summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/db_kv_checksum_test.cc
blob: 614399243e5c1a85ba70b8cee7273a793210d007 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
//  Copyright (c) 2020-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#include "db/blob/blob_index.h"
#include "db/db_test_util.h"
#include "rocksdb/rocksdb_namespace.h"

namespace ROCKSDB_NAMESPACE {

enum class WriteBatchOpType {
  kPut = 0,
  kDelete,
  kSingleDelete,
  kMerge,
  kPutEntity,
  kDeleteRange,
  kNum,
};

// Integer addition is needed for `::testing::Range()` to take the enum type.
WriteBatchOpType operator+(WriteBatchOpType lhs, const int rhs) {
  using T = std::underlying_type<WriteBatchOpType>::type;
  return static_cast<WriteBatchOpType>(static_cast<T>(lhs) + rhs);
}

enum class WriteMode {
  // `Write()` a `WriteBatch` constructed with `protection_bytes_per_key = 0`
  // and `WriteOptions::protection_bytes_per_key = 0`
  kWriteUnprotectedBatch = 0,
  // `Write()` a `WriteBatch` constructed with `protection_bytes_per_key > 0`.
  kWriteProtectedBatch,
  // `Write()` a `WriteBatch` constructed with `protection_bytes_per_key == 0`.
  // Protection is enabled via `WriteOptions::protection_bytes_per_key > 0`.
  kWriteOptionProtectedBatch,
  // TODO(ajkr): add a mode that uses `Write()` wrappers, e.g., `Put()`.
  kNum,
};

// Integer addition is needed for `::testing::Range()` to take the enum type.
WriteMode operator+(WriteMode lhs, const int rhs) {
  using T = std::underlying_type<WriteMode>::type;
  return static_cast<WriteMode>(static_cast<T>(lhs) + rhs);
}

std::pair<WriteBatch, Status> GetWriteBatch(ColumnFamilyHandle* cf_handle,
                                            size_t protection_bytes_per_key,
                                            WriteBatchOpType op_type) {
  Status s;
  WriteBatch wb(0 /* reserved_bytes */, 0 /* max_bytes */,
                protection_bytes_per_key, 0 /* default_cf_ts_sz */);
  switch (op_type) {
    case WriteBatchOpType::kPut:
      s = wb.Put(cf_handle, "key", "val");
      break;
    case WriteBatchOpType::kDelete:
      s = wb.Delete(cf_handle, "key");
      break;
    case WriteBatchOpType::kSingleDelete:
      s = wb.SingleDelete(cf_handle, "key");
      break;
    case WriteBatchOpType::kDeleteRange:
      s = wb.DeleteRange(cf_handle, "begin", "end");
      break;
    case WriteBatchOpType::kMerge:
      s = wb.Merge(cf_handle, "key", "val");
      break;
    case WriteBatchOpType::kPutEntity:
      s = wb.PutEntity(cf_handle, "key",
                       {{"attr_name1", "foo"}, {"attr_name2", "bar"}});
      break;
    case WriteBatchOpType::kNum:
      assert(false);
  }
  return {std::move(wb), std::move(s)};
}

class DbKvChecksumTestBase : public DBTestBase {
 public:
  DbKvChecksumTestBase(const std::string& path, bool env_do_fsync)
      : DBTestBase(path, env_do_fsync) {}

  ColumnFamilyHandle* GetCFHandleToUse(ColumnFamilyHandle* column_family,
                                       WriteBatchOpType op_type) const {
    // Note: PutEntity cannot be called without column family
    if (op_type == WriteBatchOpType::kPutEntity && !column_family) {
      return db_->DefaultColumnFamily();
    }

    return column_family;
  }
};

class DbKvChecksumTest
    : public DbKvChecksumTestBase,
      public ::testing::WithParamInterface<
          std::tuple<WriteBatchOpType, char, WriteMode,
                     uint32_t /* memtable_protection_bytes_per_key */>> {
 public:
  DbKvChecksumTest()
      : DbKvChecksumTestBase("db_kv_checksum_test", /*env_do_fsync=*/false) {
    op_type_ = std::get<0>(GetParam());
    corrupt_byte_addend_ = std::get<1>(GetParam());
    write_mode_ = std::get<2>(GetParam());
    memtable_protection_bytes_per_key_ = std::get<3>(GetParam());
  }

