summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/log_reader.cc
blob: a21868776141f6ec780c62bb56e55f8515839fff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/log_reader.h"

#include <stdio.h>

#include "file/sequence_file_reader.h"
#include "port/lang.h"
#include "rocksdb/env.h"
#include "test_util/sync_point.h"
#include "util/coding.h"
#include "util/crc32c.h"

namespace ROCKSDB_NAMESPACE {
namespace log {

Reader::Reporter::~Reporter() {}

Reader::Reader(std::shared_ptr<Logger> info_log,
               std::unique_ptr<SequentialFileReader>&& _file,
               Reporter* reporter, bool checksum, uint64_t log_num)
    : info_log_(info_log),
      file_(std::move(_file)),
      reporter_(reporter),
      checksum_(checksum),
      backing_store_(new char[kBlockSize]),
      buffer_(),
      eof_(false),
      read_error_(false),
      eof_offset_(0),
      last_record_offset_(0),
      end_of_buffer_offset_(0),
      log_number_(log_num),
      recycled_(false),
      first_record_read_(false),
      compression_type_(kNoCompression),
      compression_type_record_read_(false),
      uncompress_(nullptr),
      hash_state_(nullptr),
      uncompress_hash_state_(nullptr){};

Reader::~Reader() {
  delete[] backing_store_;
  if (uncompress_) {
    delete uncompress_;
  }
  if (hash_state_) {
    XXH3_freeState(hash_state_);
  }
  if (uncompress_hash_state_) {
    XXH3_freeState(uncompress_hash_state_);
  }
}

// For kAbsoluteConsistency, on clean shutdown we don't expect any error
// in the log files.  For other modes, we can ignore only incomplete records
// in the last log file, which are presumably due to a write in progress
// during restart (or from log recycling).
//
// TODO krad: Evaluate if we need to move to a more strict mode where we
// restrict the inconsistency to only the last log
bool Reader::ReadRecord(Slice* record, std::string* scratch,
                        WALRecoveryMode wal_recovery_mode,
                        uint64_t* record_checksum) {
  scratch->clear();
  record->clear();
  if (record_checksum != nullptr) {
    if (hash_state_ == nullptr) {
      hash_state_ = XXH3_createState();
    }
    XXH3_64bits_reset(hash_state_);
  }
  if (uncompress_) {
    uncompress_->Reset();
  }
  bool in_fragmented_record = false;
  // Record offset of the logical record that we're reading
  // 0 is a dummy value to make compilers happy
  uint64_t prospective_record_offset = 0;

  Slice fragment;
  while (true) {
    uint64_t physical_record_offset = end_of_buffer_offset_ - buffer_.size();
    size_t drop_size = 0;
    const unsigned int record_type =
        ReadPhysicalRecord(&fragment, &drop_size, record_checksum);
    switch (record_type) {
      case kFullType:
      case kRecyclableFullType:
        if (in_fragmented_record && !scratch->empty()) {
          // Handle bug in earlier versions of log::Writer where
          // it could emit an empty kFirstType record at the tail end
          // of a block followed by a kFullType or kFirstType record
          // at the beginning of the next block.
          ReportCorruption(scratch->size(), "partial record without end(1)");
        }
        // No need to compute record_checksum since the record
        // consists of a single fragment and the checksum is computed
        // in ReadPhysicalRecord() if WAL compression is enabled
        if (record_checksum != nullptr && uncompress_ == nullptr) {
          // No need to stream since the record is a single fragment
          *record_checksum = XXH3_64bits(fragment.data(), fragment.size());
        }
        prospective_record_offset = physical_record_offset;
        scratch->clear();
        *record = fragment;
        last_record_offset_ = prospective_record_offset;
        first_record_read_ = true;
        return true;

