summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/seqno_to_time_mapping.cc
blob: c69209929487d51065802ddf4bba9d1d4773ee07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
//  Copyright (c) Meta Platforms, Inc. and affiliates.
//
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#include "db/seqno_to_time_mapping.h"

#include "db/version_edit.h"
#include "util/string_util.h"

namespace ROCKSDB_NAMESPACE {

uint64_t SeqnoToTimeMapping::GetOldestApproximateTime(
    const SequenceNumber seqno) const {
  assert(is_sorted_);
  auto it = std::upper_bound(seqno_time_mapping_.begin(),
                             seqno_time_mapping_.end(), seqno);
  if (it == seqno_time_mapping_.begin()) {
    return 0;
  }
  it--;
  return it->time;
}

void SeqnoToTimeMapping::Add(SequenceNumber seqno, uint64_t time) {
  if (seqno == 0) {
    return;
  }
  is_sorted_ = false;
  seqno_time_mapping_.emplace_back(seqno, time);
}

void SeqnoToTimeMapping::TruncateOldEntries(const uint64_t now) {
  assert(is_sorted_);

  if (max_time_duration_ == 0) {
    return;
  }

  const uint64_t cut_off_time =
      now > max_time_duration_ ? now - max_time_duration_ : 0;
  assert(cut_off_time <= now);  // no overflow

  auto it = std::upper_bound(
      seqno_time_mapping_.begin(), seqno_time_mapping_.end(), cut_off_time,
      [](uint64_t target, const SeqnoTimePair& other) -> bool {
        return target < other.time;
      });
  if (it == seqno_time_mapping_.begin()) {
    return;
  }
  it--;
  seqno_time_mapping_.erase(seqno_time_mapping_.begin(), it);
}

SequenceNumber SeqnoToTimeMapping::GetOldestSequenceNum(uint64_t time) {
  assert(is_sorted_);

  auto it = std::upper_bound(
      seqno_time_mapping_.begin(), seqno_time_mapping_.end(), time,
      [](uint64_t target, const SeqnoTimePair& other) -> bool {
        return target < other.time;
      });
  if (it == seqno_time_mapping_.begin()) {
    return 0;
  }
  it--;
  return it->seqno;
}

// The encoded format is:
//  [num_of_entries][[seqno][time],[seqno][time],...]
//      ^                                 ^
//    var_int                      delta_encoded (var_int)
void SeqnoToTimeMapping::Encode(std::string& dest, const SequenceNumber start,
                                const SequenceNumber end, const uint64_t now,
                                const uint64_t output_size) const {
  assert(is_sorted_);
  if (start > end) {
    // It could happen when the SST file is empty, the initial value of min
    // sequence number is kMaxSequenceNumber and max is 0.
    // The empty output file will be removed in the final step of compaction.
    return;
  }

  auto start_it = std::upper_bound(seqno_time_mapping_.begin(),
                                   seqno_time_mapping_.end(), start);
  if (start_it != seqno_time_mapping_.begin()) {
    start_it--;
  }

  auto end_it = std::upper_bound(seqno_time_mapping_.begin(),
                                 seqno_time_mapping_.end(), end);
  if (end_it == seqno_time_mapping_.begin()) {
    return;
  }
  if (start_it >= end_it) {
    return;
  }

  // truncate old entries that are not needed
  if (max_time_duration_ > 0) {
    const uint64_t cut_off_time =
        now > max_time_duration_ ? now - max_time_duration_ : 0;
    while (start_it < end_it && start_it->time < cut_off_time) {
      start_it++;
    }
  }
  // to include the first element
  if (start_it != seqno_time_mapping_.begin()) {
    start_it--;
  }

  // If there are more data than needed, pick the entries for encoding.
  // It's not the most optimized algorithm for selecting the best representative
  // entries over the time.
  // It starts from the beginning and makes sure the distance is larger than
  // `(end - start) / size` before selecting the number. For example, for the
  // following list, pick 3 entries (it will pick seqno #1, #6, #8):
  //    1 -> 10
  //    5 -> 17
  //    6 -> 25
  //    8 -> 30
  // first, it always picks the first one, then there are 2 num_entries_to_fill
  // and the time difference between current one vs. the last one is
  // (30 - 10) = 20. 20/2 = 10. So it will skip until 10+10 = 20. => it skips
  // #5 and pick #6.
  // But the most optimized solution is picking #1 #5 #8, as it will be more
  // evenly distributed for time. Anyway the following algorithm is simple and
  // may over-select new data, which is good. We do want more accurate time
  // information for recent data.
  std::deque<SeqnoTimePair> output_copy;
  if (std::distance(start_it, end_it) > static_cast<int64_t>(output_size)) {
    int64_t num_entries_to_fill = static_cast<int64_t>(output_size);
    auto last_it = end_it;
    last_it--;
    uint64_t end_time = last_it->time;
    uint64_t skip_until_time = 0;
    for (auto it = start_it; it < end_it; it++) {
      // skip if it's not reach the skip_until_time yet
      if (std::distance(it, end_it) > num_entries_to_fill &&
          it->time < skip_until_time) {
        continue;
      }
      output_copy.push_back(*it);
      num_entries_to_fill--;
      if (std::distance(it, end_it) > num_entries_to_fill &&
          num_entries_to_fill > 0) {
        // If there are more entries than we need, re-calculate the
        // skip_until_time, which means skip until that time
        skip_until_time =
            it->time + ((end_time - it->time) / num_entries_to_fill);
      }
    }

    // Make sure all entries are filled
    assert(num_entries_to_fill == 0);
    start_it = output_copy.begin();
    end_it = output_copy.end();
  }

