summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db_stress_tool/multi_ops_txns_stress.cc
blob: 7db5e894200f30e8daa8b35be1ae9bd23ce424a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#ifdef GFLAGS
#include "db_stress_tool/multi_ops_txns_stress.h"

#include "rocksdb/utilities/write_batch_with_index.h"
#include "util/defer.h"
#include "utilities/fault_injection_fs.h"
#include "utilities/transactions/write_prepared_txn_db.h"

namespace ROCKSDB_NAMESPACE {

// The description of A and C can be found in multi_ops_txns_stress.h
DEFINE_int32(lb_a, 0, "(Inclusive) lower bound of A");
DEFINE_int32(ub_a, 1000, "(Exclusive) upper bound of A");
DEFINE_int32(lb_c, 0, "(Inclusive) lower bound of C");
DEFINE_int32(ub_c, 1000, "(Exclusive) upper bound of C");

DEFINE_string(key_spaces_path, "",
              "Path to file describing the lower and upper bounds of A and C");

DEFINE_int32(delay_snapshot_read_one_in, 0,
             "With a chance of 1/N, inject a random delay between taking "
             "snapshot and read.");

DEFINE_int32(rollback_one_in, 0,
             "If non-zero, rollback non-read-only transactions with a "
             "probability of 1/N.");

DEFINE_int32(clear_wp_commit_cache_one_in, 0,
             "If non-zero, evict all commit entries from commit cache with a "
             "probability of 1/N. This options applies to write-prepared and "
             "write-unprepared transactions.");

extern "C" bool rocksdb_write_prepared_TEST_ShouldClearCommitCache(void) {
  static Random rand(static_cast<uint32_t>(db_stress_env->NowMicros()));
  return FLAGS_clear_wp_commit_cache_one_in > 0 &&
         rand.OneIn(FLAGS_clear_wp_commit_cache_one_in);
}

// MultiOpsTxnsStressTest can either operate on a database with pre-populated
// data (possibly from previous ones), or create a new db and preload it with
// data specified via `-lb_a`, `-ub_a`, `-lb_c`, `-ub_c`, etc. Among these, we
// define the test key spaces as two key ranges: [lb_a, ub_a) and [lb_c, ub_c).
// The key spaces specification is persisted in a file whose absolute path can
// be specified via `-key_spaces_path`.
//
// Whether an existing db is used or a new one is created, key_spaces_path will
// be used. In the former case, the test reads the key spaces specification
// from `-key_spaces_path` and decodes [lb_a, ub_a) and [lb_c, ub_c). In the
// latter case, the test writes a key spaces specification to a file at the
// location, and this file will be used by future runs until a new db is
// created.
//
// Create a fresh new database (-destroy_db_initially=1 or there is no database
// in the location specified by -db). See PreloadDb().
//
// Use an existing, non-empty database. See ScanExistingDb().
//
// This test is multi-threaded, and thread count can be specified via
// `-threads`. For simplicity, we partition the key ranges and each thread
// operates on a subrange independently.
// Within each subrange, a KeyGenerator object is responsible for key
// generation. A KeyGenerator maintains two sets: set of existing keys within
// [low, high), set of non-existing keys within [low, high). [low, high) is the
// subrange. The test initialization makes sure there is at least one
// non-existing key, otherwise the test will return an error and exit before
// any test thread is spawned.

void MultiOpsTxnsStressTest::KeyGenerator::FinishInit() {
  assert(existing_.empty());
  assert(!existing_uniq_.empty());
  assert(low_ < high_);
  for (auto v : existing_uniq_) {
    assert(low_ <= v);
    assert(high_ > v);
    existing_.push_back(v);
  }
  if (non_existing_uniq_.empty()) {
    fprintf(
        stderr,
        "Cannot allocate key in [%u, %u)\nStart with a new DB or try change "
        "the number of threads for testing via -threads=<#threads>\n",
        static_cast<unsigned int>(low_), static_cast<unsigned int>(high_));
    fflush(stdout);
    fflush(stderr);
    assert(false);
  }
  initialized_ = true;
}

std::pair<uint32_t, uint32_t>
MultiOpsTxnsStressTest::KeyGenerator::ChooseExisting() {
  assert(initialized_);
  const size_t N = existing_.size();
  assert(N > 0);
  uint32_t rnd = rand_.Uniform(static_cast<int>(N));
  assert(rnd < N);
  return std::make_pair(existing_[rnd], rnd);
}

uint32_t MultiOpsTxnsStressTest::KeyGenerator::Allocate() {
  assert(initialized_);
  auto it = non_existing_uniq_.begin();
  assert(non_existing_uniq_.end() != it);
  uint32_t ret = *it;
  // Remove this element from non_existing_.
  // Need to call UndoAllocation() if the calling transaction does not commit.
  non_existing_uniq_.erase(it);
  return ret;
}

void MultiOpsTxnsStressTest::KeyGenerator::Replace(uint32_t old_val,
                                                   uint32_t old_pos,
                                                   uint32_t new_val) {
  assert(initialized_);
  {
    auto it = existing_uniq_.find(old_val);
    assert(it != existing_uniq_.end());
    existing_uniq_.erase(it);
  }

  {
    assert(0 == existing_uniq_.count(new_val));
    existing_uniq_.insert(new_val);
    existing_[old_pos] = new_val;
  }

  {
    assert(0 == non_existing_uniq_.count(old_val));
    non_existing_uniq_.insert(old_val);
  }
}

void MultiOpsTxnsStressTest::KeyGenerator::UndoAllocation(uint32_t new_val) {
  assert(initialized_);
  assert(0 == non_existing_uniq_.count(new_val));
  non_existing_uniq_.insert(new_val);
}

std::string MultiOpsTxnsStressTest::Record::EncodePrimaryKey(uint32_t a) {
  std::string ret;
  PutFixed32(&ret, kPrimaryIndexId);
  PutFixed32(&ret, a);

  char* const buf = &ret[0];
  std::reverse(buf, buf + sizeof(kPrimaryIndexId));
  std::reverse(buf + sizeof(kPrimaryIndexId),
               buf + sizeof(kPrimaryIndexId) + sizeof(a));
  return ret;
}

std::string MultiOpsTxnsStressTest::Record::EncodeSecondaryKey(uint32_t c) {
  std::string ret;
  PutFixed32(&ret, kSecondaryIndexId);
  PutFixed32(&ret, c);

  char* const buf = &ret[0];
  std::reverse(buf, buf + sizeof(kSecondaryIndexId));
  std::reverse(buf + sizeof(kSecondaryIndexId),
               buf + sizeof(kSecondaryIndexId) + sizeof(c));
  return ret;
}