      case kFirstType:
      case kRecyclableFirstType:
        if (in_fragmented_record && !scratch->empty()) {
          // Handle bug in earlier versions of log::Writer where
          // it could emit an empty kFirstType record at the tail end
          // of a block followed by a kFullType or kFirstType record
          // at the beginning of the next block.
          ReportCorruption(scratch->size(), "partial record without end(2)");
          XXH3_64bits_reset(hash_state_);
        }
        if (record_checksum != nullptr) {
          XXH3_64bits_update(hash_state_, fragment.data(), fragment.size());
        }
        prospective_record_offset = physical_record_offset;
        scratch->assign(fragment.data(), fragment.size());
        in_fragmented_record = true;
        break;

      case kMiddleType:
      case kRecyclableMiddleType:
        if (!in_fragmented_record) {
          ReportCorruption(fragment.size(),
                           "missing start of fragmented record(1)");
        } else {
          if (record_checksum != nullptr) {
            XXH3_64bits_update(hash_state_, fragment.data(), fragment.size());
          }
          scratch->append(fragment.data(), fragment.size());
        }
        break;

      case kLastType:
      case kRecyclableLastType:
        if (!in_fragmented_record) {
          ReportCorruption(fragment.size(),
                           "missing start of fragmented record(2)");
        } else {
          if (record_checksum != nullptr) {
            XXH3_64bits_update(hash_state_, fragment.data(), fragment.size());
            *record_checksum = XXH3_64bits_digest(hash_state_);
          }
          scratch->append(fragment.data(), fragment.size());
          *record = Slice(*scratch);
          last_record_offset_ = prospective_record_offset;
          first_record_read_ = true;
          return true;
        }
        break;

      case kBadHeader:
        if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
            wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
          // In clean shutdown we don't expect any error in the log files.
          // In point-in-time recovery an incomplete record at the end could
          // produce a hole in the recovered data. Report an error here, which
          // higher layers can choose to ignore when it's provable there is no
          // hole.
          ReportCorruption(drop_size, "truncated header");
        }
        FALLTHROUGH_INTENDED;

      case kEof:
        if (in_fragmented_record) {
          if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
              wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
            // In clean shutdown we don't expect any error in the log files.
            // In point-in-time recovery an incomplete record at the end could
            // produce a hole in the recovered data. Report an error here, which
            // higher layers can choose to ignore when it's provable there is no
            // hole.
            ReportCorruption(scratch->size(), "error reading trailing data");
          }
          // This can be caused by the writer dying immediately after
          //  writing a physical record but before completing the next; don't
          //  treat it as a corruption, just ignore the entire logical record.
          scratch->clear();
        }
        return false;

      case kOldRecord:
        if (wal_recovery_mode != WALRecoveryMode::kSkipAnyCorruptedRecords) {
          // Treat a record from a previous instance of the log as EOF.
          if (in_fragmented_record) {
            if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
                wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
              // In clean shutdown we don't expect any error in the log files.
              // In point-in-time recovery an incomplete record at the end could
              // produce a hole in the recovered data. Report an error here,
              // which higher layers can choose to ignore when it's provable
              // there is no hole.
              ReportCorruption(scratch->size(), "error reading trailing data");
            }
            // This can be caused by the writer dying immediately after
            //  writing a physical record but before completing the next; don't
            //  treat it as a corruption, just ignore the entire logical record.
            scratch->clear();
          }
          return false;
        }
        FALLTHROUGH_INTENDED;

      case kBadRecord:
        if (in_fragmented_record) {
          ReportCorruption(scratch->size(), "error in middle of record");
          in_fragmented_record = false;
          scratch->clear();
        }
        break;

      case kBadRecordLen:
        if (eof_) {
          if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
              wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
            // In clean shutdown we don't expect any error in the log files.
            // In point-in-time recovery an incomplete record at the end could
            // produce a hole in the recovered data. Report an error here, which
            // higher layers can choose to ignore when it's provable there is no
            // hole.
            ReportCorruption(drop_size, "truncated record body");
          }
          return false;
        }
        FALLTHROUGH_INTENDED;

      case kBadRecordChecksum:
        if (recycled_ && wal_recovery_mode ==
                             WALRecoveryMode::kTolerateCorruptedTailRecords) {
          scratch->clear();
          return false;
        }
        if (record_type == kBadRecordLen) {
          ReportCorruption(drop_size, "bad record length");
        } else {
          ReportCorruption(drop_size, "checksum mismatch");
        }
        if (in_fragmented_record) {
          ReportCorruption(scratch->size(), "error in middle of record");
          in_fragmented_record = false;
          scratch->clear();
        }
        break;