  Status ExecuteWrite(ColumnFamilyHandle* cf_handle) {
    switch (write_mode_) {
      case WriteMode::kWriteUnprotectedBatch: {
        auto batch_and_status =
            GetWriteBatch(GetCFHandleToUse(cf_handle, op_type_),
                          0 /* protection_bytes_per_key */, op_type_);
        assert(batch_and_status.second.ok());
        // Default write option has protection_bytes_per_key = 0
        return db_->Write(WriteOptions(), &batch_and_status.first);
      }
      case WriteMode::kWriteProtectedBatch: {
        auto batch_and_status =
            GetWriteBatch(GetCFHandleToUse(cf_handle, op_type_),
                          8 /* protection_bytes_per_key */, op_type_);
        assert(batch_and_status.second.ok());
        return db_->Write(WriteOptions(), &batch_and_status.first);
      }
      case WriteMode::kWriteOptionProtectedBatch: {
        auto batch_and_status =
            GetWriteBatch(GetCFHandleToUse(cf_handle, op_type_),
                          0 /* protection_bytes_per_key */, op_type_);
        assert(batch_and_status.second.ok());
        WriteOptions write_opts;
        write_opts.protection_bytes_per_key = 8;
        return db_->Write(write_opts, &batch_and_status.first);
      }
      case WriteMode::kNum:
        assert(false);
    }
    return Status::NotSupported("WriteMode " +
                                std::to_string(static_cast<int>(write_mode_)));
  }

  void CorruptNextByteCallBack(void* arg) {
    Slice encoded = *static_cast<Slice*>(arg);
    if (entry_len_ == std::numeric_limits<size_t>::max()) {
      // We learn the entry size on the first attempt
      entry_len_ = encoded.size();
    }
    char* buf = const_cast<char*>(encoded.data());
    buf[corrupt_byte_offset_] += corrupt_byte_addend_;
    ++corrupt_byte_offset_;
  }

  bool MoreBytesToCorrupt() { return corrupt_byte_offset_ < entry_len_; }

 protected:
  WriteBatchOpType op_type_;
  char corrupt_byte_addend_;
  WriteMode write_mode_;
  uint32_t memtable_protection_bytes_per_key_;
  size_t corrupt_byte_offset_ = 0;
  size_t entry_len_ = std::numeric_limits<size_t>::max();
};

std::string GetOpTypeString(const WriteBatchOpType& op_type) {
  switch (op_type) {
    case WriteBatchOpType::kPut:
      return "Put";
    case WriteBatchOpType::kDelete:
      return "Delete";
    case WriteBatchOpType::kSingleDelete:
      return "SingleDelete";
    case WriteBatchOpType::kDeleteRange:
      return "DeleteRange";
    case WriteBatchOpType::kMerge:
      return "Merge";
    case WriteBatchOpType::kPutEntity:
      return "PutEntity";
    case WriteBatchOpType::kNum:
      assert(false);
  }
  assert(false);
  return "";
}

std::string GetWriteModeString(const WriteMode& mode) {
  switch (mode) {
    case WriteMode::kWriteUnprotectedBatch:
      return "WriteUnprotectedBatch";
    case WriteMode::kWriteProtectedBatch:
      return "WriteProtectedBatch";
    case WriteMode::kWriteOptionProtectedBatch:
      return "kWriteOptionProtectedBatch";
    case WriteMode::kNum:
      assert(false);
  }
  return "";
}

INSTANTIATE_TEST_CASE_P(
    DbKvChecksumTest, DbKvChecksumTest,
    ::testing::Combine(::testing::Range(static_cast<WriteBatchOpType>(0),
                                        WriteBatchOpType::kNum),
                       ::testing::Values(2, 103, 251),
                       ::testing::Range(WriteMode::kWriteProtectedBatch,
                                        WriteMode::kNum),
                       ::testing::Values(0)),
    [](const testing::TestParamInfo<
        std::tuple<WriteBatchOpType, char, WriteMode, uint32_t>>& args) {
      std::ostringstream oss;
      oss << GetOpTypeString(std::get<0>(args.param)) << "Add"
          << static_cast<int>(
                 static_cast<unsigned char>(std::get<1>(args.param)))
          << GetWriteModeString(std::get<2>(args.param))
          << static_cast<uint32_t>(std::get<3>(args.param));
      return oss.str();
    });

// TODO(ajkr): add a test that corrupts the `WriteBatch` contents. Such
// corruptions should only be detectable in `WriteMode::kWriteProtectedBatch`.

TEST_P(DbKvChecksumTest, MemTableAddCorrupted) {
  // This test repeatedly attempts to write `WriteBatch`es containing a single
  // entry of type `op_type_`. Each attempt has one byte corrupted in its
  // memtable entry by adding `corrupt_byte_addend_` to its original value. The
  // test repeats until an attempt has been made on each byte in the encoded
  // memtable entry. All attempts are expected to fail with `Status::Corruption`
  SyncPoint::GetInstance()->SetCallBack(
      "MemTable::Add:Encoded",
      std::bind(&DbKvChecksumTest::CorruptNextByteCallBack, this,
                std::placeholders::_1));

  while (MoreBytesToCorrupt()) {
    // Failed memtable insert always leads to read-only mode, so we have to
    // reopen for every attempt.
    Options options = CurrentOptions();
    if (op_type_ == WriteBatchOpType::kMerge) {
      options.merge_operator = MergeOperators::CreateStringAppendOperator();
    }
    Reopen(options);