std::string MultiOpsTxnsStressTest::Record::EncodeSecondaryKey(uint32_t c,
                                                               uint32_t a) {
  std::string ret;
  PutFixed32(&ret, kSecondaryIndexId);
  PutFixed32(&ret, c);
  PutFixed32(&ret, a);

  char* const buf = &ret[0];
  std::reverse(buf, buf + sizeof(kSecondaryIndexId));
  std::reverse(buf + sizeof(kSecondaryIndexId),
               buf + sizeof(kSecondaryIndexId) + sizeof(c));
  std::reverse(buf + sizeof(kSecondaryIndexId) + sizeof(c),
               buf + sizeof(kSecondaryIndexId) + sizeof(c) + sizeof(a));
  return ret;
}

std::tuple<Status, uint32_t, uint32_t>
MultiOpsTxnsStressTest::Record::DecodePrimaryIndexValue(
    Slice primary_index_value) {
  if (primary_index_value.size() != 8) {
    return std::tuple<Status, uint32_t, uint32_t>{Status::Corruption(""), 0, 0};
  }
  uint32_t b = 0;
  uint32_t c = 0;
  if (!GetFixed32(&primary_index_value, &b) ||
      !GetFixed32(&primary_index_value, &c)) {
    assert(false);
    return std::tuple<Status, uint32_t, uint32_t>{Status::Corruption(""), 0, 0};
  }
  return std::tuple<Status, uint32_t, uint32_t>{Status::OK(), b, c};
}

std::pair<Status, uint32_t>
MultiOpsTxnsStressTest::Record::DecodeSecondaryIndexValue(
    Slice secondary_index_value) {
  if (secondary_index_value.size() != 4) {
    return std::make_pair(Status::Corruption(""), 0);
  }
  uint32_t crc = 0;
  bool result __attribute__((unused)) =
      GetFixed32(&secondary_index_value, &crc);
  assert(result);
  return std::make_pair(Status::OK(), crc);
}

std::pair<std::string, std::string>
MultiOpsTxnsStressTest::Record::EncodePrimaryIndexEntry() const {
  std::string primary_index_key = EncodePrimaryKey();
  std::string primary_index_value = EncodePrimaryIndexValue();
  return std::make_pair(primary_index_key, primary_index_value);
}

std::string MultiOpsTxnsStressTest::Record::EncodePrimaryKey() const {
  return EncodePrimaryKey(a_);
}

std::string MultiOpsTxnsStressTest::Record::EncodePrimaryIndexValue() const {
  std::string ret;
  PutFixed32(&ret, b_);
  PutFixed32(&ret, c_);
  return ret;
}

std::pair<std::string, std::string>
MultiOpsTxnsStressTest::Record::EncodeSecondaryIndexEntry() const {
  std::string secondary_index_key = EncodeSecondaryKey(c_, a_);

  // Secondary index value is always 4-byte crc32 of the secondary key
  std::string secondary_index_value;
  uint32_t crc =
      crc32c::Value(secondary_index_key.data(), secondary_index_key.size());
  PutFixed32(&secondary_index_value, crc);
  return std::make_pair(std::move(secondary_index_key), secondary_index_value);
}

std::string MultiOpsTxnsStressTest::Record::EncodeSecondaryKey() const {
  return EncodeSecondaryKey(c_, a_);
}

Status MultiOpsTxnsStressTest::Record::DecodePrimaryIndexEntry(
    Slice primary_index_key, Slice primary_index_value) {
  if (primary_index_key.size() != 8) {
    assert(false);
    return Status::Corruption("Primary index key length is not 8");
  }

  uint32_t index_id = 0;

  [[maybe_unused]] bool res = GetFixed32(&primary_index_key, &index_id);
  assert(res);
  index_id = EndianSwapValue(index_id);

  if (index_id != kPrimaryIndexId) {
    std::ostringstream oss;
    oss << "Unexpected primary index id: " << index_id;
    return Status::Corruption(oss.str());
  }

  res = GetFixed32(&primary_index_key, &a_);
  assert(res);
  a_ = EndianSwapValue(a_);
  assert(primary_index_key.empty());

  if (primary_index_value.size() != 8) {
    return Status::Corruption("Primary index value length is not 8");
  }
  GetFixed32(&primary_index_value, &b_);
  GetFixed32(&primary_index_value, &c_);
  return Status::OK();
}

Status MultiOpsTxnsStressTest::Record::DecodeSecondaryIndexEntry(
    Slice secondary_index_key, Slice secondary_index_value) {
  if (secondary_index_key.size() != 12) {
    return Status::Corruption("Secondary index key length is not 12");
  }
  uint32_t crc =
      crc32c::Value(secondary_index_key.data(), secondary_index_key.size());

  uint32_t index_id = 0;

  [[maybe_unused]] bool res = GetFixed32(&secondary_index_key, &index_id);
  assert(res);
  index_id = EndianSwapValue(index_id);

  if (index_id != kSecondaryIndexId) {
    std::ostringstream oss;
    oss << "Unexpected secondary index id: " << index_id;
    return Status::Corruption(oss.str());
  }

  assert(secondary_index_key.size() == 8);
  res = GetFixed32(&secondary_index_key, &c_);
  assert(res);
  c_ = EndianSwapValue(c_);

  assert(secondary_index_key.size() == 4);
  res = GetFixed32(&secondary_index_key, &a_);
  assert(res);
  a_ = EndianSwapValue(a_);
  assert(secondary_index_key.empty());

  if (secondary_index_value.size() != 4) {
    return Status::Corruption("Secondary index value length is not 4");
  }
  uint32_t val = 0;
  GetFixed32(&secondary_index_value, &val);
  if (val != crc) {
    std::ostringstream oss;
    oss << "Secondary index key checksum mismatch, stored: " << val
        << ", recomputed: " << crc;
    return Status::Corruption(oss.str());
  }
  return Status::OK();
}

void MultiOpsTxnsStressTest::FinishInitDb(SharedState* shared) {
  if (FLAGS_enable_compaction_filter) {
    // TODO (yanqin) enable compaction filter
  }
#ifndef ROCKSDB_LITE
  ProcessRecoveredPreparedTxns(shared);
#endif