      case kSetCompressionType: {
        if (compression_type_record_read_) {
          ReportCorruption(fragment.size(),
                           "read multiple SetCompressionType records");
        }
        if (first_record_read_) {
          ReportCorruption(fragment.size(),
                           "SetCompressionType not the first record");
        }
        prospective_record_offset = physical_record_offset;
        scratch->clear();
        last_record_offset_ = prospective_record_offset;
        CompressionTypeRecord compression_record(kNoCompression);
        Status s = compression_record.DecodeFrom(&fragment);
        if (!s.ok()) {
          ReportCorruption(fragment.size(),
                           "could not decode SetCompressionType record");
        } else {
          InitCompression(compression_record);
        }
        break;
      }

      default: {
        char buf[40];
        snprintf(buf, sizeof(buf), "unknown record type %u", record_type);
        ReportCorruption(
            (fragment.size() + (in_fragmented_record ? scratch->size() : 0)),
            buf);
        in_fragmented_record = false;
        scratch->clear();
        break;
      }
    }
  }
  return false;
}

uint64_t Reader::LastRecordOffset() { return last_record_offset_; }

uint64_t Reader::LastRecordEnd() {
  return end_of_buffer_offset_ - buffer_.size();
}

void Reader::UnmarkEOF() {
  if (read_error_) {
    return;
  }
  eof_ = false;
  if (eof_offset_ == 0) {
    return;
  }
  UnmarkEOFInternal();
}

void Reader::UnmarkEOFInternal() {
  // If the EOF was in the middle of a block (a partial block was read) we have
  // to read the rest of the block as ReadPhysicalRecord can only read full
  // blocks and expects the file position indicator to be aligned to the start
  // of a block.
  //
  //      consumed_bytes + buffer_size() + remaining == kBlockSize

  size_t consumed_bytes = eof_offset_ - buffer_.size();
  size_t remaining = kBlockSize - eof_offset_;

  // backing_store_ is used to concatenate what is left in buffer_ and
  // the remainder of the block. If buffer_ already uses backing_store_,
  // we just append the new data.
  if (buffer_.data() != backing_store_ + consumed_bytes) {
    // Buffer_ does not use backing_store_ for storage.
    // Copy what is left in buffer_ to backing_store.
    memmove(backing_store_ + consumed_bytes, buffer_.data(), buffer_.size());
  }

  Slice read_buffer;
  // TODO: rate limit log reader with approriate priority.
  // TODO: avoid overcharging rate limiter:
  // Note that the Read here might overcharge SequentialFileReader's internal
  // rate limiter if priority is not IO_TOTAL, e.g., when there is not enough
  // content left until EOF to read.
  Status status =
      file_->Read(remaining, &read_buffer, backing_store_ + eof_offset_,
                  Env::IO_TOTAL /* rate_limiter_priority */);

  size_t added = read_buffer.size();
  end_of_buffer_offset_ += added;

  if (!status.ok()) {
    if (added > 0) {
      ReportDrop(added, status);
    }

    read_error_ = true;
    return;
  }

  if (read_buffer.data() != backing_store_ + eof_offset_) {
    // Read did not write to backing_store_
    memmove(backing_store_ + eof_offset_, read_buffer.data(),
            read_buffer.size());
  }

  buffer_ = Slice(backing_store_ + consumed_bytes,
                  eof_offset_ + added - consumed_bytes);

  if (added < remaining) {
    eof_ = true;
    eof_offset_ += added;
  } else {
    eof_offset_ = 0;
  }
}

void Reader::ReportCorruption(size_t bytes, const char* reason) {
  ReportDrop(bytes, Status::Corruption(reason));
}

void Reader::ReportDrop(size_t bytes, const Status& reason) {
  if (reporter_ != nullptr) {
    reporter_->Corruption(bytes, reason);
  }
}

