summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/compaction/compaction_picker_universal.cc
blob: 376e4f60f874b47117911daf43149e7d4202639d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/compaction/compaction_picker_universal.h"
#ifndef ROCKSDB_LITE

#include <cinttypes>
#include <limits>
#include <queue>
#include <string>
#include <utility>

#include "db/column_family.h"
#include "file/filename.h"
#include "logging/log_buffer.h"
#include "logging/logging.h"
#include "monitoring/statistics.h"
#include "test_util/sync_point.h"
#include "util/random.h"
#include "util/string_util.h"

namespace ROCKSDB_NAMESPACE {
namespace {
// A helper class that form universal compactions. The class is used by
// UniversalCompactionPicker::PickCompaction().
// The usage is to create the class, and get the compaction object by calling
// PickCompaction().
class UniversalCompactionBuilder {
 public:
  UniversalCompactionBuilder(
      const ImmutableOptions& ioptions, const InternalKeyComparator* icmp,
      const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
      const MutableDBOptions& mutable_db_options, VersionStorageInfo* vstorage,
      UniversalCompactionPicker* picker, LogBuffer* log_buffer)
      : ioptions_(ioptions),
        icmp_(icmp),
        cf_name_(cf_name),
        mutable_cf_options_(mutable_cf_options),
        mutable_db_options_(mutable_db_options),
        vstorage_(vstorage),
        picker_(picker),
        log_buffer_(log_buffer) {}

  // Form and return the compaction object. The caller owns return object.
  Compaction* PickCompaction();

 private:
  struct SortedRun {
    SortedRun(int _level, FileMetaData* _file, uint64_t _size,
              uint64_t _compensated_file_size, bool _being_compacted)
        : level(_level),
          file(_file),
          size(_size),
          compensated_file_size(_compensated_file_size),
          being_compacted(_being_compacted) {
      assert(compensated_file_size > 0);
      assert(level != 0 || file != nullptr);
    }

    void Dump(char* out_buf, size_t out_buf_size,
              bool print_path = false) const;

    // sorted_run_count is added into the string to print
    void DumpSizeInfo(char* out_buf, size_t out_buf_size,
                      size_t sorted_run_count) const;

    int level;
    // `file` Will be null for level > 0. For level = 0, the sorted run is
    // for this file.
    FileMetaData* file;
    // For level > 0, `size` and `compensated_file_size` are sum of sizes all
    // files in the level. `being_compacted` should be the same for all files
    // in a non-zero level. Use the value here.
    uint64_t size;
    uint64_t compensated_file_size;
    bool being_compacted;
  };

  // Pick Universal compaction to limit read amplification
  Compaction* PickCompactionToReduceSortedRuns(
      unsigned int ratio, unsigned int max_number_of_files_to_compact);

  // Pick Universal compaction to limit space amplification.
  Compaction* PickCompactionToReduceSizeAmp();

  // Try to pick incremental compaction to reduce space amplification.
  // It will return null if it cannot find a fanout within the threshold.
  // Fanout is defined as
  //    total size of files to compact at output level
  //  --------------------------------------------------
  //    total size of files to compact at other levels
  Compaction* PickIncrementalForReduceSizeAmp(double fanout_threshold);

  Compaction* PickDeleteTriggeredCompaction();

  // Form a compaction from the sorted run indicated by start_index to the
  // oldest sorted run.
  // The caller is responsible for making sure that those files are not in
  // compaction.
  Compaction* PickCompactionToOldest(size_t start_index,
                                     CompactionReason compaction_reason);

  Compaction* PickCompactionWithSortedRunRange(
      size_t start_index, size_t end_index, CompactionReason compaction_reason);

  // Try to pick periodic compaction. The caller should only call it
  // if there is at least one file marked for periodic compaction.
  // null will be returned if no such a compaction can be formed
  // because some files are being compacted.
  Compaction* PickPeriodicCompaction();

  // Used in universal compaction when the allow_trivial_move
  // option is set. Checks whether there are any overlapping files
  // in the input. Returns true if the input files are non
  // overlapping.
  bool IsInputFilesNonOverlapping(Compaction* c);

  uint64_t GetMaxOverlappingBytes() const;

  const ImmutableOptions& ioptions_;
  const InternalKeyComparator* icmp_;
  double score_;
  std::vector<SortedRun> sorted_runs_;
  const std::string& cf_name_;
  const MutableCFOptions& mutable_cf_options_;
  const MutableDBOptions& mutable_db_options_;
  VersionStorageInfo* vstorage_;
  UniversalCompactionPicker* picker_;
  LogBuffer* log_buffer_;

  static std::vector<SortedRun> CalculateSortedRuns(
      const VersionStorageInfo& vstorage);

  // Pick a path ID to place a newly generated file, with its estimated file
  // size.
  static uint32_t GetPathId(const ImmutableCFOptions& ioptions,
                            const MutableCFOptions& mutable_cf_options,
                            uint64_t file_size);
};

// Used in universal compaction when trivial move is enabled.
// This structure is used for the construction of min heap
// that contains the file meta data, the level of the file
// and the index of the file in that level

struct InputFileInfo {
  InputFileInfo() : f(nullptr), level(0), index(0) {}

  FileMetaData* f;
  size_t level;
  size_t index;
};

// Used in universal compaction when trivial move is enabled.
// This comparator is used for the construction of min heap
// based on the smallest key of the file.
struct SmallestKeyHeapComparator {
  explicit SmallestKeyHeapComparator(const Comparator* ucmp) { ucmp_ = ucmp; }

  bool operator()(InputFileInfo i1, InputFileInfo i2) const {
    return (ucmp_->CompareWithoutTimestamp(i1.f->smallest.user_key(),
                                           i2.f->smallest.user_key()) > 0);
  }

 private:
  const Comparator* ucmp_;
};

using SmallestKeyHeap =
    std::priority_queue<InputFileInfo, std::vector<InputFileInfo>,
                        SmallestKeyHeapComparator>;

// This function creates the heap that is used to find if the files are
// overlapping during universal compaction when the allow_trivial_move
// is set.
SmallestKeyHeap create_level_heap(Compaction* c, const Comparator* ucmp) {
  SmallestKeyHeap smallest_key_priority_q =
      SmallestKeyHeap(SmallestKeyHeapComparator(ucmp));

  InputFileInfo input_file;

  for (size_t l = 0; l < c->num_input_levels(); l++) {
    if (c->num_input_files(l) != 0) {
      if (l == 0 && c->start_level() == 0) {
        for (size_t i = 0; i < c->num_input_files(0); i++) {
          input_file.f = c->input(0, i);
          input_file.level = 0;
          input_file.index = i;
          smallest_key_priority_q.push(std::move(input_file));
        }
      } else {
        input_file.f = c->input(l, 0);
        input_file.level = l;
        input_file.index = 0;
        smallest_key_priority_q.push(std::move(input_file));
      }
    }
  }
  return smallest_key_priority_q;
}

