_ = 0;
    grandparent_overlapped_bytes_ =
        GetCurrentKeyGrandparentOverlappedBytes(key);
  }

  // Open output file if necessary
  if (!HasBuilder()) {
    s = open_file_func(*this);
    if (!s.ok()) {
      return s;
    }
  }

  assert(builder_ != nullptr);
  const Slice& value = c_iter.value();
  s = current_output().validator.Add(key, value);
  if (!s.ok()) {
    return s;
  }
  builder_->Add(key, value);

  stats_.num_output_records++;
  current_output_file_size_ = builder_->EstimatedFileSize();

  if (blob_garbage_meter_) {
    s = blob_garbage_meter_->ProcessOutFlow(key, value);
  }

  if (!s.ok()) {
    return s;
  }

  const ParsedInternalKey& ikey = c_iter.ikey();
  s = current_output().meta.UpdateBoundaries(key, value, ikey.sequence,
                                             ikey.type);

  if (partitioner_) {
    last_key_for_partitioner_.assign(c_iter.user_key().data_,
                                     c_iter.user_key().size_);
  }

  return s;
}

Status CompactionOutputs::AddRangeDels(
    const Slice* comp_start_user_key, const Slice* comp_end_user_key,
    CompactionIterationStats& range_del_out_stats, bool bottommost_level,
    const InternalKeyComparator& icmp, SequenceNumber earliest_snapshot,
    const Slice& next_table_min_key, const std::string& full_history_ts_low) {
  assert(HasRangeDel());
  FileMetaData& meta = current_output().meta;
  const Comparator* ucmp = icmp.user_comparator();

  Slice lower_bound_guard, upper_bound_guard;
  std::string smallest_user_key;
  const Slice *lower_bound, *upper_bound;
  bool lower_bound_from_sub_compact = false;

  size_t output_size = outputs_.size();
  if (output_size == 1) {
    // For the first output table, include range tombstones before the min
    // key but after the subcompaction boundary.
    lower_bound = comp_start_user_key;
    lower_bound_from_sub_compact = true;
  } else if (meta.smallest.size() > 0) {
    // For subsequent output tables, only include range tombstones from min
    // key onwards since the previous file was extended to contain range
    // tombstones falling before min key.
    smallest_user_key = meta.smallest.user_key().ToString(false /*hex*/);
    lower_bound_guard = Slice(smallest_user_key);
    lower_bound = &lower_bound_guard;
  } else {
    lower_bound = nullptr;
  }
  if (!next_table_min_key.empty()) {
    // This may be the last file in the subcompaction in some cases, so we
    // need to compare the end key of subcompaction with the next file start
    // key. When the end key is chosen by the subcompaction, we know that
    // it must be the biggest key in output file. Therefore, it is safe to
    // use the smaller key as the upper bound of the output file, to ensure
    // that there is no overlapping between different output files.
    upper_bound_guard = ExtractUserKey(next_table_min_key);
    if (comp_end_user_key != nullptr &&
        ucmp->CompareWithoutTimestamp(upper_bound_guard, *comp_end_user_key) >=
            0) {
      upper_bound = comp_end_user_key;
    } else {
      upper_bound = &upper_bound_guard;
    }
  } else {
    // This is the last file in the subcompaction, so extend until the
    // subcompaction ends.
    upper_bound = comp_end_user_key;
  }
  bool has_overlapping_endpoints;
  if (upper_bound != nullptr && meta.largest.size() > 0) {
    has_overlapping_endpoints = ucmp->CompareWithoutTimestamp(
                                    meta.largest.user_key(), *upper_bound) == 0;
  } else {
    has_overlapping_endpoints = false;
  }