    SyncPoint::GetInstance()->EnableProcessing();
    ASSERT_TRUE(ExecuteWrite(nullptr /* cf_handle */).IsCorruption());
    SyncPoint::GetInstance()->DisableProcessing();

    // In case the above callback is not invoked, this test will run
    // numeric_limits<size_t>::max() times until it reports an error (or will
    // exhaust disk space). Added this assert to report error early.
    ASSERT_TRUE(entry_len_ < std::numeric_limits<size_t>::max());
  }
}

TEST_P(DbKvChecksumTest, MemTableAddWithColumnFamilyCorrupted) {
  // This test repeatedly attempts to write `WriteBatch`es containing a single
  // entry of type `op_type_` to a non-default column family. Each attempt has
  // one byte corrupted in its memtable entry by adding `corrupt_byte_addend_`
  // to its original value. The test repeats until an attempt has been made on
  // each byte in the encoded memtable entry. All attempts are expected to fail
  // with `Status::Corruption`.
  Options options = CurrentOptions();
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }
  CreateAndReopenWithCF({"pikachu"}, options);
  SyncPoint::GetInstance()->SetCallBack(
      "MemTable::Add:Encoded",
      std::bind(&DbKvChecksumTest::CorruptNextByteCallBack, this,
                std::placeholders::_1));

  while (MoreBytesToCorrupt()) {
    // Failed memtable insert always leads to read-only mode, so we have to
    // reopen for every attempt.
    ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);

    SyncPoint::GetInstance()->EnableProcessing();
    ASSERT_TRUE(ExecuteWrite(handles_[1]).IsCorruption());
    SyncPoint::GetInstance()->DisableProcessing();

    // In case the above callback is not invoked, this test will run
    // numeric_limits<size_t>::max() times until it reports an error (or will
    // exhaust disk space). Added this assert to report error early.
    ASSERT_TRUE(entry_len_ < std::numeric_limits<size_t>::max());
  }
}

TEST_P(DbKvChecksumTest, NoCorruptionCase) {
  // If this test fails, we may have found a piece of malfunctioned hardware
  auto batch_and_status =
      GetWriteBatch(GetCFHandleToUse(nullptr, op_type_),
                    8 /* protection_bytes_per_key */, op_type_);
  ASSERT_OK(batch_and_status.second);
  ASSERT_OK(batch_and_status.first.VerifyChecksum());
}

TEST_P(DbKvChecksumTest, WriteToWALCorrupted) {
  // This test repeatedly attempts to write `WriteBatch`es containing a single
  // entry of type `op_type_`. Each attempt has one byte corrupted by adding
  // `corrupt_byte_addend_` to its original value. The test repeats until an
  // attempt has been made on each byte in the encoded write batch. All attempts
  // are expected to fail with `Status::Corruption`
  Options options = CurrentOptions();
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }
  SyncPoint::GetInstance()->SetCallBack(
      "DBImpl::WriteToWAL:log_entry",
      std::bind(&DbKvChecksumTest::CorruptNextByteCallBack, this,
                std::placeholders::_1));
  // First 8 bytes are for sequence number which is not protected in write batch
  corrupt_byte_offset_ = 8;

  while (MoreBytesToCorrupt()) {
    // Corrupted write batch leads to read-only mode, so we have to
    // reopen for every attempt.
    Reopen(options);
    auto log_size_pre_write = dbfull()->TEST_total_log_size();

    SyncPoint::GetInstance()->EnableProcessing();
    ASSERT_TRUE(ExecuteWrite(nullptr /* cf_handle */).IsCorruption());
    // Confirm that nothing was written to WAL
    ASSERT_EQ(log_size_pre_write, dbfull()->TEST_total_log_size());
    ASSERT_TRUE(dbfull()->TEST_GetBGError().IsCorruption());
    SyncPoint::GetInstance()->DisableProcessing();

    // In case the above callback is not invoked, this test will run
    // numeric_limits<size_t>::max() times until it reports an error (or will
    // exhaust disk space). Added this assert to report error early.
    ASSERT_TRUE(entry_len_ < std::numeric_limits<size_t>::max());
  }
}

TEST_P(DbKvChecksumTest, WriteToWALWithColumnFamilyCorrupted) {
  // This test repeatedly attempts to write `WriteBatch`es containing a single
  // entry of type `op_type_`. Each attempt has one byte corrupted by adding
  // `corrupt_byte_addend_` to its original value. The test repeats until an
  // attempt has been made on each byte in the encoded write batch. All attempts
  // are expected to fail with `Status::Corruption`
  Options options = CurrentOptions();
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }
  CreateAndReopenWithCF({"pikachu"}, options);
  SyncPoint::GetInstance()->SetCallBack(
      "DBImpl::WriteToWAL:log_entry",
      std::bind(&DbKvChecksumTest::CorruptNextByteCallBack, this,
                std::placeholders::_1));
  // First 8 bytes are for sequence number which is not protected in write batch
  corrupt_byte_offset_ = 8;

  while (MoreBytesToCorrupt()) {
    // Corrupted write batch leads to read-only mode, so we have to
    // reopen for every attempt.
    ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
    auto log_size_pre_write = dbfull()->TEST_total_log_size();