bool Reader::ReadMore(size_t* drop_size, int* error) {
  if (!eof_ && !read_error_) {
    // Last read was a full read, so this is a trailer to skip
    buffer_.clear();
    // TODO: rate limit log reader with approriate priority.
    // TODO: avoid overcharging rate limiter:
    // Note that the Read here might overcharge SequentialFileReader's internal
    // rate limiter if priority is not IO_TOTAL, e.g., when there is not enough
    // content left until EOF to read.
    Status status = file_->Read(kBlockSize, &buffer_, backing_store_,
                                Env::IO_TOTAL /* rate_limiter_priority */);
    TEST_SYNC_POINT_CALLBACK("LogReader::ReadMore:AfterReadFile", &status);
    end_of_buffer_offset_ += buffer_.size();
    if (!status.ok()) {
      buffer_.clear();
      ReportDrop(kBlockSize, status);
      read_error_ = true;
      *error = kEof;
      return false;
    } else if (buffer_.size() < static_cast<size_t>(kBlockSize)) {
      eof_ = true;
      eof_offset_ = buffer_.size();
    }
    return true;
  } else {
    // Note that if buffer_ is non-empty, we have a truncated header at the
    //  end of the file, which can be caused by the writer crashing in the
    //  middle of writing the header. Unless explicitly requested we don't
    //  considering this an error, just report EOF.
    if (buffer_.size()) {
      *drop_size = buffer_.size();
      buffer_.clear();
      *error = kBadHeader;
      return false;
    }
    buffer_.clear();
    *error = kEof;
    return false;
  }
}

unsigned int Reader::ReadPhysicalRecord(Slice* result, size_t* drop_size,
                                        uint64_t* fragment_checksum) {
  while (true) {
    // We need at least the minimum header size
    if (buffer_.size() < static_cast<size_t>(kHeaderSize)) {
      // the default value of r is meaningless because ReadMore will overwrite
      // it if it returns false; in case it returns true, the return value will
      // not be used anyway
      int r = kEof;
      if (!ReadMore(drop_size, &r)) {
        return r;
      }
      continue;
    }

    // Parse the header
    const char* header = buffer_.data();
    const uint32_t a = static_cast<uint32_t>(header[4]) & 0xff;
    const uint32_t b = static_cast<uint32_t>(header[5]) & 0xff;
    const unsigned int type = header[6];
    const uint32_t length = a | (b << 8);
    int header_size = kHeaderSize;
    if (type >= kRecyclableFullType && type <= kRecyclableLastType) {
      if (end_of_buffer_offset_ - buffer_.size() == 0) {
        recycled_ = true;
      }
      header_size = kRecyclableHeaderSize;
      // We need enough for the larger header
      if (buffer_.size() < static_cast<size_t>(kRecyclableHeaderSize)) {
        int r = kEof;
        if (!ReadMore(drop_size, &r)) {
          return r;
        }
        continue;
      }
      const uint32_t log_num = DecodeFixed32(header + 7);
      if (log_num != log_number_) {
        return kOldRecord;
      }
    }
    if (header_size + length > buffer_.size()) {
      assert(buffer_.size() >= static_cast<size_t>(header_size));
      *drop_size = buffer_.size();
      buffer_.clear();
      // If the end of the read has been reached without seeing
      // `header_size + length` bytes of payload, report a corruption. The
      // higher layers can decide how to handle it based on the recovery mode,
      // whether this occurred at EOF, whether this is the final WAL, etc.
      return kBadRecordLen;
    }

    if (type == kZeroType && length == 0) {
      // Skip zero length record without reporting any drops since
      // such records are produced by the mmap based writing code in
      // env_posix.cc that preallocates file regions.
      // NOTE: this should never happen in DB written by new RocksDB versions,
      // since we turn off mmap writes to manifest and log files
      buffer_.clear();
      return kBadRecord;
    }