  // Delta encode the data
  uint64_t size = std::distance(start_it, end_it);
  PutVarint64(&dest, size);
  SeqnoTimePair base;
  for (auto it = start_it; it < end_it; it++) {
    assert(base < *it);
    SeqnoTimePair val = *it - base;
    base = *it;
    val.Encode(dest);
  }
}

Status SeqnoToTimeMapping::Add(const std::string& seqno_time_mapping_str) {
  Slice input(seqno_time_mapping_str);
  if (input.empty()) {
    return Status::OK();
  }
  uint64_t size;
  if (!GetVarint64(&input, &size)) {
    return Status::Corruption("Invalid sequence number time size");
  }
  is_sorted_ = false;
  SeqnoTimePair base;
  for (uint64_t i = 0; i < size; i++) {
    SeqnoTimePair val;
    Status s = val.Decode(input);
    if (!s.ok()) {
      return s;
    }
    val.Add(base);
    seqno_time_mapping_.emplace_back(val);
    base = val;
  }
  return Status::OK();
}

void SeqnoToTimeMapping::SeqnoTimePair::Encode(std::string& dest) const {
  PutVarint64Varint64(&dest, seqno, time);
}

Status SeqnoToTimeMapping::SeqnoTimePair::Decode(Slice& input) {
  if (!GetVarint64(&input, &seqno)) {
    return Status::Corruption("Invalid sequence number");
  }
  if (!GetVarint64(&input, &time)) {
    return Status::Corruption("Invalid time");
  }
  return Status::OK();
}

bool SeqnoToTimeMapping::Append(SequenceNumber seqno, uint64_t time) {
  assert(is_sorted_);

  // skip seq number 0, which may have special meaning, like zeroed out data
  if (seqno == 0) {
    return false;
  }
  if (!Empty()) {
    if (seqno < Last().seqno || time < Last().time) {
      return false;
    }
    if (seqno == Last().seqno) {
      Last().time = time;
      return true;
    }
    if (time == Last().time) {
      // new sequence has the same time as old one, no need to add new mapping
      return false;
    }
  }

  seqno_time_mapping_.emplace_back(seqno, time);

  if (seqno_time_mapping_.size() > max_capacity_) {
    seqno_time_mapping_.pop_front();
  }
  return true;
}

bool SeqnoToTimeMapping::Resize(uint64_t min_time_duration,
                                uint64_t max_time_duration) {
  uint64_t new_max_capacity =
      CalculateMaxCapacity(min_time_duration, max_time_duration);
  if (new_max_capacity == max_capacity_) {
    return false;
  } else if (new_max_capacity < seqno_time_mapping_.size()) {
    uint64_t delta = seqno_time_mapping_.size() - new_max_capacity;
    seqno_time_mapping_.erase(seqno_time_mapping_.begin(),
                              seqno_time_mapping_.begin() + delta);
  }
  max_capacity_ = new_max_capacity;
  return true;
}

Status SeqnoToTimeMapping::Sort() {
  if (is_sorted_) {
    return Status::OK();
  }
  if (seqno_time_mapping_.empty()) {
    is_sorted_ = true;
    return Status::OK();
  }

  std::deque<SeqnoTimePair> copy = std::move(seqno_time_mapping_);

  std::sort(copy.begin(), copy.end());

  seqno_time_mapping_.clear();

  // remove seqno = 0, which may have special meaning, like zeroed out data
  while (copy.front().seqno == 0) {
    copy.pop_front();
  }

  SeqnoTimePair prev = copy.front();
  for (const auto& it : copy) {
    // If sequence number is the same, pick the one with larger time, which is
    // more accurate than the older time.
    if (it.seqno == prev.seqno) {
      assert(it.time >= prev.time);
      prev.time = it.time;
    } else {
      assert(it.seqno > prev.seqno);
      // If a larger sequence number has an older time which is not useful, skip
      if (it.time > prev.time) {
        seqno_time_mapping_.push_back(prev);
        prev = it;
      }
    }
  }
  seqno_time_mapping_.emplace_back(prev);

  is_sorted_ = true;
  return Status::OK();
}

std::string SeqnoToTimeMapping::ToHumanString() const {
  std::string ret;
  for (const auto& seq_time : seqno_time_mapping_) {
    AppendNumberTo(&ret, seq_time.seqno);
    ret.append("->");
    AppendNumberTo(&ret, seq_time.time);
    ret.append(",");
  }
  return ret;
}

SeqnoToTimeMapping SeqnoToTimeMapping::Copy(
    SequenceNumber smallest_seqno) const {
  SeqnoToTimeMapping ret;
  auto it = std::upper_bound(seqno_time_mapping_.begin(),
                             seqno_time_mapping_.end(), smallest_seqno);
  if (it != seqno_time_mapping_.begin()) {
    it--;
  }
  std::copy(it, seqno_time_mapping_.end(),
            std::back_inserter(ret.seqno_time_mapping_));
  return ret;
}

uint64_t SeqnoToTimeMapping::CalculateMaxCapacity(uint64_t min_time_duration,
                                                  uint64_t max_time_duration) {
  if (min_time_duration == 0) {
    return 0;
  }
  return std::min(
      kMaxSeqnoToTimeEntries,
      max_time_duration * kMaxSeqnoTimePairsPerCF / min_time_duration);
}

SeqnoToTimeMapping::SeqnoTimePair SeqnoToTimeMapping::SeqnoTimePair::operator-(
    const SeqnoTimePair& other) const {
  SeqnoTimePair res;
  res.seqno = seqno - other.seqno;
  res.time = time - other.time;
  return res;
}

}  // namespace ROCKSDB_NAMESPACE