#ifndef NDEBUG
// smallest_seqno and largest_seqno are set iff. `files` is not empty.
void GetSmallestLargestSeqno(const std::vector<FileMetaData*>& files,
                             SequenceNumber* smallest_seqno,
                             SequenceNumber* largest_seqno) {
  bool is_first = true;
  for (FileMetaData* f : files) {
    assert(f->fd.smallest_seqno <= f->fd.largest_seqno);
    if (is_first) {
      is_first = false;
      *smallest_seqno = f->fd.smallest_seqno;
      *largest_seqno = f->fd.largest_seqno;
    } else {
      if (f->fd.smallest_seqno < *smallest_seqno) {
        *smallest_seqno = f->fd.smallest_seqno;
      }
      if (f->fd.largest_seqno > *largest_seqno) {
        *largest_seqno = f->fd.largest_seqno;
      }
    }
  }
}
#endif
}  // namespace

// Algorithm that checks to see if there are any overlapping
// files in the input
bool UniversalCompactionBuilder::IsInputFilesNonOverlapping(Compaction* c) {
  auto comparator = icmp_->user_comparator();
  int first_iter = 1;

  InputFileInfo prev, curr, next;

  SmallestKeyHeap smallest_key_priority_q =
      create_level_heap(c, icmp_->user_comparator());

  while (!smallest_key_priority_q.empty()) {
    curr = smallest_key_priority_q.top();
    smallest_key_priority_q.pop();

    if (first_iter) {
      prev = curr;
      first_iter = 0;
    } else {
      if (comparator->CompareWithoutTimestamp(
              prev.f->largest.user_key(), curr.f->smallest.user_key()) >= 0) {
        // found overlapping files, return false
        return false;
      }
      assert(comparator->CompareWithoutTimestamp(
                 curr.f->largest.user_key(), prev.f->largest.user_key()) > 0);
      prev = curr;
    }

    next.f = nullptr;

    if (c->level(curr.level) != 0 &&
        curr.index < c->num_input_files(curr.level) - 1) {
      next.f = c->input(curr.level, curr.index + 1);
      next.level = curr.level;
      next.index = curr.index + 1;
    }

    if (next.f) {
      smallest_key_priority_q.push(std::move(next));
    }
  }
  return true;
}

bool UniversalCompactionPicker::NeedsCompaction(
    const VersionStorageInfo* vstorage) const {
  const int kLevel0 = 0;
  if (vstorage->CompactionScore(kLevel0) >= 1) {
    return true;
  }
  if (!vstorage->FilesMarkedForPeriodicCompaction().empty()) {
    return true;
  }
  if (!vstorage->FilesMarkedForCompaction().empty()) {
    return true;
  }
  return false;
}

Compaction* UniversalCompactionPicker::PickCompaction(
    const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
    const MutableDBOptions& mutable_db_options, VersionStorageInfo* vstorage,
    LogBuffer* log_buffer, SequenceNumber /* earliest_memtable_seqno */) {
  UniversalCompactionBuilder builder(ioptions_, icmp_, cf_name,
                                     mutable_cf_options, mutable_db_options,
                                     vstorage, this, log_buffer);
  return builder.PickCompaction();
}

void UniversalCompactionBuilder::SortedRun::Dump(char* out_buf,
                                                 size_t out_buf_size,
                                                 bool print_path) const {
  if (level == 0) {
    assert(file != nullptr);
    if (file->fd.GetPathId() == 0 || !print_path) {
      snprintf(out_buf, out_buf_size, "file %" PRIu64, file->fd.GetNumber());
    } else {
      snprintf(out_buf, out_buf_size,
               "file %" PRIu64
               "(path "
               "%" PRIu32 ")",
               file->fd.GetNumber(), file->fd.GetPathId());
    }
  } else {
    snprintf(out_buf, out_buf_size, "level %d", level);
  }
}

void UniversalCompactionBuilder::SortedRun::DumpSizeInfo(
    char* out_buf, size_t out_buf_size, size_t sorted_run_count) const {
  if (level == 0) {
    assert(file != nullptr);
    snprintf(out_buf, out_buf_size,
             "file %" PRIu64 "[%" ROCKSDB_PRIszt
             "] "
             "with size %" PRIu64 " (compensated size %" PRIu64 ")",
             file->fd.GetNumber(), sorted_run_count, file->fd.GetFileSize(),
             file->compensated_file_size);
  } else {
    snprintf(out_buf, out_buf_size,
             "level %d[%" ROCKSDB_PRIszt
             "] "
             "with size %" PRIu64 " (compensated size %" PRIu64 ")",
             level, sorted_run_count, size, compensated_file_size);
  }
}

std::vector<UniversalCompactionBuilder::SortedRun>
UniversalCompactionBuilder::CalculateSortedRuns(
    const VersionStorageInfo& vstorage) {
  std::vector<UniversalCompactionBuilder::SortedRun> ret;
  for (FileMetaData* f : vstorage.LevelFiles(0)) {
    ret.emplace_back(0, f, f->fd.GetFileSize(), f->compensated_file_size,
                     f->being_compacted);
  }
  for (int level = 1; level < vstorage.num_levels(); level++) {
    uint64_t total_compensated_size = 0U;
    uint64_t total_size = 0U;
    bool being_compacted = false;
    for (FileMetaData* f : vstorage.LevelFiles(level)) {
      total_compensated_size += f->compensated_file_size;
      total_size += f->fd.GetFileSize();
      // Size amp, read amp and periodic compactions always include all files
      // for a non-zero level. However, a delete triggered compaction and
      // a trivial move might pick a subset of files in a sorted run. So
      // always check all files in a sorted run and mark the entire run as
      // being compacted if one or more files are being compacted
      if (f->being_compacted) {
        being_compacted = f->being_compacted;
      }
    }
    if (total_compensated_size > 0) {
      ret.emplace_back(level, nullptr, total_size, total_compensated_size,
                       being_compacted);
    }
  }
  return ret;
}

// Universal style of compaction. Pick files that are contiguous in
// time-range to compact.
Compaction* UniversalCompactionBuilder::PickCompaction() {
  const int kLevel0 = 0;
  score_ = vstorage_->CompactionScore(kLevel0);
  sorted_runs_ = CalculateSortedRuns(*vstorage_);

  if (sorted_runs_.size() == 0 ||
      (vstorage_->FilesMarkedForPeriodicCompaction().empty() &&
       vstorage_->FilesMarkedForCompaction().empty() &&
       sorted_runs_.size() < (unsigned int)mutable_cf_options_
                                 .level0_file_num_compaction_trigger)) {
    ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: nothing to do\n",
                     cf_name_.c_str());
    TEST_SYNC_POINT_CALLBACK(
        "UniversalCompactionBuilder::PickCompaction:Return", nullptr);
    return nullptr;
  }
  VersionStorageInfo::LevelSummaryStorage tmp;
  ROCKS_LOG_BUFFER_MAX_SZ(
      log_buffer_, 3072,
      "[%s] Universal: sorted runs: %" ROCKSDB_PRIszt " files: %s\n",
      cf_name_.c_str(), sorted_runs_.size(), vstorage_->LevelSummary(&tmp));