  ReopenAndPreloadDbIfNeeded(shared);
  // TODO (yanqin) parallelize if key space is large
  for (auto& key_gen : key_gen_for_a_) {
    assert(key_gen);
    key_gen->FinishInit();
  }
  // TODO (yanqin) parallelize if key space is large
  for (auto& key_gen : key_gen_for_c_) {
    assert(key_gen);
    key_gen->FinishInit();
  }
}

void MultiOpsTxnsStressTest::ReopenAndPreloadDbIfNeeded(SharedState* shared) {
  (void)shared;
#ifndef ROCKSDB_LITE
  bool db_empty = false;
  {
    std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
    iter->SeekToFirst();
    if (!iter->Valid()) {
      db_empty = true;
    }
  }

  if (db_empty) {
    PreloadDb(shared, FLAGS_threads, FLAGS_lb_a, FLAGS_ub_a, FLAGS_lb_c,
              FLAGS_ub_c);
  } else {
    fprintf(stdout,
            "Key ranges will be read from %s.\n-lb_a, -ub_a, -lb_c, -ub_c will "
            "be ignored\n",
            FLAGS_key_spaces_path.c_str());
    fflush(stdout);
    ScanExistingDb(shared, FLAGS_threads);
  }
#endif  // !ROCKSDB_LITE
}

// Used for point-lookup transaction
Status MultiOpsTxnsStressTest::TestGet(
    ThreadState* thread, const ReadOptions& read_opts,
    const std::vector<int>& /*rand_column_families*/,
    const std::vector<int64_t>& /*rand_keys*/) {
  uint32_t a = 0;
  uint32_t pos = 0;
  std::tie(a, pos) = ChooseExistingA(thread);
  return PointLookupTxn(thread, read_opts, a);
}

// Not used.
std::vector<Status> MultiOpsTxnsStressTest::TestMultiGet(
    ThreadState* /*thread*/, const ReadOptions& /*read_opts*/,
    const std::vector<int>& /*rand_column_families*/,
    const std::vector<int64_t>& /*rand_keys*/) {
  return std::vector<Status>{Status::NotSupported()};
}

Status MultiOpsTxnsStressTest::TestPrefixScan(
    ThreadState* thread, const ReadOptions& read_opts,
    const std::vector<int>& rand_column_families,
    const std::vector<int64_t>& rand_keys) {
  (void)thread;
  (void)read_opts;
  (void)rand_column_families;
  (void)rand_keys;
  return Status::OK();
}

// Given a key K, this creates an iterator which scans to K and then
// does a random sequence of Next/Prev operations.
Status MultiOpsTxnsStressTest::TestIterate(
    ThreadState* thread, const ReadOptions& read_opts,
    const std::vector<int>& /*rand_column_families*/,
    const std::vector<int64_t>& /*rand_keys*/) {
  uint32_t c = 0;
  uint32_t pos = 0;
  std::tie(c, pos) = ChooseExistingC(thread);
  return RangeScanTxn(thread, read_opts, c);
}

// Not intended for use.
Status MultiOpsTxnsStressTest::TestPut(ThreadState* /*thread*/,
                                       WriteOptions& /*write_opts*/,
                                       const ReadOptions& /*read_opts*/,
                                       const std::vector<int>& /*cf_ids*/,
                                       const std::vector<int64_t>& /*keys*/,
                                       char (&value)[100]) {
  (void)value;
  return Status::NotSupported();
}

// Not intended for use.
Status MultiOpsTxnsStressTest::TestDelete(
    ThreadState* /*thread*/, WriteOptions& /*write_opts*/,
    const std::vector<int>& /*rand_column_families*/,
    const std::vector<int64_t>& /*rand_keys*/) {
  return Status::NotSupported();
}

// Not intended for use.
Status MultiOpsTxnsStressTest::TestDeleteRange(
    ThreadState* /*thread*/, WriteOptions& /*write_opts*/,
    const std::vector<int>& /*rand_column_families*/,
    const std::vector<int64_t>& /*rand_keys*/) {
  return Status::NotSupported();
}

void MultiOpsTxnsStressTest::TestIngestExternalFile(
    ThreadState* thread, const std::vector<int>& rand_column_families,
    const std::vector<int64_t>& /*rand_keys*/) {
  // TODO (yanqin)
  (void)thread;
  (void)rand_column_families;
}

void MultiOpsTxnsStressTest::TestCompactRange(
    ThreadState* thread, int64_t /*rand_key*/, const Slice& /*start_key*/,
    ColumnFamilyHandle* column_family) {
  // TODO (yanqin).
  // May use GetRangeHash() for validation before and after DB::CompactRange()
  // completes.
  (void)thread;
  (void)column_family;
}

Status MultiOpsTxnsStressTest::TestBackupRestore(
    ThreadState* thread, const std::vector<int>& rand_column_families,
    const std::vector<int64_t>& /*rand_keys*/) {
  // TODO (yanqin)
  (void)thread;
  (void)rand_column_families;
  return Status::OK();
}

Status MultiOpsTxnsStressTest::TestCheckpoint(
    ThreadState* thread, const std::vector<int>& rand_column_families,
    const std::vector<int64_t>& /*rand_keys*/) {
  // TODO (yanqin)
  (void)thread;
  (void)rand_column_families;
  return Status::OK();
}

#ifndef ROCKSDB_LITE
Status MultiOpsTxnsStressTest::TestApproximateSize(
    ThreadState* thread, uint64_t iteration,
    const std::vector<int>& rand_column_families,
    const std::vector<int64_t>& /*rand_keys*/) {
  // TODO (yanqin)
  (void)thread;
  (void)iteration;
  (void)rand_column_families;
  return Status::OK();
}
#endif  // !ROCKSDB_LITE

Status MultiOpsTxnsStressTest::TestCustomOperations(
    ThreadState* thread, const std::vector<int>& rand_column_families) {
  (void)rand_column_families;
  // Randomly choose from 0, 1, and 2.
  // TODO (yanqin) allow user to configure probability of each operation.
  uint32_t rand = thread->rand.Uniform(3);
  Status s;
  if (0 == rand) {
    // Update primary key.
    uint32_t old_a = 0;
    uint32_t pos = 0;
    std::tie(old_a, pos) = ChooseExistingA(thread);
    uint32_t new_a = GenerateNextA(thread);
    s = PrimaryKeyUpdateTxn(thread, old_a, pos, new_a);
  } else if (1 == rand) {
    // Update secondary key.
    uint32_t old_c = 0;
    uint32_t pos = 0;
    std::tie(old_c, pos) = ChooseExistingC(thread);
    uint32_t new_c = GenerateNextC(thread);
    s = SecondaryKeyUpdateTxn(thread, old_c, pos, new_c);
  } else if (2 == rand) {
    // Update primary index value.
    uint32_t a = 0;
    uint32_t pos = 0;
    std::tie(a, pos) = ChooseExistingA(thread);
    s = UpdatePrimaryIndexValueTxn(thread, a, /*b_delta=*/1);
  } else {
    // Should never reach here.
    assert(false);
  }

  return s;
}

void MultiOpsTxnsStressTest::RegisterAdditionalListeners() {
  options_.listeners.emplace_back(new MultiOpsTxnsStressListener(this));
}