    // Check crc
    if (checksum_) {
      uint32_t expected_crc = crc32c::Unmask(DecodeFixed32(header));
      uint32_t actual_crc = crc32c::Value(header + 6, length + header_size - 6);
      if (actual_crc != expected_crc) {
        // Drop the rest of the buffer since "length" itself may have
        // been corrupted and if we trust it, we could find some
        // fragment of a real log record that just happens to look
        // like a valid log record.
        *drop_size = buffer_.size();
        buffer_.clear();
        return kBadRecordChecksum;
      }
    }

    buffer_.remove_prefix(header_size + length);

    if (!uncompress_ || type == kSetCompressionType) {
      *result = Slice(header + header_size, length);
      return type;
    } else {
      // Uncompress compressed records
      uncompressed_record_.clear();
      if (fragment_checksum != nullptr) {
        if (uncompress_hash_state_ == nullptr) {
          uncompress_hash_state_ = XXH3_createState();
        }
        XXH3_64bits_reset(uncompress_hash_state_);
      }

      size_t uncompressed_size = 0;
      int remaining = 0;
      do {
        remaining = uncompress_->Uncompress(header + header_size, length,
                                            uncompressed_buffer_.get(),
                                            &uncompressed_size);
        if (remaining < 0) {
          buffer_.clear();
          return kBadRecord;
        }
        if (uncompressed_size > 0) {
          if (fragment_checksum != nullptr) {
            XXH3_64bits_update(uncompress_hash_state_,
                               uncompressed_buffer_.get(), uncompressed_size);
          }
          uncompressed_record_.append(uncompressed_buffer_.get(),
                                      uncompressed_size);
        }
      } while (remaining > 0 || uncompressed_size == kBlockSize);

      if (fragment_checksum != nullptr) {
        // We can remove this check by updating hash_state_ directly,
        // but that requires resetting hash_state_ for full and first types
        // for edge cases like consecutive fist type records.
        // Leaving the check as is since it is cleaner and can revert to the
        // above approach if it causes performance impact.
        *fragment_checksum = XXH3_64bits_digest(uncompress_hash_state_);
        uint64_t actual_checksum = XXH3_64bits(uncompressed_record_.data(),
                                               uncompressed_record_.size());
        if (*fragment_checksum != actual_checksum) {
          // uncompressed_record_ contains bad content that does not match
          // actual decompressed content
          return kBadRecord;
        }
      }
      *result = Slice(uncompressed_record_);
      return type;
    }
  }
}

// Initialize uncompress related fields
void Reader::InitCompression(const CompressionTypeRecord& compression_record) {
  compression_type_ = compression_record.GetCompressionType();
  compression_type_record_read_ = true;
  constexpr uint32_t compression_format_version = 2;
  uncompress_ = StreamingUncompress::Create(
      compression_type_, compression_format_version, kBlockSize);
  assert(uncompress_ != nullptr);
  uncompressed_buffer_ = std::unique_ptr<char[]>(new char[kBlockSize]);
  assert(uncompressed_buffer_);
}

bool FragmentBufferedReader::ReadRecord(Slice* record, std::string* scratch,
                                        WALRecoveryMode /*unused*/,
                                        uint64_t* /* checksum */) {
  assert(record != nullptr);
  assert(scratch != nullptr);
  record->clear();
  scratch->clear();
  if (uncompress_) {
    uncompress_->Reset();
  }

  uint64_t prospective_record_offset = 0;
  uint64_t physical_record_offset = end_of_buffer_offset_ - buffer_.size();
  size_t drop_size = 0;
  unsigned int fragment_type_or_err = 0;  // Initialize to make compiler happy
  Slice fragment;
  while (TryReadFragment(&fragment, &drop_size, &fragment_type_or_err)) {
    switch (fragment_type_or_err) {
      case kFullType:
      case kRecyclableFullType:
        if (in_fragmented_record_ && !fragments_.empty()) {
          ReportCorruption(fragments_.size(), "partial record without end(1)");
        }
        fragments_.clear();
        *record = fragment;
        prospective_record_offset = physical_record_offset;
        last_record_offset_ = prospective_record_offset;
        first_record_read_ = true;
        in_fragmented_record_ = false;
        return true;