  // The end key of the subcompaction must be bigger or equal to the upper
  // bound. If the end of subcompaction is null or the upper bound is null,
  // it means that this file is the last file in the compaction. So there
  // will be no overlapping between this file and others.
  assert(comp_end_user_key == nullptr || upper_bound == nullptr ||
         ucmp->CompareWithoutTimestamp(*upper_bound, *comp_end_user_key) <= 0);
  auto it = range_del_agg_->NewIterator(lower_bound, upper_bound,
                                        has_overlapping_endpoints);
  // Position the range tombstone output iterator. There may be tombstone
  // fragments that are entirely out of range, so make sure that we do not
  // include those.
  if (lower_bound != nullptr) {
    it->Seek(*lower_bound);
  } else {
    it->SeekToFirst();
  }
  for (; it->Valid(); it->Next()) {
    auto tombstone = it->Tombstone();
    if (upper_bound != nullptr) {
      int cmp =
          ucmp->CompareWithoutTimestamp(*upper_bound, tombstone.start_key_);
      if ((has_overlapping_endpoints && cmp < 0) ||
          (!has_overlapping_endpoints && cmp <= 0)) {
        // Tombstones starting after upper_bound only need to be included in
        // the next table. If the current SST ends before upper_bound, i.e.,
        // `has_overlapping_endpoints == false`, we can also skip over range
        // tombstones that start exactly at upper_bound. Such range
        // tombstones will be included in the next file and are not relevant
        // to the point keys or endpoints of the current file.
        break;
      }
    }

    const size_t ts_sz = ucmp->timestamp_size();
    // Garbage collection for range tombstones.
    // If user-defined timestamp is enabled, range tombstones are dropped if
    // they are at bottommost_level, below full_history_ts_low and not visible
    // in any snapshot. trim_ts_ is passed to the constructor for
    // range_del_agg_, and range_del_agg_ internally drops tombstones above
    // trim_ts_.
    if (bottommost_level && tombstone.seq_ <= earliest_snapshot &&
        (ts_sz == 0 ||
         (!full_history_ts_low.empty() &&
          ucmp->CompareTimestamp(tombstone.ts_, full_history_ts_low) < 0))) {
      // TODO(andrewkr): tombstones that span multiple output files are
      // counted for each compaction output file, so lots of double
      // counting.
      range_del_out_stats.num_range_del_drop_obsolete++;
      range_del_out_stats.num_record_drop_obsolete++;
      continue;
    }

    auto kv = tombstone.Serialize();
    assert(lower_bound == nullptr ||
           ucmp->CompareWithoutTimestamp(*lower_bound, kv.second) < 0);
    // Range tombstone is not supported by output validator yet.
    builder_->Add(kv.first.Encode(), kv.second);
    InternalKey smallest_candidate = std::move(kv.first);
    if (lower_bound != nullptr &&
        ucmp->CompareWithoutTimestamp(smallest_candidate.user_key(),
                                      *lower_bound) <= 0) {
      // Pretend the smallest key has the same user key as lower_bound
      // (the max key in the previous table or subcompaction) in order for
      // files to appear key-space partitioned.
      //
      // When lower_bound is chosen by a subcompaction, we know that
      // subcompactions over smaller keys cannot contain any keys at
      // lower_bound. We also know that smaller subcompactions exist,
      // because otherwise the subcompaction woud be unbounded on the left.
      // As a result, we know that no other files on the output level will
      // contain actual keys at lower_bound (an output file may have a
      // largest key of lower_bound@kMaxSequenceNumber, but this only
      // indicates a large range tombstone was truncated). Therefore, it is
      // safe to use the tombstone's sequence number, to ensure that keys at
      // lower_bound at lower levels are covered by truncated tombstones.
      //
      // If lower_bound was chosen by the smallest data key in the file,
      // choose lowest seqnum so this file's smallest internal key comes
      // after the previous file's largest. The fake seqnum is OK because
      // the read path's file-picking code only considers user key.
      if (lower_bound_from_sub_compact) {
        if (ts_sz) {
          assert(tombstone.ts_.size() == ts_sz);
          smallest_candidate = InternalKey(*lower_bound, tombstone.seq_,
                                           kTypeRangeDeletion, tombstone.ts_);
        } else {
          smallest_candidate =
              InternalKey(*lower_bound, tombstone.seq_, kTypeRangeDeletion);
        }
      } else {
        smallest_candidate = InternalKey(*lower_bound, 0, kTypeRangeDeletion);
      }
    }
    InternalKey largest_candidate = tombstone.SerializeEndKey();
    if (upper_bound != nullptr &&
        ucmp->CompareWithoutTimestamp(*upper_bound,
                                      largest_candidate.user_key()) <= 0) {
      // Pretend the largest key has the same user key as upper_bound (the
      // min key in the following table or subcompaction) in order for files
      // to appear key-space partitioned.
      //
      // Choose highest seqnum so this file's largest internal key comes
      // before the next file's/subcompaction's smallest. The fake seqnum is
      // OK because the read path's file-picking code only considers the
      // user key portion.
      //
      // Note Seek() also creates InternalKey with (user_key,
      // kMaxSequenceNumber), but with kTypeDeletion (0x7) instead of
      // kTypeRangeDeletion (0xF), so the range tombstone comes before the
      // Seek() key in InternalKey's ordering. So Seek() will look in the
      // next file for the user key
      if (ts_sz) {
        static constexpr char kTsMax[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff";
        if (ts_sz <= strlen(kTsMax)) {
          largest_candidate =
              InternalKey(*upper_bound, kMaxSequenceNumber, kTypeRangeDeletion,
                          Slice(kTsMax, ts_sz));
        } else {
          largest_candidate =
              InternalKey(*upper_bound, kMaxSequenceNumber, kTypeRangeDeletion,
                          std::string(ts_sz, '\xff'));
        }
      } else {
        largest_candidate =
            InternalKey(*upper_bound, kMaxSequenceNumber, kTypeRangeDeletion);
      }
    }
#ifndef NDEBUG
    SequenceNumber smallest_ikey_seqnum = kMaxSequenceNumber;
    if (meta.smallest.size() > 0) {
      smallest_ikey_seqnum = GetInternalKeySeqno(meta.smallest.Encode());
    }
#endif
    meta.UpdateBoundariesForRange(smallest_candidate, largest_candidate,
                                  tombstone.seq_, icmp);
    // The smallest key in a file is used for range tombstone truncation, so
    // it cannot have a seqnum of 0 (unless the smallest data key in a file
    // has a seqnum of 0). Otherwise, the truncated tombstone may expose
    // deleted keys at lower levels.
    assert(smallest_ikey_seqnum == 0 ||
           ExtractInternalKeyFooter(meta.smallest.Encode()) !=
               PackSequenceAndType(0, kTypeRangeDeletion));
  }
  return Status::OK();
}