#ifndef ROCKSDB_LITE
void MultiOpsTxnsStressTest::PrepareTxnDbOptions(
    SharedState* /*shared*/, TransactionDBOptions& txn_db_opts) {
  // MultiOpsTxnStressTest uses SingleDelete to delete secondary keys, thus we
  // register this callback to let TxnDb know that when rolling back
  // a transaction, use only SingleDelete to cancel prior Put from the same
  // transaction if applicable.
  txn_db_opts.rollback_deletion_type_callback =
      [](TransactionDB* /*db*/, ColumnFamilyHandle* /*column_family*/,
         const Slice& key) {
        Slice ks = key;
        uint32_t index_id = 0;
        [[maybe_unused]] bool res = GetFixed32(&ks, &index_id);
        assert(res);
        index_id = EndianSwapValue(index_id);
        assert(index_id <= Record::kSecondaryIndexId);
        return index_id == Record::kSecondaryIndexId;
      };
}
#endif  // !ROCKSDB_LITE

Status MultiOpsTxnsStressTest::PrimaryKeyUpdateTxn(ThreadState* thread,
                                                   uint32_t old_a,
                                                   uint32_t old_a_pos,
                                                   uint32_t new_a) {
#ifdef ROCKSDB_LITE
  (void)thread;
  (void)old_a;
  (void)old_a_pos;
  (void)new_a;
  return Status::NotSupported();
#else
  std::string old_pk = Record::EncodePrimaryKey(old_a);
  std::string new_pk = Record::EncodePrimaryKey(new_a);
  Transaction* txn = nullptr;
  WriteOptions wopts;
  Status s = NewTxn(wopts, &txn);
  if (!s.ok()) {
    assert(!txn);
    thread->stats.AddErrors(1);
    return s;
  }

  assert(txn);
  txn->SetSnapshotOnNextOperation(/*notifier=*/nullptr);

  const Defer cleanup([new_a, &s, thread, txn, this]() {
    if (s.ok()) {
      // Two gets, one for existing pk, one for locking potential new pk.
      thread->stats.AddGets(/*ngets=*/2, /*nfounds=*/1);
      thread->stats.AddDeletes(1);
      thread->stats.AddBytesForWrites(
          /*nwrites=*/2,
          Record::kPrimaryIndexEntrySize + Record::kSecondaryIndexEntrySize);
      thread->stats.AddSingleDeletes(1);
      return;
    }
    if (s.IsNotFound()) {
      thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/0);
    } else if (s.IsBusy() || s.IsIncomplete()) {
      // ignore.
      // Incomplete also means rollback by application. See the transaction
      // implementations.
    } else {
      thread->stats.AddErrors(1);
    }
    auto& key_gen = key_gen_for_a_[thread->tid];
    key_gen->UndoAllocation(new_a);
    RollbackTxn(txn).PermitUncheckedError();
  });

  ReadOptions ropts;
  ropts.rate_limiter_priority =
      FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
  std::string value;
  s = txn->GetForUpdate(ropts, old_pk, &value);
  if (!s.ok()) {
    return s;
  }
  std::string empty_value;
  s = txn->GetForUpdate(ropts, new_pk, &empty_value);
  if (s.ok()) {
    assert(!empty_value.empty());
    s = Status::Busy();
    return s;
  } else if (!s.IsNotFound()) {
    return s;
  }

  auto result = Record::DecodePrimaryIndexValue(value);
  s = std::get<0>(result);
  if (!s.ok()) {
    return s;
  }
  uint32_t b = std::get<1>(result);
  uint32_t c = std::get<2>(result);

  ColumnFamilyHandle* cf = db_->DefaultColumnFamily();
  s = txn->Delete(cf, old_pk, /*assume_tracked=*/true);
  if (!s.ok()) {
    return s;
  }
  s = txn->Put(cf, new_pk, value, /*assume_tracked=*/true);
  if (!s.ok()) {
    return s;
  }

  auto* wb = txn->GetWriteBatch();
  assert(wb);

  std::string old_sk = Record::EncodeSecondaryKey(c, old_a);
  s = wb->SingleDelete(old_sk);
  if (!s.ok()) {
    return s;
  }

  Record record(new_a, b, c);
  std::string new_sk;
  std::string new_crc;
  std::tie(new_sk, new_crc) = record.EncodeSecondaryIndexEntry();
  s = wb->Put(new_sk, new_crc);
  if (!s.ok()) {
    return s;
  }

  s = txn->Prepare();

  if (!s.ok()) {
    return s;
  }

  if (FLAGS_rollback_one_in > 0 && thread->rand.OneIn(FLAGS_rollback_one_in)) {
    s = Status::Incomplete();
    return s;
  }

  s = WriteToCommitTimeWriteBatch(*txn);
  if (!s.ok()) {
    return s;
  }

  s = CommitAndCreateTimestampedSnapshotIfNeeded(thread, *txn);

  auto& key_gen = key_gen_for_a_.at(thread->tid);
  if (s.ok()) {
    delete txn;
    key_gen->Replace(old_a, old_a_pos, new_a);
  }
  return s;
#endif  // !ROCKSDB_LITE
}

Status MultiOpsTxnsStressTest::SecondaryKeyUpdateTxn(ThreadState* thread,
                                                     uint32_t old_c,
                                                     uint32_t old_c_pos,
                                                     uint32_t new_c) {
#ifdef ROCKSDB_LITE
  (void)thread;
  (void)old_c;
  (void)old_c_pos;
  (void)new_c;
  return Status::NotSupported();
#else
  Transaction* txn = nullptr;
  WriteOptions wopts;
  Status s = NewTxn(wopts, &txn);
  if (!s.ok()) {
    assert(!txn);
    thread->stats.AddErrors(1);
    return s;
  }

  assert(txn);

  Iterator* it = nullptr;
  long iterations = 0;
  const Defer cleanup([new_c, &s, thread, &it, txn, this, &iterations]() {
    delete it;
    if (s.ok()) {
      thread->stats.AddIterations(iterations);
      thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/1);
      thread->stats.AddSingleDeletes(1);
      thread->stats.AddBytesForWrites(
          /*nwrites=*/2,
          Record::kPrimaryIndexEntrySize + Record::kSecondaryIndexEntrySize);
      return;
    } else if (s.IsBusy() || s.IsTimedOut() || s.IsTryAgain() ||
               s.IsMergeInProgress() || s.IsIncomplete()) {
      // ww-conflict detected, or
      // lock cannot be acquired, or
      // memtable history is not large enough for conflict checking, or
      // Merge operation cannot be resolved, or
      // application rollback.
      // TODO (yanqin) add stats for other cases?
    } else if (s.IsNotFound()) {
      // ignore.
    } else {
      thread->stats.AddErrors(1);
    }
    auto& key_gen = key_gen_for_c_[thread->tid];
    key_gen->UndoAllocation(new_c);
    RollbackTxn(txn).PermitUncheckedError();
  });