  Compaction* c = nullptr;
  // Periodic compaction has higher priority than other type of compaction
  // because it's a hard requirement.
  if (!vstorage_->FilesMarkedForPeriodicCompaction().empty()) {
    // Always need to do a full compaction for periodic compaction.
    c = PickPeriodicCompaction();
  }

  // Check for size amplification.
  if (c == nullptr &&
      sorted_runs_.size() >=
          static_cast<size_t>(
              mutable_cf_options_.level0_file_num_compaction_trigger)) {
    if ((c = PickCompactionToReduceSizeAmp()) != nullptr) {
      ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: compacting for size amp\n",
                       cf_name_.c_str());
    } else {
      // Size amplification is within limits. Try reducing read
      // amplification while maintaining file size ratios.
      unsigned int ratio =
          mutable_cf_options_.compaction_options_universal.size_ratio;

      if ((c = PickCompactionToReduceSortedRuns(ratio, UINT_MAX)) != nullptr) {
        ROCKS_LOG_BUFFER(log_buffer_,
                         "[%s] Universal: compacting for size ratio\n",
                         cf_name_.c_str());
      } else {
        // Size amplification and file size ratios are within configured limits.
        // If max read amplification is exceeding configured limits, then force
        // compaction without looking at filesize ratios and try to reduce
        // the number of files to fewer than level0_file_num_compaction_trigger.
        // This is guaranteed by NeedsCompaction()
        assert(sorted_runs_.size() >=
               static_cast<size_t>(
                   mutable_cf_options_.level0_file_num_compaction_trigger));
        // Get the total number of sorted runs that are not being compacted
        int num_sr_not_compacted = 0;
        for (size_t i = 0; i < sorted_runs_.size(); i++) {
          if (sorted_runs_[i].being_compacted == false) {
            num_sr_not_compacted++;
          }
        }

        // The number of sorted runs that are not being compacted is greater
        // than the maximum allowed number of sorted runs
        if (num_sr_not_compacted >
            mutable_cf_options_.level0_file_num_compaction_trigger) {
          unsigned int num_files =
              num_sr_not_compacted -
              mutable_cf_options_.level0_file_num_compaction_trigger + 1;
          if ((c = PickCompactionToReduceSortedRuns(UINT_MAX, num_files)) !=
              nullptr) {
            ROCKS_LOG_BUFFER(log_buffer_,
                             "[%s] Universal: compacting for file num -- %u\n",
                             cf_name_.c_str(), num_files);
          }
        }
      }
    }
  }

  if (c == nullptr) {
    if ((c = PickDeleteTriggeredCompaction()) != nullptr) {
      ROCKS_LOG_BUFFER(log_buffer_,
                       "[%s] Universal: delete triggered compaction\n",
                       cf_name_.c_str());
    }
  }

  if (c == nullptr) {
    TEST_SYNC_POINT_CALLBACK(
        "UniversalCompactionBuilder::PickCompaction:Return", nullptr);
    return nullptr;
  }

  if (mutable_cf_options_.compaction_options_universal.allow_trivial_move ==
          true &&
      c->compaction_reason() != CompactionReason::kPeriodicCompaction) {
    c->set_is_trivial_move(IsInputFilesNonOverlapping(c));
  }

// validate that all the chosen files of L0 are non overlapping in time
#ifndef NDEBUG
  bool is_first = true;

  size_t level_index = 0U;
  if (c->start_level() == 0) {
    for (auto f : *c->inputs(0)) {
      assert(f->fd.smallest_seqno <= f->fd.largest_seqno);
      if (is_first) {
        is_first = false;
      }
    }
    level_index = 1U;
  }
  for (; level_index < c->num_input_levels(); level_index++) {
    if (c->num_input_files(level_index) != 0) {
      SequenceNumber smallest_seqno = 0U;
      SequenceNumber largest_seqno = 0U;
      GetSmallestLargestSeqno(*(c->inputs(level_index)), &smallest_seqno,
                              &largest_seqno);
      if (is_first) {
        is_first = false;
      }
    }
  }
#endif
  // update statistics
  size_t num_files = 0;
  for (auto& each_level : *c->inputs()) {
    num_files += each_level.files.size();
  }
  RecordInHistogram(ioptions_.stats, NUM_FILES_IN_SINGLE_COMPACTION, num_files);

  picker_->RegisterCompaction(c);
  vstorage_->ComputeCompactionScore(ioptions_, mutable_cf_options_);

  TEST_SYNC_POINT_CALLBACK("UniversalCompactionBuilder::PickCompaction:Return",
                           c);
  return c;
}

uint32_t UniversalCompactionBuilder::GetPathId(
    const ImmutableCFOptions& ioptions,
    const MutableCFOptions& mutable_cf_options, uint64_t file_size) {
  // Two conditions need to be satisfied:
  // (1) the target path needs to be able to hold the file's size
  // (2) Total size left in this and previous paths need to be not
  //     smaller than expected future file size before this new file is
  //     compacted, which is estimated based on size_ratio.
  // For example, if now we are compacting files of size (1, 1, 2, 4, 8),
  // we will make sure the target file, probably with size of 16, will be
  // placed in a path so that eventually when new files are generated and
  // compacted to (1, 1, 2, 4, 8, 16), all those files can be stored in or
  // before the path we chose.
  //
  // TODO(sdong): now the case of multiple column families is not
  // considered in this algorithm. So the target size can be violated in
  // that case. We need to improve it.
  uint64_t accumulated_size = 0;
  uint64_t future_size =
      file_size *
      (100 - mutable_cf_options.compaction_options_universal.size_ratio) / 100;
  uint32_t p = 0;
  assert(!ioptions.cf_paths.empty());
  for (; p < ioptions.cf_paths.size() - 1; p++) {
    uint64_t target_size = ioptions.cf_paths[p].target_size;
    if (target_size > file_size &&
        accumulated_size + (target_size - file_size) > future_size) {
      return p;
    }
    accumulated_size += target_size;
  }
  return p;
}

//
// Consider compaction files based on their size differences with
// the next file in time order.
//
Compaction* UniversalCompactionBuilder::PickCompactionToReduceSortedRuns(
    unsigned int ratio, unsigned int max_number_of_files_to_compact) {
  unsigned int min_merge_width =
      mutable_cf_options_.compaction_options_universal.min_merge_width;
  unsigned int max_merge_width =
      mutable_cf_options_.compaction_options_universal.max_merge_width;

  const SortedRun* sr = nullptr;
  bool done = false;
  size_t start_index = 0;
  unsigned int candidate_count = 0;

  unsigned int max_files_to_compact =
      std::min(max_merge_width, max_number_of_files_to_compact);
  min_merge_width = std::max(min_merge_width, 2U);