    SyncPoint::GetInstance()->EnableProcessing();
    ASSERT_TRUE(ExecuteWrite(nullptr /* cf_handle */).IsCorruption());
    // Confirm that nothing was written to WAL
    ASSERT_EQ(log_size_pre_write, dbfull()->TEST_total_log_size());
    ASSERT_TRUE(dbfull()->TEST_GetBGError().IsCorruption());
    SyncPoint::GetInstance()->DisableProcessing();

    // In case the above callback is not invoked, this test will run
    // numeric_limits<size_t>::max() times until it reports an error (or will
    // exhaust disk space). Added this assert to report error early.
    ASSERT_TRUE(entry_len_ < std::numeric_limits<size_t>::max());
  }
}

class DbKvChecksumTestMergedBatch
    : public DbKvChecksumTestBase,
      public ::testing::WithParamInterface<
          std::tuple<WriteBatchOpType, WriteBatchOpType, char>> {
 public:
  DbKvChecksumTestMergedBatch()
      : DbKvChecksumTestBase("db_kv_checksum_test", /*env_do_fsync=*/false) {
    op_type1_ = std::get<0>(GetParam());
    op_type2_ = std::get<1>(GetParam());
    corrupt_byte_addend_ = std::get<2>(GetParam());
  }

 protected:
  WriteBatchOpType op_type1_;
  WriteBatchOpType op_type2_;
  char corrupt_byte_addend_;
};

void CorruptWriteBatch(Slice* content, size_t offset,
                       char corrupt_byte_addend) {
  ASSERT_TRUE(offset < content->size());
  char* buf = const_cast<char*>(content->data());
  buf[offset] += corrupt_byte_addend;
}

TEST_P(DbKvChecksumTestMergedBatch, NoCorruptionCase) {
  // Veirfy write batch checksum after write batch append
  auto batch1 = GetWriteBatch(GetCFHandleToUse(nullptr, op_type1_),
                              8 /* protection_bytes_per_key */, op_type1_);
  ASSERT_OK(batch1.second);
  auto batch2 = GetWriteBatch(GetCFHandleToUse(nullptr, op_type2_),
                              8 /* protection_bytes_per_key */, op_type2_);
  ASSERT_OK(batch2.second);
  ASSERT_OK(WriteBatchInternal::Append(&batch1.first, &batch2.first));
  ASSERT_OK(batch1.first.VerifyChecksum());
}

TEST_P(DbKvChecksumTestMergedBatch, WriteToWALCorrupted) {
  // This test has two writers repeatedly attempt to write `WriteBatch`es
  // containing a single entry of type op_type1_ and op_type2_ respectively. The
  // leader of the write group writes the batch containinng the entry of type
  // op_type1_. One byte of the pre-merged write batches is corrupted by adding
  // `corrupt_byte_addend_` to the batch's original value during each attempt.
  // The test repeats until an attempt has been made on each byte in both
  // pre-merged write batches. All attempts are expected to fail with
  // `Status::Corruption`.
  Options options = CurrentOptions();
  if (op_type1_ == WriteBatchOpType::kMerge ||
      op_type2_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }

  auto leader_batch_and_status =
      GetWriteBatch(GetCFHandleToUse(nullptr, op_type1_),
                    8 /* protection_bytes_per_key */, op_type1_);
  ASSERT_OK(leader_batch_and_status.second);
  auto follower_batch_and_status =
      GetWriteBatch(GetCFHandleToUse(nullptr, op_type2_),
                    8 /* protection_bytes_per_key */, op_type2_);
  size_t leader_batch_size = leader_batch_and_status.first.GetDataSize();
  size_t total_bytes =
      leader_batch_size + follower_batch_and_status.first.GetDataSize();
  // First 8 bytes are for sequence number which is not protected in write batch
  size_t corrupt_byte_offset = 8;

  std::atomic<bool> follower_joined{false};
  std::atomic<int> leader_count{0};
  port::Thread follower_thread;
  // This callback should only be called by the leader thread
  SyncPoint::GetInstance()->SetCallBack(
      "WriteThread::JoinBatchGroup:Wait2", [&](void* arg_leader) {
        auto* leader = reinterpret_cast<WriteThread::Writer*>(arg_leader);
        ASSERT_EQ(leader->state, WriteThread::STATE_GROUP_LEADER);