  // TODO (yanqin) try SetSnapshotOnNextOperation(). We currently need to take
  // a snapshot here because we will later verify that point lookup in the
  // primary index using GetForUpdate() returns the same value for 'c' as the
  // iterator. The iterator does not need a snapshot though, because it will be
  // assigned the current latest (published) sequence in the db, which will be
  // no smaller than the snapshot created here. The GetForUpdate will perform
  // ww conflict checking to ensure GetForUpdate() (using the snapshot) sees
  // the same data as this iterator.
  txn->SetSnapshot();
  std::string old_sk_prefix = Record::EncodeSecondaryKey(old_c);
  std::string iter_ub_str = Record::EncodeSecondaryKey(old_c + 1);
  Slice iter_ub = iter_ub_str;
  ReadOptions ropts;
  ropts.snapshot = txn->GetSnapshot();
  ropts.total_order_seek = true;
  ropts.iterate_upper_bound = &iter_ub;
  ropts.rate_limiter_priority =
      FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
  it = txn->GetIterator(ropts);

  assert(it);
  it->Seek(old_sk_prefix);
  if (!it->Valid()) {
    s = Status::NotFound();
    return s;
  }
  auto* wb = txn->GetWriteBatch();
  assert(wb);

  do {
    ++iterations;
    Record record;
    s = record.DecodeSecondaryIndexEntry(it->key(), it->value());
    if (!s.ok()) {
      fprintf(stderr, "Cannot decode secondary key (%s => %s): %s\n",
              it->key().ToString(true).c_str(),
              it->value().ToString(true).c_str(), s.ToString().c_str());
      assert(false);
      break;
    }
    // At this point, record.b is not known yet, thus we need to access
    // primary index.
    std::string pk = Record::EncodePrimaryKey(record.a_value());
    std::string value;
    ReadOptions read_opts;
    read_opts.rate_limiter_priority =
        FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
    read_opts.snapshot = txn->GetSnapshot();
    s = txn->GetForUpdate(read_opts, pk, &value);
    if (s.IsBusy() || s.IsTimedOut() || s.IsTryAgain() ||
        s.IsMergeInProgress()) {
      // Write conflict, or cannot acquire lock, or memtable size is not large
      // enough, or merge cannot be resolved.
      break;
    } else if (s.IsNotFound()) {
      // We can also fail verification here.
      std::ostringstream oss;
      auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
      assert(dbimpl);
      oss << "snap " << read_opts.snapshot->GetSequenceNumber()
          << " (published " << dbimpl->GetLastPublishedSequence()
          << "), pk should exist: " << Slice(pk).ToString(true);
      fprintf(stderr, "%s\n", oss.str().c_str());
      assert(false);
      break;
    }
    if (!s.ok()) {
      std::ostringstream oss;
      auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
      assert(dbimpl);
      oss << "snap " << read_opts.snapshot->GetSequenceNumber()
          << " (published " << dbimpl->GetLastPublishedSequence() << "), "
          << s.ToString();
      fprintf(stderr, "%s\n", oss.str().c_str());
      assert(false);
      break;
    }
    auto result = Record::DecodePrimaryIndexValue(value);
    s = std::get<0>(result);
    if (!s.ok()) {
      fprintf(stderr, "Cannot decode primary index value %s: %s\n",
              Slice(value).ToString(true).c_str(), s.ToString().c_str());
      assert(false);
      break;
    }
    uint32_t b = std::get<1>(result);
    uint32_t c = std::get<2>(result);
    if (c != old_c) {
      std::ostringstream oss;
      auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
      assert(dbimpl);
      oss << "snap " << read_opts.snapshot->GetSequenceNumber()
          << " (published " << dbimpl->GetLastPublishedSequence()
          << "), pk/sk mismatch. pk: (a=" << record.a_value() << ", "
          << "c=" << c << "), sk: (c=" << old_c << ")";
      s = Status::Corruption();
      fprintf(stderr, "%s\n", oss.str().c_str());
      assert(false);
      break;
    }
    Record new_rec(record.a_value(), b, new_c);
    std::string new_primary_index_value = new_rec.EncodePrimaryIndexValue();
    ColumnFamilyHandle* cf = db_->DefaultColumnFamily();
    s = txn->Put(cf, pk, new_primary_index_value, /*assume_tracked=*/true);
    if (!s.ok()) {
      break;
    }
    std::string old_sk = it->key().ToString(/*hex=*/false);
    std::string new_sk;
    std::string new_crc;
    std::tie(new_sk, new_crc) = new_rec.EncodeSecondaryIndexEntry();
    s = wb->SingleDelete(old_sk);
    if (!s.ok()) {
      break;
    }
    s = wb->Put(new_sk, new_crc);
    if (!s.ok()) {
      break;
    }

    it->Next();
  } while (it->Valid());

  if (!s.ok()) {
    return s;
  }

  s = txn->Prepare();

  if (!s.ok()) {
    return s;
  }

  if (FLAGS_rollback_one_in > 0 && thread->rand.OneIn(FLAGS_rollback_one_in)) {
    s = Status::Incomplete();
    return s;
  }

  s = WriteToCommitTimeWriteBatch(*txn);
  if (!s.ok()) {
    return s;
  }

  s = CommitAndCreateTimestampedSnapshotIfNeeded(thread, *txn);

  if (s.ok()) {
    delete txn;
    auto& key_gen = key_gen_for_c_.at(thread->tid);
    key_gen->Replace(old_c, old_c_pos, new_c);
  }

  return s;
#endif  // !ROCKSDB_LITE
}

Status MultiOpsTxnsStressTest::UpdatePrimaryIndexValueTxn(ThreadState* thread,
                                                          uint32_t a,
                                                          uint32_t b_delta) {
#ifdef ROCKSDB_LITE
  (void)thread;
  (void)a;
  (void)b_delta;
  return Status::NotSupported();
#else
  std::string pk_str = Record::EncodePrimaryKey(a);
  Transaction* txn = nullptr;
  WriteOptions wopts;
  Status s = NewTxn(wopts, &txn);
  if (!s.ok()) {
    assert(!txn);
    thread->stats.AddErrors(1);
    return s;
  }

  assert(txn);