  // Caller checks the size before executing this function. This invariant is
  // important because otherwise we may have a possible integer underflow when
  // dealing with unsigned types.
  assert(sorted_runs_.size() > 0);

  // Considers a candidate file only if it is smaller than the
  // total size accumulated so far.
  for (size_t loop = 0; loop < sorted_runs_.size(); loop++) {
    candidate_count = 0;

    // Skip files that are already being compacted
    for (sr = nullptr; loop < sorted_runs_.size(); loop++) {
      sr = &sorted_runs_[loop];

      if (!sr->being_compacted) {
        candidate_count = 1;
        break;
      }
      char file_num_buf[kFormatFileNumberBufSize];
      sr->Dump(file_num_buf, sizeof(file_num_buf));
      ROCKS_LOG_BUFFER(log_buffer_,
                       "[%s] Universal: %s"
                       "[%d] being compacted, skipping",
                       cf_name_.c_str(), file_num_buf, loop);

      sr = nullptr;
    }

    // This file is not being compacted. Consider it as the
    // first candidate to be compacted.
    uint64_t candidate_size = sr != nullptr ? sr->compensated_file_size : 0;
    if (sr != nullptr) {
      char file_num_buf[kFormatFileNumberBufSize];
      sr->Dump(file_num_buf, sizeof(file_num_buf), true);
      ROCKS_LOG_BUFFER(log_buffer_,
                       "[%s] Universal: Possible candidate %s[%d].",
                       cf_name_.c_str(), file_num_buf, loop);
    }

    // Check if the succeeding files need compaction.
    for (size_t i = loop + 1;
         candidate_count < max_files_to_compact && i < sorted_runs_.size();
         i++) {
      const SortedRun* succeeding_sr = &sorted_runs_[i];
      if (succeeding_sr->being_compacted) {
        break;
      }
      // Pick files if the total/last candidate file size (increased by the
      // specified ratio) is still larger than the next candidate file.
      // candidate_size is the total size of files picked so far with the
      // default kCompactionStopStyleTotalSize; with
      // kCompactionStopStyleSimilarSize, it's simply the size of the last
      // picked file.
      double sz = candidate_size * (100.0 + ratio) / 100.0;
      if (sz < static_cast<double>(succeeding_sr->size)) {
        break;
      }
      if (mutable_cf_options_.compaction_options_universal.stop_style ==
          kCompactionStopStyleSimilarSize) {
        // Similar-size stopping rule: also check the last picked file isn't
        // far larger than the next candidate file.
        sz = (succeeding_sr->size * (100.0 + ratio)) / 100.0;
        if (sz < static_cast<double>(candidate_size)) {
          // If the small file we've encountered begins a run of similar-size
          // files, we'll pick them up on a future iteration of the outer
          // loop. If it's some lonely straggler, it'll eventually get picked
          // by the last-resort read amp strategy which disregards size ratios.
          break;
        }
        candidate_size = succeeding_sr->compensated_file_size;
      } else {  // default kCompactionStopStyleTotalSize
        candidate_size += succeeding_sr->compensated_file_size;
      }
      candidate_count++;
    }

    // Found a series of consecutive files that need compaction.
    if (candidate_count >= (unsigned int)min_merge_width) {
      start_index = loop;
      done = true;
      break;
    } else {
      for (size_t i = loop;
           i < loop + candidate_count && i < sorted_runs_.size(); i++) {
        const SortedRun* skipping_sr = &sorted_runs_[i];
        char file_num_buf[256];
        skipping_sr->DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop);
        ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Skipping %s",
                         cf_name_.c_str(), file_num_buf);
      }
    }
  }
  if (!done || candidate_count <= 1) {
    return nullptr;
  }
  size_t first_index_after = start_index + candidate_count;
  // Compression is enabled if files compacted earlier already reached
  // size ratio of compression.
  bool enable_compression = true;
  int ratio_to_compress =
      mutable_cf_options_.compaction_options_universal.compression_size_percent;
  if (ratio_to_compress >= 0) {
    uint64_t total_size = 0;
    for (auto& sorted_run : sorted_runs_) {
      total_size += sorted_run.compensated_file_size;
    }

    uint64_t older_file_size = 0;
    for (size_t i = sorted_runs_.size() - 1; i >= first_index_after; i--) {
      older_file_size += sorted_runs_[i].size;
      if (older_file_size * 100L >= total_size * (long)ratio_to_compress) {
        enable_compression = false;
        break;
      }
    }
  }

  uint64_t estimated_total_size = 0;
  for (unsigned int i = 0; i < first_index_after; i++) {
    estimated_total_size += sorted_runs_[i].size;
  }
  uint32_t path_id =
      GetPathId(ioptions_, mutable_cf_options_, estimated_total_size);
  int start_level = sorted_runs_[start_index].level;
  int output_level;
  if (first_index_after == sorted_runs_.size()) {
    output_level = vstorage_->num_levels() - 1;
  } else if (sorted_runs_[first_index_after].level == 0) {
    output_level = 0;
  } else {
    output_level = sorted_runs_[first_index_after].level - 1;
  }

  // last level is reserved for the files ingested behind
  if (ioptions_.allow_ingest_behind &&
      (output_level == vstorage_->num_levels() - 1)) {
    assert(output_level > 1);
    output_level--;
  }

  std::vector<CompactionInputFiles> inputs(vstorage_->num_levels());
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs[i].level = start_level + static_cast<int>(i);
  }
  for (size_t i = start_index; i < first_index_after; i++) {
    auto& picking_sr = sorted_runs_[i];
    if (picking_sr.level == 0) {
      FileMetaData* picking_file = picking_sr.file;
      inputs[0].files.push_back(picking_file);
    } else {
      auto& files = inputs[picking_sr.level - start_level].files;
      for (auto* f : vstorage_->LevelFiles(picking_sr.level)) {
        files.push_back(f);
      }
    }
    char file_num_buf[256];
    picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), i);
    ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Picking %s",
                     cf_name_.c_str(), file_num_buf);
  }

  std::vector<FileMetaData*> grandparents;
  // Include grandparents for potential file cutting in incremental
  // mode. It is for aligning file cutting boundaries across levels,
  // so that subsequent compactions can pick files with aligned
  // buffer.
  // Single files are only picked up in incremental mode, so that
  // there is no need for full range.
  if (mutable_cf_options_.compaction_options_universal.incremental &&
      first_index_after < sorted_runs_.size() &&
      sorted_runs_[first_index_after].level > 1) {
    grandparents = vstorage_->LevelFiles(sorted_runs_[first_index_after].level);
  }