        // This callback should only be called by the follower thread
        SyncPoint::GetInstance()->SetCallBack(
            "WriteThread::JoinBatchGroup:Wait", [&](void* arg_follower) {
              auto* follower =
                  reinterpret_cast<WriteThread::Writer*>(arg_follower);
              // The leader thread will wait on this bool and hence wait until
              // this writer joins the write group
              ASSERT_NE(follower->state, WriteThread::STATE_GROUP_LEADER);
              if (corrupt_byte_offset >= leader_batch_size) {
                Slice batch_content = follower->batch->Data();
                CorruptWriteBatch(&batch_content,
                                  corrupt_byte_offset - leader_batch_size,
                                  corrupt_byte_addend_);
              }
              // Leader busy waits on this flag
              follower_joined = true;
              // So the follower does not enter the outer callback at
              // WriteThread::JoinBatchGroup:Wait2
              SyncPoint::GetInstance()->DisableProcessing();
            });

        // Start the other writer thread which will join the write group as
        // follower
        follower_thread = port::Thread([&]() {
          follower_batch_and_status =
              GetWriteBatch(GetCFHandleToUse(nullptr, op_type2_),
                            8 /* protection_bytes_per_key */, op_type2_);
          ASSERT_OK(follower_batch_and_status.second);
          ASSERT_TRUE(
              db_->Write(WriteOptions(), &follower_batch_and_status.first)
                  .IsCorruption());
        });

        ASSERT_EQ(leader->batch->GetDataSize(), leader_batch_size);
        if (corrupt_byte_offset < leader_batch_size) {
          Slice batch_content = leader->batch->Data();
          CorruptWriteBatch(&batch_content, corrupt_byte_offset,
                            corrupt_byte_addend_);
        }
        leader_count++;
        while (!follower_joined) {
          // busy waiting
        }
      });
  while (corrupt_byte_offset < total_bytes) {
    // Reopen DB since it failed WAL write which lead to read-only mode
    Reopen(options);
    SyncPoint::GetInstance()->EnableProcessing();
    auto log_size_pre_write = dbfull()->TEST_total_log_size();
    leader_batch_and_status =
        GetWriteBatch(GetCFHandleToUse(nullptr, op_type1_),
                      8 /* protection_bytes_per_key */, op_type1_);
    ASSERT_OK(leader_batch_and_status.second);
    ASSERT_TRUE(db_->Write(WriteOptions(), &leader_batch_and_status.first)
                    .IsCorruption());
    follower_thread.join();
    // Prevent leader thread from entering this callback
    SyncPoint::GetInstance()->ClearCallBack("WriteThread::JoinBatchGroup:Wait");
    ASSERT_EQ(1, leader_count);
    // Nothing should have been written to WAL
    ASSERT_EQ(log_size_pre_write, dbfull()->TEST_total_log_size());
    ASSERT_TRUE(dbfull()->TEST_GetBGError().IsCorruption());

    corrupt_byte_offset++;
    if (corrupt_byte_offset == leader_batch_size) {
      // skip over the sequence number part of follower's write batch
      corrupt_byte_offset += 8;
    }
    follower_joined = false;
    leader_count = 0;
  }
  SyncPoint::GetInstance()->DisableProcessing();
}

TEST_P(DbKvChecksumTestMergedBatch, WriteToWALWithColumnFamilyCorrupted) {
  // This test has two writers repeatedly attempt to write `WriteBatch`es
  // containing a single entry of type op_type1_ and op_type2_ respectively. The
  // leader of the write group writes the batch containinng the entry of type
  // op_type1_. One byte of the pre-merged write batches is corrupted by adding
  // `corrupt_byte_addend_` to the batch's original value during each attempt.
  // The test repeats until an attempt has been made on each byte in both
  // pre-merged write batches. All attempts are expected to fail with
  // `Status::Corruption`.
  Options options = CurrentOptions();
  if (op_type1_ == WriteBatchOpType::kMerge ||
      op_type2_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }
  CreateAndReopenWithCF({"ramen"}, options);

  auto leader_batch_and_status =
      GetWriteBatch(GetCFHandleToUse(handles_[1], op_type1_),
                    8 /* protection_bytes_per_key */, op_type1_);
  ASSERT_OK(leader_batch_and_status.second);
  auto follower_batch_and_status =
      GetWriteBatch(GetCFHandleToUse(handles_[1], op_type2_),
                    8 /* protection_bytes_per_key */, op_type2_);
  size_t leader_batch_size = leader_batch_and_status.first.GetDataSize();
  size_t total_bytes =
      leader_batch_size + follower_batch_and_status.first.GetDataSize();
  // First 8 bytes are for sequence number which is not protected in write batch
  size_t corrupt_byte_offset = 8;

  std::atomic<bool> follower_joined{false};
  std::atomic<int> leader_count{0};
  port::Thread follower_thread;
  // This callback should only be called by the leader thread
  SyncPoint::GetInstance()->SetCallBack(
      "WriteThread::JoinBatchGroup:Wait2", [&](void* arg_leader) {
        auto* leader = reinterpret_cast<WriteThread::Writer*>(arg_leader);
        ASSERT_EQ(leader->state, WriteThread::STATE_GROUP_LEADER);