  const Defer cleanup([&s, thread, txn, this]() {
    if (s.ok()) {
      thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/1);
      thread->stats.AddBytesForWrites(
          /*nwrites=*/1, /*nbytes=*/Record::kPrimaryIndexEntrySize);
      return;
    }
    if (s.IsNotFound()) {
      thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/0);
    } else if (s.IsInvalidArgument()) {
      // ignored.
    } else if (s.IsBusy() || s.IsTimedOut() || s.IsTryAgain() ||
               s.IsMergeInProgress() || s.IsIncomplete()) {
      // ignored.
    } else {
      thread->stats.AddErrors(1);
    }
    RollbackTxn(txn).PermitUncheckedError();
  });
  ReadOptions ropts;
  ropts.rate_limiter_priority =
      FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
  std::string value;
  s = txn->GetForUpdate(ropts, pk_str, &value);
  if (!s.ok()) {
    return s;
  }
  auto result = Record::DecodePrimaryIndexValue(value);
  if (!std::get<0>(result).ok()) {
    s = std::get<0>(result);
    fprintf(stderr, "Cannot decode primary index value %s: %s\n",
            Slice(value).ToString(true).c_str(), s.ToString().c_str());
    assert(false);
    return s;
  }
  uint32_t b = std::get<1>(result) + b_delta;
  uint32_t c = std::get<2>(result);
  Record record(a, b, c);
  std::string primary_index_value = record.EncodePrimaryIndexValue();
  ColumnFamilyHandle* cf = db_->DefaultColumnFamily();
  s = txn->Put(cf, pk_str, primary_index_value, /*assume_tracked=*/true);
  if (!s.ok()) {
    return s;
  }
  s = txn->Prepare();
  if (!s.ok()) {
    return s;
  }

  if (FLAGS_rollback_one_in > 0 && thread->rand.OneIn(FLAGS_rollback_one_in)) {
    s = Status::Incomplete();
    return s;
  }

  s = WriteToCommitTimeWriteBatch(*txn);
  if (!s.ok()) {
    return s;
  }

  s = CommitAndCreateTimestampedSnapshotIfNeeded(thread, *txn);

  if (s.ok()) {
    delete txn;
  }
  return s;
#endif  // !ROCKSDB_LITE
}

Status MultiOpsTxnsStressTest::PointLookupTxn(ThreadState* thread,
                                              ReadOptions ropts, uint32_t a) {
#ifdef ROCKSDB_LITE
  (void)thread;
  (void)ropts;
  (void)a;
  return Status::NotSupported();
#else
  std::string pk_str = Record::EncodePrimaryKey(a);
  // pk may or may not exist
  PinnableSlice value;

  Transaction* txn = nullptr;
  WriteOptions wopts;
  Status s = NewTxn(wopts, &txn);
  if (!s.ok()) {
    assert(!txn);
    thread->stats.AddErrors(1);
    return s;
  }

  assert(txn);

  const Defer cleanup([&s, thread, txn, this]() {
    if (s.ok()) {
      thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/1);
      return;
    } else if (s.IsNotFound()) {
      thread->stats.AddGets(/*ngets=*/1, /*nfounds=*/0);
    } else {
      thread->stats.AddErrors(1);
    }
    RollbackTxn(txn).PermitUncheckedError();
  });

  std::shared_ptr<const Snapshot> snapshot;
  SetupSnapshot(thread, ropts, *txn, snapshot);

  if (FLAGS_delay_snapshot_read_one_in > 0 &&
      thread->rand.OneIn(FLAGS_delay_snapshot_read_one_in)) {
    uint64_t delay_ms = thread->rand.Uniform(100) + 1;
    db_->GetDBOptions().env->SleepForMicroseconds(
        static_cast<int>(delay_ms * 1000));
  }

  s = txn->Get(ropts, db_->DefaultColumnFamily(), pk_str, &value);
  if (s.ok()) {
    s = txn->Commit();
  }
  if (s.ok()) {
    delete txn;
  }
  return s;
#endif  // !ROCKSDB_LITE
}

Status MultiOpsTxnsStressTest::RangeScanTxn(ThreadState* thread,
                                            ReadOptions ropts, uint32_t c) {
#ifdef ROCKSDB_LITE
  (void)thread;
  (void)ropts;
  (void)c;
  return Status::NotSupported();
#else
  std::string sk = Record::EncodeSecondaryKey(c);

  Transaction* txn = nullptr;
  WriteOptions wopts;
  Status s = NewTxn(wopts, &txn);
  if (!s.ok()) {
    assert(!txn);
    thread->stats.AddErrors(1);
    return s;
  }

  assert(txn);

  const Defer cleanup([&s, thread, txn, this]() {
    if (s.ok()) {
      thread->stats.AddIterations(1);
      return;
    }
    thread->stats.AddErrors(1);
    RollbackTxn(txn).PermitUncheckedError();
  });

  std::shared_ptr<const Snapshot> snapshot;
  SetupSnapshot(thread, ropts, *txn, snapshot);

  if (FLAGS_delay_snapshot_read_one_in > 0 &&
      thread->rand.OneIn(FLAGS_delay_snapshot_read_one_in)) {
    uint64_t delay_ms = thread->rand.Uniform(100) + 1;
    db_->GetDBOptions().env->SleepForMicroseconds(
        static_cast<int>(delay_ms * 1000));
  }

  std::unique_ptr<Iterator> iter(txn->GetIterator(ropts));

  constexpr size_t total_nexts = 10;
  size_t nexts = 0;
  for (iter->Seek(sk);
       iter->Valid() && nexts < total_nexts && iter->status().ok();
       iter->Next(), ++nexts) {
  }

  if (iter->status().ok()) {
    s = txn->Commit();
  } else {
    s = iter->status();
  }

  if (s.ok()) {
    delete txn;
  }

  return s;
#endif  // !ROCKSDB_LITE
}

void MultiOpsTxnsStressTest::VerifyDb(ThreadState* thread) const {
  if (thread->shared->HasVerificationFailedYet()) {
    return;
  }
  const Snapshot* const snapshot = db_->GetSnapshot();
  assert(snapshot);
  ManagedSnapshot snapshot_guard(db_, snapshot);

  std::ostringstream oss;
  oss << "[snap=" << snapshot->GetSequenceNumber() << ",";

  auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
  assert(dbimpl);

  oss << " last_published=" << dbimpl->GetLastPublishedSequence() << "] ";

  if (FLAGS_delay_snapshot_read_one_in > 0 &&
      thread->rand.OneIn(FLAGS_delay_snapshot_read_one_in)) {
    uint64_t delay_ms = thread->rand.Uniform(100) + 1;
    db_->GetDBOptions().env->SleepForMicroseconds(
        static_cast<int>(delay_ms * 1000));
  }

  // TODO (yanqin) with a probability, we can use either forward or backward
  // iterator in subsequent checks. We can also use more advanced features in
  // range scan. For now, let's just use simple forward iteration with
  // total_order_seek = true.