  if (output_level != 0 &&
      picker_->FilesRangeOverlapWithCompaction(
          inputs, output_level,
          Compaction::EvaluatePenultimateLevel(vstorage_, ioptions_,
                                               start_level, output_level))) {
    return nullptr;
  }
  CompactionReason compaction_reason;
  if (max_number_of_files_to_compact == UINT_MAX) {
    compaction_reason = CompactionReason::kUniversalSizeRatio;
  } else {
    compaction_reason = CompactionReason::kUniversalSortedRunNum;
  }
  return new Compaction(vstorage_, ioptions_, mutable_cf_options_,
                        mutable_db_options_, std::move(inputs), output_level,
                        MaxFileSizeForLevel(mutable_cf_options_, output_level,
                                            kCompactionStyleUniversal),
                        GetMaxOverlappingBytes(), path_id,
                        GetCompressionType(vstorage_, mutable_cf_options_,
                                           output_level, 1, enable_compression),
                        GetCompressionOptions(mutable_cf_options_, vstorage_,
                                              output_level, enable_compression),
                        Temperature::kUnknown,
                        /* max_subcompactions */ 0, grandparents,
                        /* is manual */ false, /* trim_ts */ "", score_,
                        false /* deletion_compaction */,
                        /* l0_files_might_overlap */ true, compaction_reason);
}

// Look at overall size amplification. If size amplification
// exceeds the configured value, then do a compaction
// of the candidate files all the way upto the earliest
// base file (overrides configured values of file-size ratios,
// min_merge_width and max_merge_width).
//
Compaction* UniversalCompactionBuilder::PickCompactionToReduceSizeAmp() {
  // percentage flexibility while reducing size amplification
  uint64_t ratio = mutable_cf_options_.compaction_options_universal
                       .max_size_amplification_percent;

  unsigned int candidate_count = 0;
  uint64_t candidate_size = 0;
  size_t start_index = 0;
  const SortedRun* sr = nullptr;

  assert(!sorted_runs_.empty());
  if (sorted_runs_.back().being_compacted) {
    return nullptr;
  }

  // Skip files that are already being compacted
  for (size_t loop = 0; loop + 1 < sorted_runs_.size(); loop++) {
    sr = &sorted_runs_[loop];
    if (!sr->being_compacted) {
      start_index = loop;  // Consider this as the first candidate.
      break;
    }
    char file_num_buf[kFormatFileNumberBufSize];
    sr->Dump(file_num_buf, sizeof(file_num_buf), true);
    ROCKS_LOG_BUFFER(log_buffer_,
                     "[%s] Universal: skipping %s[%d] compacted %s",
                     cf_name_.c_str(), file_num_buf, loop,
                     " cannot be a candidate to reduce size amp.\n");
    sr = nullptr;
  }

  if (sr == nullptr) {
    return nullptr;  // no candidate files
  }
  {
    char file_num_buf[kFormatFileNumberBufSize];
    sr->Dump(file_num_buf, sizeof(file_num_buf), true);
    ROCKS_LOG_BUFFER(
        log_buffer_,
        "[%s] Universal: First candidate %s[%" ROCKSDB_PRIszt "] %s",
        cf_name_.c_str(), file_num_buf, start_index, " to reduce size amp.\n");
  }

  // size of the base sorted run for size amp calculation
  uint64_t base_sr_size = sorted_runs_.back().size;
  size_t sr_end_idx = sorted_runs_.size() - 1;
  // If tiered compaction is enabled and the last sorted run is the last level
  if (ioptions_.preclude_last_level_data_seconds > 0 &&
      ioptions_.num_levels > 2 &&
      sorted_runs_.back().level == ioptions_.num_levels - 1 &&
      sorted_runs_.size() > 1) {
    sr_end_idx = sorted_runs_.size() - 2;
    base_sr_size = sorted_runs_[sr_end_idx].size;
  }

  // keep adding up all the remaining files
  for (size_t loop = start_index; loop < sr_end_idx; loop++) {
    sr = &sorted_runs_[loop];
    if (sr->being_compacted) {
      // TODO with incremental compaction is supported, we might want to
      // schedule some incremental compactions in parallel if needed.
      char file_num_buf[kFormatFileNumberBufSize];
      sr->Dump(file_num_buf, sizeof(file_num_buf), true);
      ROCKS_LOG_BUFFER(
          log_buffer_, "[%s] Universal: Possible candidate %s[%d] %s",
          cf_name_.c_str(), file_num_buf, start_index,
          " is already being compacted. No size amp reduction possible.\n");
      return nullptr;
    }
    candidate_size += sr->compensated_file_size;
    candidate_count++;
  }
  if (candidate_count == 0) {
    return nullptr;
  }

  // size amplification = percentage of additional size
  if (candidate_size * 100 < ratio * base_sr_size) {
    ROCKS_LOG_BUFFER(
        log_buffer_,
        "[%s] Universal: size amp not needed. newer-files-total-size %" PRIu64
        " earliest-file-size %" PRIu64,
        cf_name_.c_str(), candidate_size, base_sr_size);
    return nullptr;
  } else {
    ROCKS_LOG_BUFFER(
        log_buffer_,
        "[%s] Universal: size amp needed. newer-files-total-size %" PRIu64
        " earliest-file-size %" PRIu64,
        cf_name_.c_str(), candidate_size, base_sr_size);
  }
  // Since incremental compaction can't include more than second last
  // level, it can introduce penalty, compared to full compaction. We
  // hard code the pentalty to be 80%. If we end up with a compaction
  // fanout higher than 80% of full level compactions, we fall back
  // to full level compaction.
  // The 80% threshold is arbitrary and can be adjusted or made
  // configurable in the future.
  // This also prevent the case when compaction falls behind and we
  // need to compact more levels for compactions to catch up.
  if (mutable_cf_options_.compaction_options_universal.incremental) {
    double fanout_threshold = static_cast<double>(base_sr_size) /
                              static_cast<double>(candidate_size) * 1.8;
    Compaction* picked = PickIncrementalForReduceSizeAmp(fanout_threshold);
    if (picked != nullptr) {
      // As the feature is still incremental, picking incremental compaction
      // might fail and we will fall bck to compacting full level.
      return picked;
    }
  }
  return PickCompactionWithSortedRunRange(
      start_index, sr_end_idx, CompactionReason::kUniversalSizeAmplification);
}