        // This callback should only be called by the follower thread
        SyncPoint::GetInstance()->SetCallBack(
            "WriteThread::JoinBatchGroup:Wait", [&](void* arg_follower) {
              auto* follower =
                  reinterpret_cast<WriteThread::Writer*>(arg_follower);
              // The leader thread will wait on this bool and hence wait until
              // this writer joins the write group
              ASSERT_NE(follower->state, WriteThread::STATE_GROUP_LEADER);
              if (corrupt_byte_offset >= leader_batch_size) {
                Slice batch_content =
                    WriteBatchInternal::Contents(follower->batch);
                CorruptWriteBatch(&batch_content,
                                  corrupt_byte_offset - leader_batch_size,
                                  corrupt_byte_addend_);
              }
              follower_joined = true;
              // So the follower does not enter the outer callback at
              // WriteThread::JoinBatchGroup:Wait2
              SyncPoint::GetInstance()->DisableProcessing();
            });

        // Start the other writer thread which will join the write group as
        // follower
        follower_thread = port::Thread([&]() {
          follower_batch_and_status =
              GetWriteBatch(GetCFHandleToUse(handles_[1], op_type2_),
                            8 /* protection_bytes_per_key */, op_type2_);
          ASSERT_OK(follower_batch_and_status.second);
          ASSERT_TRUE(
              db_->Write(WriteOptions(), &follower_batch_and_status.first)
                  .IsCorruption());
        });

        ASSERT_EQ(leader->batch->GetDataSize(), leader_batch_size);
        if (corrupt_byte_offset < leader_batch_size) {
          Slice batch_content = WriteBatchInternal::Contents(leader->batch);
          CorruptWriteBatch(&batch_content, corrupt_byte_offset,
                            corrupt_byte_addend_);
        }
        leader_count++;
        while (!follower_joined) {
          // busy waiting
        }
      });
  SyncPoint::GetInstance()->EnableProcessing();
  while (corrupt_byte_offset < total_bytes) {
    // Reopen DB since it failed WAL write which lead to read-only mode
    ReopenWithColumnFamilies({kDefaultColumnFamilyName, "ramen"}, options);
    SyncPoint::GetInstance()->EnableProcessing();
    auto log_size_pre_write = dbfull()->TEST_total_log_size();
    leader_batch_and_status =
        GetWriteBatch(GetCFHandleToUse(handles_[1], op_type1_),
                      8 /* protection_bytes_per_key */, op_type1_);
    ASSERT_OK(leader_batch_and_status.second);
    ASSERT_TRUE(db_->Write(WriteOptions(), &leader_batch_and_status.first)
                    .IsCorruption());
    follower_thread.join();
    // Prevent leader thread from entering this callback
    SyncPoint::GetInstance()->ClearCallBack("WriteThread::JoinBatchGroup:Wait");

    ASSERT_EQ(1, leader_count);
    // Nothing should have been written to WAL
    ASSERT_EQ(log_size_pre_write, dbfull()->TEST_total_log_size());
    ASSERT_TRUE(dbfull()->TEST_GetBGError().IsCorruption());

    corrupt_byte_offset++;
    if (corrupt_byte_offset == leader_batch_size) {
      // skip over the sequence number part of follower's write batch
      corrupt_byte_offset += 8;
    }
    follower_joined = false;
    leader_count = 0;
  }
  SyncPoint::GetInstance()->DisableProcessing();
}

INSTANTIATE_TEST_CASE_P(
    DbKvChecksumTestMergedBatch, DbKvChecksumTestMergedBatch,
    ::testing::Combine(::testing::Range(static_cast<WriteBatchOpType>(0),
                                        WriteBatchOpType::kNum),
                       ::testing::Range(static_cast<WriteBatchOpType>(0),
                                        WriteBatchOpType::kNum),
                       ::testing::Values(2, 103, 251)),
    [](const testing::TestParamInfo<
        std::tuple<WriteBatchOpType, WriteBatchOpType, char>>& args) {
      std::ostringstream oss;
      oss << GetOpTypeString(std::get<0>(args.param))
          << GetOpTypeString(std::get<1>(args.param)) << "Add"
          << static_cast<int>(
                 static_cast<unsigned char>(std::get<2>(args.param)));
      return oss.str();
    });

// TODO: add test for transactions
// TODO: add test for corrupted write batch with WAL disabled

class DbKVChecksumWALToWriteBatchTest : public DBTestBase {
 public:
  DbKVChecksumWALToWriteBatchTest()
      : DBTestBase("db_kv_checksum_test", /*env_do_fsync=*/false) {}
};