      case kFirstType:
      case kRecyclableFirstType:
        if (in_fragmented_record_ || !fragments_.empty()) {
          ReportCorruption(fragments_.size(), "partial record without end(2)");
        }
        prospective_record_offset = physical_record_offset;
        fragments_.assign(fragment.data(), fragment.size());
        in_fragmented_record_ = true;
        break;

      case kMiddleType:
      case kRecyclableMiddleType:
        if (!in_fragmented_record_) {
          ReportCorruption(fragment.size(),
                           "missing start of fragmented record(1)");
        } else {
          fragments_.append(fragment.data(), fragment.size());
        }
        break;

      case kLastType:
      case kRecyclableLastType:
        if (!in_fragmented_record_) {
          ReportCorruption(fragment.size(),
                           "missing start of fragmented record(2)");
        } else {
          fragments_.append(fragment.data(), fragment.size());
          scratch->assign(fragments_.data(), fragments_.size());
          fragments_.clear();
          *record = Slice(*scratch);
          last_record_offset_ = prospective_record_offset;
          first_record_read_ = true;
          in_fragmented_record_ = false;
          return true;
        }
        break;

      case kBadHeader:
      case kBadRecord:
      case kEof:
      case kOldRecord:
        if (in_fragmented_record_) {
          ReportCorruption(fragments_.size(), "error in middle of record");
          in_fragmented_record_ = false;
          fragments_.clear();
        }
        break;

      case kBadRecordChecksum:
        if (recycled_) {
          fragments_.clear();
          return false;
        }
        ReportCorruption(drop_size, "checksum mismatch");
        if (in_fragmented_record_) {
          ReportCorruption(fragments_.size(), "error in middle of record");
          in_fragmented_record_ = false;
          fragments_.clear();
        }
        break;

      case kSetCompressionType: {
        if (compression_type_record_read_) {
          ReportCorruption(fragment.size(),
                           "read multiple SetCompressionType records");
        }
        if (first_record_read_) {
          ReportCorruption(fragment.size(),
                           "SetCompressionType not the first record");
        }
        fragments_.clear();
        prospective_record_offset = physical_record_offset;
        last_record_offset_ = prospective_record_offset;
        in_fragmented_record_ = false;
        CompressionTypeRecord compression_record(kNoCompression);
        Status s = compression_record.DecodeFrom(&fragment);
        if (!s.ok()) {
          ReportCorruption(fragment.size(),
                           "could not decode SetCompressionType record");
        } else {
          InitCompression(compression_record);
        }
        break;
      }

      default: {
        char buf[40];
        snprintf(buf, sizeof(buf), "unknown record type %u",
                 fragment_type_or_err);
        ReportCorruption(
            fragment.size() + (in_fragmented_record_ ? fragments_.size() : 0),
            buf);
        in_fragmented_record_ = false;
        fragments_.clear();
        break;
      }
    }
  }
  return false;
}

void FragmentBufferedReader::UnmarkEOF() {
  if (read_error_) {
    return;
  }
  eof_ = false;
  UnmarkEOFInternal();
}

bool FragmentBufferedReader::TryReadMore(size_t* drop_size, int* error) {
  if (!eof_ && !read_error_) {
    // Last read was a full read, so this is a trailer to skip
    buffer_.clear();
    // TODO: rate limit log reader with approriate priority.
    // TODO: avoid overcharging rate limiter:
    // Note that the Read here might overcharge SequentialFileReader's internal
    // rate limiter if priority is not IO_TOTAL, e.g., when there is not enough
    // content left until EOF to read.
    Status status = file_->Read(kBlockSize, &buffer_, backing_store_,
                                Env::IO_TOTAL /* rate_limiter_priority */);
    end_of_buffer_offset_ += buffer_.size();
    if (!status.ok()) {
      buffer_.clear();
      ReportDrop(kBlockSize, status);
      read_error_ = true;
      *error = kEof;
      return false;
    } else if (buffer_.size() < static_cast<size_t>(kBlockSize)) {
      eof_ = true;
      eof_offset_ = buffer_.size();
      TEST_SYNC_POINT_CALLBACK(
          "FragmentBufferedLogReader::TryReadMore:FirstEOF", nullptr);
    }
    return true;
  } else if (!read_error_) {
    UnmarkEOF();
  }
  if (!read_error_) {
    return true;
  }
  *error = kEof;
  *drop_size = buffer_.size();
  if (buffer_.size() > 0) {
    *error = kBadHeader;
  }
  buffer_.clear();
  return false;
}