Compaction* UniversalCompactionBuilder::PickIncrementalForReduceSizeAmp(
    double fanout_threshold) {
  // Try find all potential compactions with total size just over
  // options.max_compaction_size / 2, and take the one with the lowest
  // fanout (defined in declaration of the function).
  // This is done by having a sliding window of the files at the second
  // lowest level, and keep expanding while finding overlapping in the
  // last level. Once total size exceeds the size threshold, calculate
  // the fanout value. And then shrinking from the small side of the
  // window. Keep doing it until the end.
  // Finally, we try to include upper level files if they fall into
  // the range.
  //
  // Note that it is a similar problem as leveled compaction's
  // kMinOverlappingRatio priority, but instead of picking single files
  // we expand to a target compaction size. The reason is that in
  // leveled compaction, actual fanout value tends to high, e.g. 10, so
  // even with single file in down merging level, the extra size
  // compacted in boundary files is at a lower ratio. But here users
  // often have size of second last level size to be 1/4, 1/3 or even
  // 1/2 of the bottommost level, so picking single file in second most
  // level will cause significant waste, which is not desirable.
  //
  // This algorithm has lots of room to improve to pick more efficient
  // compactions.
  assert(sorted_runs_.size() >= 2);
  int second_last_level = sorted_runs_[sorted_runs_.size() - 2].level;
  if (second_last_level == 0) {
    // Can't split Level 0.
    return nullptr;
  }
  int output_level = sorted_runs_.back().level;
  const std::vector<FileMetaData*>& bottom_files =
      vstorage_->LevelFiles(output_level);
  const std::vector<FileMetaData*>& files =
      vstorage_->LevelFiles(second_last_level);
  assert(!bottom_files.empty());
  assert(!files.empty());

  //  std::unordered_map<uint64_t, uint64_t> file_to_order;

  int picked_start_idx = 0;
  int picked_end_idx = 0;
  double picked_fanout = fanout_threshold;

  // Use half target compaction bytes as anchor to stop growing second most
  // level files, and reserve growing space for more overlapping bottom level,
  // clean cut, files from other levels, etc.
  uint64_t comp_thres_size = mutable_cf_options_.max_compaction_bytes / 2;
  int start_idx = 0;
  int bottom_end_idx = 0;
  int bottom_start_idx = 0;
  uint64_t non_bottom_size = 0;
  uint64_t bottom_size = 0;
  bool end_bottom_size_counted = false;
  for (int end_idx = 0; end_idx < static_cast<int>(files.size()); end_idx++) {
    FileMetaData* end_file = files[end_idx];

    // Include bottom most level files smaller than the current second
    // last level file.
    int num_skipped = 0;
    while (bottom_end_idx < static_cast<int>(bottom_files.size()) &&
           icmp_->Compare(bottom_files[bottom_end_idx]->largest,
                          end_file->smallest) < 0) {
      if (!end_bottom_size_counted) {
        bottom_size += bottom_files[bottom_end_idx]->fd.file_size;
      }
      bottom_end_idx++;
      end_bottom_size_counted = false;
      num_skipped++;
    }

    if (num_skipped > 1) {
      // At least a file in the bottom most level falls into the file gap. No
      // reason to include the file. We cut the range and start a new sliding
      // window.
      start_idx = end_idx;
    }

    if (start_idx == end_idx) {
      // new sliding window.
      non_bottom_size = 0;
      bottom_size = 0;
      bottom_start_idx = bottom_end_idx;
      end_bottom_size_counted = false;
    }

    non_bottom_size += end_file->fd.file_size;

    // Include all overlapping files in bottom level.
    while (bottom_end_idx < static_cast<int>(bottom_files.size()) &&
           icmp_->Compare(bottom_files[bottom_end_idx]->smallest,
                          end_file->largest) < 0) {
      if (!end_bottom_size_counted) {
        bottom_size += bottom_files[bottom_end_idx]->fd.file_size;
        end_bottom_size_counted = true;
      }
      if (icmp_->Compare(bottom_files[bottom_end_idx]->largest,
                         end_file->largest) > 0) {
        // next level file cross large boundary of current file.
        break;
      }
      bottom_end_idx++;
      end_bottom_size_counted = false;
    }

    if ((non_bottom_size + bottom_size > comp_thres_size ||
         end_idx == static_cast<int>(files.size()) - 1) &&
        non_bottom_size > 0) {  // Do we alow 0 size file at all?
      // If it is a better compaction, remember it in picked* variables.
      double fanout = static_cast<double>(bottom_size) /
                      static_cast<double>(non_bottom_size);
      if (fanout < picked_fanout) {
        picked_start_idx = start_idx;
        picked_end_idx = end_idx;
        picked_fanout = fanout;
      }
      // Shrink from the start end to under comp_thres_size
      while (non_bottom_size + bottom_size > comp_thres_size &&
             start_idx <= end_idx) {
        non_bottom_size -= files[start_idx]->fd.file_size;
        start_idx++;
        if (start_idx < static_cast<int>(files.size())) {
          while (bottom_start_idx <= bottom_end_idx &&
                 icmp_->Compare(bottom_files[bottom_start_idx]->largest,
                                files[start_idx]->smallest) < 0) {
            bottom_size -= bottom_files[bottom_start_idx]->fd.file_size;
            bottom_start_idx++;
          }
        }
      }
    }
  }

  if (picked_fanout >= fanout_threshold) {
    assert(picked_fanout == fanout_threshold);
    return nullptr;
  }

  std::vector<CompactionInputFiles> inputs;
  CompactionInputFiles bottom_level_inputs;
  CompactionInputFiles second_last_level_inputs;
  second_last_level_inputs.level = second_last_level;
  bottom_level_inputs.level = output_level;
  for (int i = picked_start_idx; i <= picked_end_idx; i++) {
    if (files[i]->being_compacted) {
      return nullptr;
    }
    second_last_level_inputs.files.push_back(files[i]);
  }
  assert(!second_last_level_inputs.empty());
  if (!picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
                                       &second_last_level_inputs,
                                       /*next_smallest=*/nullptr)) {
    return nullptr;
  }
  // We might be able to avoid this binary search if we save and expand
  // from bottom_start_idx and bottom_end_idx, but for now, we use
  // SetupOtherInputs() for simplicity.
  int parent_index = -1;  // Create and use bottom_start_idx?
  if (!picker_->SetupOtherInputs(cf_name_, mutable_cf_options_, vstorage_,
                                 &second_last_level_inputs,
                                 &bottom_level_inputs, &parent_index,
                                 /*base_index=*/-1)) {
    return nullptr;
  }

  // Try to include files in upper levels if they fall into the range.
  // Since we need to go from lower level up and this is in the reverse
  // order, compared to level order, we first write to an reversed
  // data structure and finally copy them to compaction inputs.
  InternalKey smallest, largest;
  picker_->GetRange(second_last_level_inputs, &smallest, &largest);
  std::vector<CompactionInputFiles> inputs_reverse;
  for (auto it = ++(++sorted_runs_.rbegin()); it != sorted_runs_.rend(); it++) {
    SortedRun& sr = *it;
    if (sr.level == 0) {
      break;
    }
    std::vector<FileMetaData*> level_inputs;
    vstorage_->GetCleanInputsWithinInterval(sr.level, &smallest, &largest,
                                            &level_inputs);
    if (!level_inputs.empty()) {
      inputs_reverse.push_back({});
      inputs_reverse.back().level = sr.level;
      inputs_reverse.back().files = level_inputs;
      picker_->GetRange(inputs_reverse.back(), &smallest, &largest);
    }
  }
  for (auto it = inputs_reverse.rbegin(); it != inputs_reverse.rend(); it++) {
    inputs.push_back(*it);
  }

  inputs.push_back(second_last_level_inputs);
  inputs.push_back(bottom_level_inputs);

  int start_level = Compaction::kInvalidLevel;
  for (const auto& in : inputs) {
    if (!in.empty()) {
      // inputs should already be sorted by level
      start_level = in.level;
      break;
    }
  }