void CompactionOutputs::FillFilesToCutForTtl() {
  if (compaction_->immutable_options()->compaction_style !=
          kCompactionStyleLevel ||
      compaction_->immutable_options()->compaction_pri !=
          kMinOverlappingRatio ||
      compaction_->mutable_cf_options()->ttl == 0 ||
      compaction_->num_input_levels() < 2 || compaction_->bottommost_level()) {
    return;
  }

  // We define new file with the oldest ancestor time to be younger than 1/4
  // TTL, and an old one to be older than 1/2 TTL time.
  int64_t temp_current_time;
  auto get_time_status =
      compaction_->immutable_options()->clock->GetCurrentTime(
          &temp_current_time);
  if (!get_time_status.ok()) {
    return;
  }

  auto current_time = static_cast<uint64_t>(temp_current_time);
  if (current_time < compaction_->mutable_cf_options()->ttl) {
    return;
  }

  uint64_t old_age_thres =
      current_time - compaction_->mutable_cf_options()->ttl / 2;
  const std::vector<FileMetaData*>& olevel =
      *(compaction_->inputs(compaction_->num_input_levels() - 1));
  for (FileMetaData* file : olevel) {
    // Worth filtering out by start and end?
    uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime();
    // We put old files if they are not too small to prevent a flood
    // of small files.
    if (oldest_ancester_time < old_age_thres &&
        file->fd.GetFileSize() >
            compaction_->mutable_cf_options()->target_file_size_base / 2) {
      files_to_cut_for_ttl_.push_back(file);
    }
  }
}

CompactionOutputs::CompactionOutputs(const Compaction* compaction,
                                     const bool is_penultimate_level)
    : compaction_(compaction), is_penultimate_level_(is_penultimate_level) {
  partitioner_ = compaction->output_level() == 0
                     ? nullptr
                     : compaction->CreateSstPartitioner();

  if (compaction->output_level() != 0) {
    FillFilesToCutForTtl();
  }
}

}  // namespace ROCKSDB_NAMESPACE