// return true if the caller should process the fragment_type_or_err.
bool FragmentBufferedReader::TryReadFragment(
    Slice* fragment, size_t* drop_size, unsigned int* fragment_type_or_err) {
  assert(fragment != nullptr);
  assert(drop_size != nullptr);
  assert(fragment_type_or_err != nullptr);

  while (buffer_.size() < static_cast<size_t>(kHeaderSize)) {
    size_t old_size = buffer_.size();
    int error = kEof;
    if (!TryReadMore(drop_size, &error)) {
      *fragment_type_or_err = error;
      return false;
    } else if (old_size == buffer_.size()) {
      return false;
    }
  }
  const char* header = buffer_.data();
  const uint32_t a = static_cast<uint32_t>(header[4]) & 0xff;
  const uint32_t b = static_cast<uint32_t>(header[5]) & 0xff;
  const unsigned int type = header[6];
  const uint32_t length = a | (b << 8);
  int header_size = kHeaderSize;
  if (type >= kRecyclableFullType && type <= kRecyclableLastType) {
    if (end_of_buffer_offset_ - buffer_.size() == 0) {
      recycled_ = true;
    }
    header_size = kRecyclableHeaderSize;
    while (buffer_.size() < static_cast<size_t>(kRecyclableHeaderSize)) {
      size_t old_size = buffer_.size();
      int error = kEof;
      if (!TryReadMore(drop_size, &error)) {
        *fragment_type_or_err = error;
        return false;
      } else if (old_size == buffer_.size()) {
        return false;
      }
    }
    const uint32_t log_num = DecodeFixed32(header + 7);
    if (log_num != log_number_) {
      *fragment_type_or_err = kOldRecord;
      return true;
    }
  }

  while (header_size + length > buffer_.size()) {
    size_t old_size = buffer_.size();
    int error = kEof;
    if (!TryReadMore(drop_size, &error)) {
      *fragment_type_or_err = error;
      return false;
    } else if (old_size == buffer_.size()) {
      return false;
    }
  }

  if (type == kZeroType && length == 0) {
    buffer_.clear();
    *fragment_type_or_err = kBadRecord;
    return true;
  }

  if (checksum_) {
    uint32_t expected_crc = crc32c::Unmask(DecodeFixed32(header));
    uint32_t actual_crc = crc32c::Value(header + 6, length + header_size - 6);
    if (actual_crc != expected_crc) {
      *drop_size = buffer_.size();
      buffer_.clear();
      *fragment_type_or_err = kBadRecordChecksum;
      return true;
    }
  }

  buffer_.remove_prefix(header_size + length);

  if (!uncompress_ || type == kSetCompressionType) {
    *fragment = Slice(header + header_size, length);
    *fragment_type_or_err = type;
    return true;
  } else {
    // Uncompress compressed records
    uncompressed_record_.clear();
    size_t uncompressed_size = 0;
    int remaining = 0;
    do {
      remaining = uncompress_->Uncompress(header + header_size, length,
                                          uncompressed_buffer_.get(),
                                          &uncompressed_size);
      if (remaining < 0) {
        buffer_.clear();
        *fragment_type_or_err = kBadRecord;
        return true;
      }
      if (uncompressed_size > 0) {
        uncompressed_record_.append(uncompressed_buffer_.get(),
                                    uncompressed_size);
      }
    } while (remaining > 0 || uncompressed_size == kBlockSize);
    *fragment = Slice(std::move(uncompressed_record_));
    *fragment_type_or_err = type;
    return true;
  }
}

}  // namespace log
}  // namespace ROCKSDB_NAMESPACE