TEST_F(DbKVChecksumWALToWriteBatchTest, WriteBatchChecksumHandoff) {
  Options options = CurrentOptions();
  Reopen(options);
  ASSERT_OK(db_->Put(WriteOptions(), "key", "val"));
  std::string content = "";
  SyncPoint::GetInstance()->SetCallBack(
      "DBImpl::RecoverLogFiles:BeforeUpdateProtectionInfo:batch",
      [&](void* batch_ptr) {
        WriteBatch* batch = reinterpret_cast<WriteBatch*>(batch_ptr);
        content.assign(batch->Data().data(), batch->GetDataSize());
        Slice batch_content = batch->Data();
        // Corrupt first bit
        CorruptWriteBatch(&batch_content, 0, 1);
      });
  SyncPoint::GetInstance()->SetCallBack(
      "DBImpl::RecoverLogFiles:BeforeUpdateProtectionInfo:checksum",
      [&](void* checksum_ptr) {
        // Verify that checksum is produced on the batch content
        uint64_t checksum = *reinterpret_cast<uint64_t*>(checksum_ptr);
        ASSERT_EQ(checksum, XXH3_64bits(content.data(), content.size()));
      });
  SyncPoint::GetInstance()->EnableProcessing();
  ASSERT_TRUE(TryReopen(options).IsCorruption());
  SyncPoint::GetInstance()->DisableProcessing();
};

// TODO (cbi): add DeleteRange coverage once it is implemented
class DbMemtableKVChecksumTest : public DbKvChecksumTest {
 public:
  DbMemtableKVChecksumTest() : DbKvChecksumTest() {}

 protected:
  // Indices in the memtable entry that we will not corrupt.
  // For memtable entry format, see comments in MemTable::Add().
  // We do not corrupt key length and value length fields in this test
  // case since it causes segfault and ASAN will complain.
  // For this test case, key and value are all of length 3, so
  // key length field is at index 0 and value length field is at index 12.
  const std::set<size_t> index_not_to_corrupt{0, 12};

  void SkipNotToCorruptEntry() {
    if (index_not_to_corrupt.find(corrupt_byte_offset_) !=
        index_not_to_corrupt.end()) {
      corrupt_byte_offset_++;
    }
  }
};

INSTANTIATE_TEST_CASE_P(
    DbMemtableKVChecksumTest, DbMemtableKVChecksumTest,
    ::testing::Combine(::testing::Range(static_cast<WriteBatchOpType>(0),
                                        WriteBatchOpType::kDeleteRange),
                       ::testing::Values(2, 103, 251),
                       ::testing::Range(static_cast<WriteMode>(0),
                                        WriteMode::kWriteOptionProtectedBatch),
                       // skip 1 byte checksum as it makes test flaky
                       ::testing::Values(2, 4, 8)),
    [](const testing::TestParamInfo<
        std::tuple<WriteBatchOpType, char, WriteMode, uint32_t>>& args) {
      std::ostringstream oss;
      oss << GetOpTypeString(std::get<0>(args.param)) << "Add"
          << static_cast<int>(
                 static_cast<unsigned char>(std::get<1>(args.param)))
          << GetWriteModeString(std::get<2>(args.param))
          << static_cast<uint32_t>(std::get<3>(args.param));
      return oss.str();
    });

TEST_P(DbMemtableKVChecksumTest, GetWithCorruptAfterMemtableInsert) {
  // Record memtable entry size.
  // Not corrupting memtable entry here since it will segfault
  // or fail some asserts inside memtablerep implementation
  // e.g., when key_len is corrupted.
  SyncPoint::GetInstance()->SetCallBack(
      "MemTable::Add:BeforeReturn:Encoded", [&](void* arg) {
        Slice encoded = *static_cast<Slice*>(arg);
        entry_len_ = encoded.size();
      });

  SyncPoint::GetInstance()->SetCallBack(
      "Memtable::SaveValue:Begin:entry", [&](void* entry) {
        char* buf = *static_cast<char**>(entry);
        buf[corrupt_byte_offset_] += corrupt_byte_addend_;
        ++corrupt_byte_offset_;
      });
  SyncPoint::GetInstance()->EnableProcessing();
  Options options = CurrentOptions();
  options.memtable_protection_bytes_per_key =
      memtable_protection_bytes_per_key_;
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }

  SkipNotToCorruptEntry();
  while (MoreBytesToCorrupt()) {
    Reopen(options);
    ASSERT_OK(ExecuteWrite(nullptr));
    std::string val;
    ASSERT_TRUE(db_->Get(ReadOptions(), "key", &val).IsCorruption());
    Destroy(options);
    SkipNotToCorruptEntry();
  }
}

