summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/file_indexer.h
blob: 45cb13615019654871b28949520dc60e76806391 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#pragma once
#include <cstdint>
#include <functional>
#include <limits>
#include <vector>

#include "memory/arena.h"
#include "port/port.h"
#include "util/autovector.h"

namespace ROCKSDB_NAMESPACE {

class Comparator;
struct FileMetaData;
struct FdWithKeyRange;
struct FileLevel;

// The file tree structure in Version is prebuilt and the range of each file
// is known. On Version::Get(), it uses binary search to find a potential file
// and then check if a target key can be found in the file by comparing the key
// to each file's smallest and largest key. The results of these comparisons
// can be reused beyond checking if a key falls into a file's range.
// With some pre-calculated knowledge, each key comparison that has been done
// can serve as a hint to narrow down further searches: if a key compared to
// be smaller than a file's smallest or largest, that comparison can be used
// to find out the right bound of next binary search. Similarly, if a key
// compared to be larger than a file's smallest or largest, it can be utilized
// to find out the left bound of next binary search.
// With these hints: it can greatly reduce the range of binary search,
// especially for bottom levels, given that one file most likely overlaps with
// only N files from level below (where N is max_bytes_for_level_multiplier).
// So on level L, we will only look at ~N files instead of N^L files on the
// naive approach.
class FileIndexer {
 public:
  explicit FileIndexer(const Comparator* ucmp);

  size_t NumLevelIndex() const;

  size_t LevelIndexSize(size_t level) const;

  // Return a file index range in the next level to search for a key based on
  // smallest and largest key comparison for the current file specified by
  // level and file_index. When *left_index < *right_index, both index should
  // be valid and fit in the vector size.
  void GetNextLevelIndex(const size_t level, const size_t file_index,
                         const int cmp_smallest, const int cmp_largest,
                         int32_t* left_bound, int32_t* right_bound) const;

  void UpdateIndex(Arena* arena, const size_t num_levels,
                   std::vector<FileMetaData*>* const files);

  enum { kLevelMaxIndex = std::numeric_limits<int32_t>::max() };

 private:
  size_t num_levels_;
  const Comparator* ucmp_;

  struct IndexUnit {
    IndexUnit()
        : smallest_lb(0), largest_lb(0), smallest_rb(-1), largest_rb(-1) {}
    // During file search, a key is compared against smallest and largest
    // from a FileMetaData. It can have 3 possible outcomes:
    // (1) key is smaller than smallest, implying it is also smaller than
    //     larger. Precalculated index based on "smallest < smallest" can
    //     be used to provide right bound.
    // (2) key is in between smallest and largest.
    //     Precalculated index based on "smallest > greatest" can be used to
    //     provide left bound.
    //     Precalculated index based on "largest < smallest" can be used to
    //     provide right bound.
    // (3) key is larger than largest, implying it is also larger than smallest.
    //     Precalculated index based on "largest > largest" can be used to
    //     provide left bound.
    //
    // As a result, we will need to do:
    // Compare smallest (<=) and largest keys from upper level file with
    // smallest key from lower level to get a right bound.
    // Compare smallest (>=) and largest keys from upper level file with
    // largest key from lower level to get a left bound.
    //
    // Example:
    //    level 1:              [50 - 60]
    //    level 2:        [1 - 40], [45 - 55], [58 - 80]
    // A key 35, compared to be less than 50, 3rd file on level 2 can be
    // skipped according to rule (1). LB = 0, RB = 1.
    // A key 53, sits in the middle 50 and 60. 1st file on level 2 can be
    // skipped according to rule (2)-a, but the 3rd file cannot be skipped
    // because 60 is greater than 58. LB = 1, RB = 2.
    // A key 70, compared to be larger than 60. 1st and 2nd file can be skipped
    // according to rule (3). LB = 2, RB = 2.
    //
    // Point to a left most file in a lower level that may contain a key,
    // which compares greater than smallest of a FileMetaData (upper level)
    int32_t smallest_lb;
    // Point to a left most file in a lower level that may contain a key,
    // which compares greater than largest of a FileMetaData (upper level)
    int32_t largest_lb;
    // Point to a right most file in a lower level that may contain a key,
    // which compares smaller than smallest of a FileMetaData (upper level)
    int32_t smallest_rb;
    // Point to a right most file in a lower level that may contain a key,
    // which compares smaller than largest of a FileMetaData (upper level)
    int32_t largest_rb;
  };

  // Data structure to store IndexUnits in a whole level
  struct IndexLevel {
    size_t num_index;
    IndexUnit* index_units;

    IndexLevel() : num_index(0), index_units(nullptr) {}
  };

  void CalculateLB(
      const std::vector<FileMetaData*>& upper_files,
      const std::vector<FileMetaData*>& lower_files, IndexLevel* index_level,
      std::function<int(const FileMetaData*, const FileMetaData*)> cmp_op,
      std::function<void(IndexUnit*, int32_t)> set_index);

  void CalculateRB(
      const std::vector<FileMetaData*>& upper_files,
      const std::vector<FileMetaData*>& lower_files, IndexLevel* index_level,
      std::function<int(const FileMetaData*, const FileMetaData*)> cmp_op,
      std::function<void(IndexUnit*, int32_t)> set_index);

  autovector<IndexLevel> next_level_index_;
  int32_t* level_rb_;
};

}  // namespace ROCKSDB_NAMESPACE