  // First, iterate primary index.
  size_t primary_index_entries_count = 0;
  {
    std::string iter_ub_str;
    PutFixed32(&iter_ub_str, Record::kPrimaryIndexId + 1);
    std::reverse(iter_ub_str.begin(), iter_ub_str.end());
    Slice iter_ub = iter_ub_str;

    std::string start_key;
    PutFixed32(&start_key, Record::kPrimaryIndexId);
    std::reverse(start_key.begin(), start_key.end());

    // This `ReadOptions` is for validation purposes. Ignore
    // `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
    ReadOptions ropts;
    ropts.snapshot = snapshot;
    ropts.total_order_seek = true;
    ropts.iterate_upper_bound = &iter_ub;

    std::unique_ptr<Iterator> it(db_->NewIterator(ropts));
    for (it->Seek(start_key); it->Valid(); it->Next()) {
      Record record;
      Status s = record.DecodePrimaryIndexEntry(it->key(), it->value());
      if (!s.ok()) {
        oss << "Cannot decode primary index entry " << it->key().ToString(true)
            << "=>" << it->value().ToString(true);
        VerificationAbort(thread->shared, oss.str(), s);
        assert(false);
        return;
      }
      ++primary_index_entries_count;

      // Search secondary index.
      uint32_t a = record.a_value();
      uint32_t c = record.c_value();
      char sk_buf[12];
      EncodeFixed32(sk_buf, Record::kSecondaryIndexId);
      std::reverse(sk_buf, sk_buf + sizeof(uint32_t));
      EncodeFixed32(sk_buf + sizeof(uint32_t), c);
      std::reverse(sk_buf + sizeof(uint32_t), sk_buf + 2 * sizeof(uint32_t));
      EncodeFixed32(sk_buf + 2 * sizeof(uint32_t), a);
      std::reverse(sk_buf + 2 * sizeof(uint32_t), sk_buf + sizeof(sk_buf));
      Slice sk(sk_buf, sizeof(sk_buf));
      std::string value;
      s = db_->Get(ropts, sk, &value);
      if (!s.ok()) {
        oss << "Cannot find secondary index entry " << sk.ToString(true);
        VerificationAbort(thread->shared, oss.str(), s);
        assert(false);
        return;
      }
    }
  }

  // Second, iterate secondary index.
  size_t secondary_index_entries_count = 0;
  {
    std::string start_key;
    PutFixed32(&start_key, Record::kSecondaryIndexId);
    std::reverse(start_key.begin(), start_key.end());

    // This `ReadOptions` is for validation purposes. Ignore
    // `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
    ReadOptions ropts;
    ropts.snapshot = snapshot;
    ropts.total_order_seek = true;

    std::unique_ptr<Iterator> it(db_->NewIterator(ropts));
    for (it->Seek(start_key); it->Valid(); it->Next()) {
      ++secondary_index_entries_count;
      Record record;
      Status s = record.DecodeSecondaryIndexEntry(it->key(), it->value());
      if (!s.ok()) {
        oss << "Cannot decode secondary index entry "
            << it->key().ToString(true) << "=>" << it->value().ToString(true);
        VerificationAbort(thread->shared, oss.str(), s);
        assert(false);
        return;
      }
      // After decoding secondary index entry, we know a and c. Crc is verified
      // in decoding phase.
      //
      // Form a primary key and search in the primary index.
      std::string pk = Record::EncodePrimaryKey(record.a_value());
      std::string value;
      s = db_->Get(ropts, pk, &value);
      if (!s.ok()) {
        oss << "Error searching pk " << Slice(pk).ToString(true) << ". "
            << s.ToString() << ". sk " << it->key().ToString(true);
        VerificationAbort(thread->shared, oss.str(), s);
        assert(false);
        return;
      }
      auto result = Record::DecodePrimaryIndexValue(value);
      s = std::get<0>(result);
      if (!s.ok()) {
        oss << "Error decoding primary index value "
            << Slice(value).ToString(true) << ". " << s.ToString();
        VerificationAbort(thread->shared, oss.str(), s);
        assert(false);
        return;
      }
      uint32_t c_in_primary = std::get<2>(result);
      if (c_in_primary != record.c_value()) {
        oss << "Pk/sk mismatch. pk: " << Slice(pk).ToString(true) << "=>"
            << Slice(value).ToString(true) << " (a=" << record.a_value()
            << ", c=" << c_in_primary << "), sk: " << it->key().ToString(true)
            << " (c=" << record.c_value() << ")";
        VerificationAbort(thread->shared, oss.str(), s);
        assert(false);
        return;
      }
    }
  }

  if (secondary_index_entries_count != primary_index_entries_count) {
    oss << "Pk/sk mismatch: primary index has " << primary_index_entries_count
        << " entries. Secondary index has " << secondary_index_entries_count
        << " entries.";
    VerificationAbort(thread->shared, oss.str(), Status::OK());
    assert(false);
    return;
  }
}

// VerifyPkSkFast() can be called by MultiOpsTxnsStressListener's callbacks
// which can be called before TransactionDB::Open() returns to caller.
// Therefore, at that time, db_ and txn_db_  may still be nullptr.
// Caller has to make sure that the race condition does not happen.
void MultiOpsTxnsStressTest::VerifyPkSkFast(int job_id) {
  DB* const db = db_aptr_.load(std::memory_order_acquire);
  if (db == nullptr) {
    return;
  }

  assert(db_ == db);
  assert(db_ != nullptr);

  const Snapshot* const snapshot = db_->GetSnapshot();
  assert(snapshot);
  ManagedSnapshot snapshot_guard(db_, snapshot);

  std::ostringstream oss;
  auto* dbimpl = static_cast_with_check<DBImpl>(db_->GetRootDB());
  assert(dbimpl);

  oss << "Job " << job_id << ": [" << snapshot->GetSequenceNumber() << ","
      << dbimpl->GetLastPublishedSequence() << "] ";

  std::string start_key;
  PutFixed32(&start_key, Record::kSecondaryIndexId);
  std::reverse(start_key.begin(), start_key.end());