TEST_P(DbMemtableKVChecksumTest,
       GetWithColumnFamilyCorruptAfterMemtableInsert) {
  // Record memtable entry size.
  // Not corrupting memtable entry here since it will segfault
  // or fail some asserts inside memtablerep implementation
  // e.g., when key_len is corrupted.
  SyncPoint::GetInstance()->SetCallBack(
      "MemTable::Add:BeforeReturn:Encoded", [&](void* arg) {
        Slice encoded = *static_cast<Slice*>(arg);
        entry_len_ = encoded.size();
      });

  SyncPoint::GetInstance()->SetCallBack(
      "Memtable::SaveValue:Begin:entry", [&](void* entry) {
        char* buf = *static_cast<char**>(entry);
        buf[corrupt_byte_offset_] += corrupt_byte_addend_;
        ++corrupt_byte_offset_;
      });
  SyncPoint::GetInstance()->EnableProcessing();
  Options options = CurrentOptions();
  options.memtable_protection_bytes_per_key =
      memtable_protection_bytes_per_key_;
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }

  SkipNotToCorruptEntry();
  while (MoreBytesToCorrupt()) {
    Reopen(options);
    CreateAndReopenWithCF({"pikachu"}, options);
    ASSERT_OK(ExecuteWrite(handles_[1]));
    std::string val;
    ASSERT_TRUE(
        db_->Get(ReadOptions(), handles_[1], "key", &val).IsCorruption());
    Destroy(options);
    SkipNotToCorruptEntry();
  }
}

TEST_P(DbMemtableKVChecksumTest, IteratorWithCorruptAfterMemtableInsert) {
  SyncPoint::GetInstance()->SetCallBack(
      "MemTable::Add:BeforeReturn:Encoded",
      std::bind(&DbKvChecksumTest::CorruptNextByteCallBack, this,
                std::placeholders::_1));
  SyncPoint::GetInstance()->EnableProcessing();
  Options options = CurrentOptions();
  options.memtable_protection_bytes_per_key =
      memtable_protection_bytes_per_key_;
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }

  SkipNotToCorruptEntry();
  while (MoreBytesToCorrupt()) {
    Reopen(options);
    ASSERT_OK(ExecuteWrite(nullptr));
    Iterator* it = db_->NewIterator(ReadOptions());
    it->SeekToFirst();
    ASSERT_FALSE(it->Valid());
    ASSERT_TRUE(it->status().IsCorruption());
    delete it;
    Destroy(options);
    SkipNotToCorruptEntry();
  }
}

TEST_P(DbMemtableKVChecksumTest,
       IteratorWithColumnFamilyCorruptAfterMemtableInsert) {
  SyncPoint::GetInstance()->SetCallBack(
      "MemTable::Add:BeforeReturn:Encoded",
      std::bind(&DbKvChecksumTest::CorruptNextByteCallBack, this,
                std::placeholders::_1));
  SyncPoint::GetInstance()->EnableProcessing();
  Options options = CurrentOptions();
  options.memtable_protection_bytes_per_key =
      memtable_protection_bytes_per_key_;
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }

  SkipNotToCorruptEntry();
  while (MoreBytesToCorrupt()) {
    Reopen(options);
    CreateAndReopenWithCF({"pikachu"}, options);
    ASSERT_OK(ExecuteWrite(handles_[1]));
    Iterator* it = db_->NewIterator(ReadOptions(), handles_[1]);
    it->SeekToFirst();
    ASSERT_FALSE(it->Valid());
    ASSERT_TRUE(it->status().IsCorruption());
    delete it;
    Destroy(options);
    SkipNotToCorruptEntry();
  }
}

TEST_P(DbMemtableKVChecksumTest, FlushWithCorruptAfterMemtableInsert) {
  SyncPoint::GetInstance()->SetCallBack(
      "MemTable::Add:BeforeReturn:Encoded",
      std::bind(&DbKvChecksumTest::CorruptNextByteCallBack, this,
                std::placeholders::_1));
  SyncPoint::GetInstance()->EnableProcessing();
  Options options = CurrentOptions();
  options.memtable_protection_bytes_per_key =
      memtable_protection_bytes_per_key_;
  if (op_type_ == WriteBatchOpType::kMerge) {
    options.merge_operator = MergeOperators::CreateStringAppendOperator();
  }

  SkipNotToCorruptEntry();
  // Not corruping each byte like other tests since Flush() is relatively slow.
  Reopen(options);
  ASSERT_OK(ExecuteWrite(nullptr));
  ASSERT_TRUE(Flush().IsCorruption());
  // DB enters read-only state when flush reads corrupted data
  ASSERT_TRUE(dbfull()->TEST_GetBGError().IsCorruption());
  Destroy(options);
}

}  // namespace ROCKSDB_NAMESPACE

int main(int argc, char** argv) {
  ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}