  // intra L0 compactions outputs could have overlap
  if (output_level != 0 &&
      picker_->FilesRangeOverlapWithCompaction(
          inputs, output_level,
          Compaction::EvaluatePenultimateLevel(vstorage_, ioptions_,
                                               start_level, output_level))) {
    return nullptr;
  }

  // TODO support multi paths?
  uint32_t path_id = 0;
  return new Compaction(
      vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_,
      std::move(inputs), output_level,
      MaxFileSizeForLevel(mutable_cf_options_, output_level,
                          kCompactionStyleUniversal),
      GetMaxOverlappingBytes(), path_id,
      GetCompressionType(vstorage_, mutable_cf_options_, output_level, 1,
                         true /* enable_compression */),
      GetCompressionOptions(mutable_cf_options_, vstorage_, output_level,
                            true /* enable_compression */),
      Temperature::kUnknown,
      /* max_subcompactions */ 0, /* grandparents */ {}, /* is manual */ false,
      /* trim_ts */ "", score_, false /* deletion_compaction */,
      /* l0_files_might_overlap */ true,
      CompactionReason::kUniversalSizeAmplification);
}

// Pick files marked for compaction. Typically, files are marked by
// CompactOnDeleteCollector due to the presence of tombstones.
Compaction* UniversalCompactionBuilder::PickDeleteTriggeredCompaction() {
  CompactionInputFiles start_level_inputs;
  int output_level;
  std::vector<CompactionInputFiles> inputs;
  std::vector<FileMetaData*> grandparents;

  if (vstorage_->num_levels() == 1) {
    // This is single level universal. Since we're basically trying to reclaim
    // space by processing files marked for compaction due to high tombstone
    // density, let's do the same thing as compaction to reduce size amp which
    // has the same goals.
    int start_index = -1;

    start_level_inputs.level = 0;
    start_level_inputs.files.clear();
    output_level = 0;
    // Find the first file marked for compaction. Ignore the last file
    for (size_t loop = 0; loop + 1 < sorted_runs_.size(); loop++) {
      SortedRun* sr = &sorted_runs_[loop];
      if (sr->being_compacted) {
        continue;
      }
      FileMetaData* f = vstorage_->LevelFiles(0)[loop];
      if (f->marked_for_compaction) {
        start_level_inputs.files.push_back(f);
        start_index =
            static_cast<int>(loop);  // Consider this as the first candidate.
        break;
      }
    }
    if (start_index < 0) {
      // Either no file marked, or they're already being compacted
      return nullptr;
    }

    for (size_t loop = start_index + 1; loop < sorted_runs_.size(); loop++) {
      SortedRun* sr = &sorted_runs_[loop];
      if (sr->being_compacted) {
        break;
      }

      FileMetaData* f = vstorage_->LevelFiles(0)[loop];
      start_level_inputs.files.push_back(f);
    }
    if (start_level_inputs.size() <= 1) {
      // If only the last file in L0 is marked for compaction, ignore it
      return nullptr;
    }
    inputs.push_back(start_level_inputs);
  } else {
    int start_level;

    // For multi-level universal, the strategy is to make this look more like
    // leveled. We pick one of the files marked for compaction and compact with
    // overlapping files in the adjacent level.
    picker_->PickFilesMarkedForCompaction(cf_name_, vstorage_, &start_level,
                                          &output_level, &start_level_inputs);
    if (start_level_inputs.empty()) {
      return nullptr;
    }

    // Pick the first non-empty level after the start_level
    for (output_level = start_level + 1; output_level < vstorage_->num_levels();
         output_level++) {
      if (vstorage_->NumLevelFiles(output_level) != 0) {
        break;
      }
    }

    // If all higher levels are empty, pick the highest level as output level
    if (output_level == vstorage_->num_levels()) {
      if (start_level == 0) {
        output_level = vstorage_->num_levels() - 1;
      } else {
        // If start level is non-zero and all higher levels are empty, this
        // compaction will translate into a trivial move. Since the idea is
        // to reclaim space and trivial move doesn't help with that, we
        // skip compaction in this case and return nullptr
        return nullptr;
      }
    }
    if (ioptions_.allow_ingest_behind &&
        output_level == vstorage_->num_levels() - 1) {
      assert(output_level > 1);
      output_level--;
    }

    if (output_level != 0) {
      if (start_level == 0) {
        if (!picker_->GetOverlappingL0Files(vstorage_, &start_level_inputs,
                                            output_level, nullptr)) {
          return nullptr;
        }
      }

      CompactionInputFiles output_level_inputs;
      int parent_index = -1;

      output_level_inputs.level = output_level;
      if (!picker_->SetupOtherInputs(cf_name_, mutable_cf_options_, vstorage_,
                                     &start_level_inputs, &output_level_inputs,
                                     &parent_index, -1)) {
        return nullptr;
      }
      inputs.push_back(start_level_inputs);
      if (!output_level_inputs.empty()) {
        inputs.push_back(output_level_inputs);
      }
      if (picker_->FilesRangeOverlapWithCompaction(
              inputs, output_level,
              Compaction::EvaluatePenultimateLevel(
                  vstorage_, ioptions_, start_level, output_level))) {
        return nullptr;
      }

      picker_->GetGrandparents(vstorage_, start_level_inputs,
                               output_level_inputs, &grandparents);
    } else {
      inputs.push_back(start_level_inputs);
    }
  }

  uint64_t estimated_total_size = 0;
  // Use size of the output level as estimated file size
  for (FileMetaData* f : vstorage_->LevelFiles(output_level)) {
    estimated_total_size += f->fd.GetFileSize();
  }
  uint32_t path_id =
      GetPathId(ioptions_, mutable_cf_options_, estimated_total_size);
  return new Compaction(
      vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_,
      std::move(inputs), output_level,
      MaxFileSizeForLevel(mutable_cf_options_, output_level,
                          kCompactionStyleUniversal),
      /* max_grandparent_overlap_bytes */ GetMaxOverlappingBytes(), path_id,
      GetCompressionType(vstorage_, mutable_cf_options_, output_level, 1),
      GetCompressionOptions(mutable_cf_options_, vstorage_, output_level),
      Temperature::kUnknown,
      /* max_subcompactions */ 0, grandparents, /* is manual */ false,
      /* trim_ts */ "", score_, false /* deletion_compaction */,
      /* l0_files_might_overlap */ true,
      CompactionReason::kFilesMarkedForCompaction);
}

Compaction* UniversalCompactionBuilder::PickCompactionToOldest(
    size_t start_index, CompactionReason compaction_reason) {
  return PickCompactionWithSortedRunRange(start_index, sorted_runs_.size() - 1,
                                          compaction_reason);
}

Compaction* UniversalCompactionBuilder::PickCompactionWithSortedRunRange(
    size_t start_index, size_t end_index, CompactionReason compaction_reason) {
  assert(start_index < sorted_runs_.size());

  // Estimate total file size
  uint64_t estimated_total_size = 0;
  for (size_t loop = start_index; loop <= end_index; loop++) {
    estimated_total_size += sorted_runs_[loop].size;
  }
  uint32_t path_id =
      GetPathId(ioptions_, mutable_cf_options_, estimated_total_size);
  int start_level = sorted_runs_[start_index].level;

  std::vector<CompactionInputFiles> inputs(vstorage_->num_levels());
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs[i].level = start_level + static_cast<int>(i);
  }
  for (size_t loop = start_index; loop <= end_index; loop++) {
    auto& picking_sr = sorted_runs_[loop];
    if (picking_sr.level == 0) {
      FileMetaData* f = picking_sr.file;
      inputs[0].files.push_back(f);
    } else {
      auto& files = inputs[picking_sr.level - start_level].files;
      for (auto* f : vstorage_->LevelFiles(picking_sr.level)) {
        files.push_back(f);
      }
    }
    std::string comp_reason_print_string;
    if (compaction_reason == CompactionReason::kPeriodicCompaction) {
      comp_reason_print_string = "periodic compaction";
    } else if (compaction_reason ==
               CompactionReason::kUniversalSizeAmplification) {
      comp_reason_print_string = "size amp";
    } else {
      assert(false);
      comp_reason_print_string = "unknown: ";
      comp_reason_print_string.append(
          std::to_string(static_cast<int>(compaction_reason)));
    }

    char file_num_buf[256];
    picking_sr.DumpSizeInfo(file_num_buf, sizeof(file_num_buf), loop);
    ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: %s picking %s",
                     cf_name_.c_str(), comp_reason_print_string.c_str(),
                     file_num_buf);
  }

  int output_level;
  if (end_index == sorted_runs_.size() - 1) {
    // output files at the last level, unless it's reserved
    output_level = vstorage_->num_levels() - 1;
    // last level is reserved for the files ingested behind
    if (ioptions_.allow_ingest_behind) {
      assert(output_level > 1);
      output_level--;
    }
  } else {
    // if it's not including all sorted_runs, it can only output to the level
    // above the `end_index + 1` sorted_run.
    output_level = sorted_runs_[end_index + 1].level - 1;
  }

  // intra L0 compactions outputs could have overlap
  if (output_level != 0 &&
      picker_->FilesRangeOverlapWithCompaction(
          inputs, output_level,
          Compaction::EvaluatePenultimateLevel(vstorage_, ioptions_,
                                               start_level, output_level))) {
    return nullptr;
  }

  // We never check size for
  // compaction_options_universal.compression_size_percent,
  // because we always compact all the files, so always compress.
  return new Compaction(
      vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_,
      std::move(inputs), output_level,
      MaxFileSizeForLevel(mutable_cf_options_, output_level,
                          kCompactionStyleUniversal),
      GetMaxOverlappingBytes(), path_id,
      GetCompressionType(vstorage_, mutable_cf_options_, output_level, 1,
                         true /* enable_compression */),
      GetCompressionOptions(mutable_cf_options_, vstorage_, output_level,
                            true /* enable_compression */),
      Temperature::kUnknown,
      /* max_subcompactions */ 0, /* grandparents */ {}, /* is manual */ false,
      /* trim_ts */ "", score_, false /* deletion_compaction */,
      /* l0_files_might_overlap */ true, compaction_reason);
}

Compaction* UniversalCompactionBuilder::PickPeriodicCompaction() {
  ROCKS_LOG_BUFFER(log_buffer_, "[%s] Universal: Periodic Compaction",
                   cf_name_.c_str());

  // In universal compaction, sorted runs contain older data are almost always
  // generated earlier too. To simplify the problem, we just try to trigger
  // a full compaction. We start from the oldest sorted run and include
  // all sorted runs, until we hit a sorted already being compacted.
  // Since usually the largest (which is usually the oldest) sorted run is
  // included anyway, doing a full compaction won't increase write
  // amplification much.

  // Get some information from marked files to check whether a file is
  // included in the compaction.

  size_t start_index = sorted_runs_.size();
  while (start_index > 0 && !sorted_runs_[start_index - 1].being_compacted) {
    start_index--;
  }
  if (start_index == sorted_runs_.size()) {
    return nullptr;
  }

  // There is a rare corner case where we can't pick up all the files
  // because some files are being compacted and we end up with picking files
  // but none of them need periodic compaction. Unless we simply recompact
  // the last sorted run (either the last level or last L0 file), we would just
  // execute the compaction, in order to simplify  the logic.
  if (start_index == sorted_runs_.size() - 1) {
    bool included_file_marked = false;
    int start_level = sorted_runs_[start_index].level;
    FileMetaData* start_file = sorted_runs_[start_index].file;
    for (const std::pair<int, FileMetaData*>& level_file_pair :
         vstorage_->FilesMarkedForPeriodicCompaction()) {
      if (start_level != 0) {
        // Last sorted run is a level
        if (start_level == level_file_pair.first) {
          included_file_marked = true;
          break;
        }
      } else {
        // Last sorted run is a L0 file.
        if (start_file == level_file_pair.second) {
          included_file_marked = true;
          break;
        }
      }
    }
    if (!included_file_marked) {
      ROCKS_LOG_BUFFER(log_buffer_,
                       "[%s] Universal: Cannot form a compaction covering file "
                       "marked for periodic compaction",
                       cf_name_.c_str());
      return nullptr;
    }
  }

  Compaction* c = PickCompactionToOldest(start_index,
                                         CompactionReason::kPeriodicCompaction);

  TEST_SYNC_POINT_CALLBACK(
      "UniversalCompactionPicker::PickPeriodicCompaction:Return", c);

  return c;
}

uint64_t UniversalCompactionBuilder::GetMaxOverlappingBytes() const {
  if (!mutable_cf_options_.compaction_options_universal.incremental) {
    return std::numeric_limits<uint64_t>::max();
  } else {
    // Try to align cutting boundary with files at the next level if the
    // file isn't end up with 1/2 of target size, or it would overlap
    // with two full size files at the next level.
    return mutable_cf_options_.target_file_size_base / 2 * 3;
  }
}
}  // namespace ROCKSDB_NAMESPACE

#endif  // !ROCKSDB_LITE