  // This `ReadOptions` is for validation purposes. Ignore
  // `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
  ReadOptions ropts;
  ropts.snapshot = snapshot;
  ropts.total_order_seek = true;

  std::unique_ptr<Iterator> it(db_->NewIterator(ropts));
  for (it->Seek(start_key); it->Valid(); it->Next()) {
    Record record;
    Status s = record.DecodeSecondaryIndexEntry(it->key(), it->value());
    if (!s.ok()) {
      oss << "Cannot decode secondary index entry " << it->key().ToString(true)
          << "=>" << it->value().ToString(true);
      fprintf(stderr, "%s\n", oss.str().c_str());
      fflush(stderr);
      assert(false);
    }
    // After decoding secondary index entry, we know a and c. Crc is verified
    // in decoding phase.
    //
    // Form a primary key and search in the primary index.
    std::string pk = Record::EncodePrimaryKey(record.a_value());
    std::string value;
    s = db_->Get(ropts, pk, &value);
    if (!s.ok()) {
      oss << "Error searching pk " << Slice(pk).ToString(true) << ". "
          << s.ToString() << ". sk " << it->key().ToString(true);
      fprintf(stderr, "%s\n", oss.str().c_str());
      fflush(stderr);
      assert(false);
    }
    auto result = Record::DecodePrimaryIndexValue(value);
    s = std::get<0>(result);
    if (!s.ok()) {
      oss << "Error decoding primary index value "
          << Slice(value).ToString(true) << ". " << s.ToString();
      fprintf(stderr, "%s\n", oss.str().c_str());
      fflush(stderr);
      assert(false);
    }
    uint32_t c_in_primary = std::get<2>(result);
    if (c_in_primary != record.c_value()) {
      oss << "Pk/sk mismatch. pk: " << Slice(pk).ToString(true) << "=>"
          << Slice(value).ToString(true) << " (a=" << record.a_value()
          << ", c=" << c_in_primary << "), sk: " << it->key().ToString(true)
          << " (c=" << record.c_value() << ")";
      fprintf(stderr, "%s\n", oss.str().c_str());
      fflush(stderr);
      assert(false);
    }
  }
}

std::pair<uint32_t, uint32_t> MultiOpsTxnsStressTest::ChooseExistingA(
    ThreadState* thread) {
  uint32_t tid = thread->tid;
  auto& key_gen = key_gen_for_a_.at(tid);
  return key_gen->ChooseExisting();
}

uint32_t MultiOpsTxnsStressTest::GenerateNextA(ThreadState* thread) {
  uint32_t tid = thread->tid;
  auto& key_gen = key_gen_for_a_.at(tid);
  return key_gen->Allocate();
}

std::pair<uint32_t, uint32_t> MultiOpsTxnsStressTest::ChooseExistingC(
    ThreadState* thread) {
  uint32_t tid = thread->tid;
  auto& key_gen = key_gen_for_c_.at(tid);
  return key_gen->ChooseExisting();
}

uint32_t MultiOpsTxnsStressTest::GenerateNextC(ThreadState* thread) {
  uint32_t tid = thread->tid;
  auto& key_gen = key_gen_for_c_.at(tid);
  return key_gen->Allocate();
}

#ifndef ROCKSDB_LITE
void MultiOpsTxnsStressTest::ProcessRecoveredPreparedTxnsHelper(
    Transaction* txn, SharedState*) {
  thread_local Random rand(static_cast<uint32_t>(FLAGS_seed));
  if (rand.OneIn(2)) {
    Status s = txn->Commit();
    assert(s.ok());
  } else {
    Status s = txn->Rollback();
    assert(s.ok());
  }
}

Status MultiOpsTxnsStressTest::WriteToCommitTimeWriteBatch(Transaction& txn) {
  WriteBatch* ctwb = txn.GetCommitTimeWriteBatch();
  assert(ctwb);
  // Do not change the content in key_buf.
  static constexpr char key_buf[sizeof(Record::kMetadataPrefix) + 4] = {
      '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\xff'};

  uint64_t counter_val = counter_.Next();
  char val_buf[sizeof(counter_val)];
  EncodeFixed64(val_buf, counter_val);
  return ctwb->Put(Slice(key_buf, sizeof(key_buf)),
                   Slice(val_buf, sizeof(val_buf)));
}

Status MultiOpsTxnsStressTest::CommitAndCreateTimestampedSnapshotIfNeeded(
    ThreadState* thread, Transaction& txn) {
  Status s;
  if (FLAGS_create_timestamped_snapshot_one_in > 0 &&
      thread->rand.OneInOpt(FLAGS_create_timestamped_snapshot_one_in)) {
    uint64_t ts = db_stress_env->NowNanos();
    std::shared_ptr<const Snapshot> snapshot;
    s = txn.CommitAndTryCreateSnapshot(/*notifier=*/nullptr, ts, &snapshot);
  } else {
    s = txn.Commit();
  }
  assert(txn_db_);
  if (FLAGS_create_timestamped_snapshot_one_in > 0 &&
      thread->rand.OneInOpt(50000)) {
    uint64_t now = db_stress_env->NowNanos();
    constexpr uint64_t time_diff = static_cast<uint64_t>(1000) * 1000 * 1000;
    txn_db_->ReleaseTimestampedSnapshotsOlderThan(now - time_diff);
  }
  return s;
}

void MultiOpsTxnsStressTest::SetupSnapshot(
    ThreadState* thread, ReadOptions& read_opts, Transaction& txn,
    std::shared_ptr<const Snapshot>& snapshot) {
  if (thread->rand.OneInOpt(2)) {
    snapshot = txn_db_->GetLatestTimestampedSnapshot();
  }

  if (snapshot) {
    read_opts.snapshot = snapshot.get();
  } else {
    txn.SetSnapshot();
    read_opts.snapshot = txn.GetSnapshot();
  }
}
#endif  // !ROCKSDB_LITE

std::string MultiOpsTxnsStressTest::KeySpaces::EncodeTo() const {
  std::string result;
  PutFixed32(&result, lb_a);
  PutFixed32(&result, ub_a);
  PutFixed32(&result, lb_c);
  PutFixed32(&result, ub_c);
  return result;
}

bool MultiOpsTxnsStressTest::KeySpaces::DecodeFrom(Slice data) {
  if (!GetFixed32(&data, &lb_a) || !GetFixed32(&data, &ub_a) ||
      !GetFixed32(&data, &lb_c) || !GetFixed32(&data, &ub_c)) {
    return false;
  }
  return true;
}

void MultiOpsTxnsStressTest::PersistKeySpacesDesc(
    const std::string& key_spaces_path, uint32_t lb_a, uint32_t ub_a,
    uint32_t lb_c, uint32_t ub_c) {
  KeySpaces key_spaces(lb_a, ub_a, lb_c, ub_c);
  std::string key_spaces_rep = key_spaces.EncodeTo();

  std::unique_ptr<WritableFile> wfile;
  Status s1 =
      Env::Default()->NewWritableFile(key_spaces_path, &wfile, EnvOptions());
  assert(s1.ok());
  assert(wfile);
  s1 = wfile->Append(key_spaces_rep);
  assert(s1.ok());
}

MultiOpsTxnsStressTest::KeySpaces MultiOpsTxnsStressTest::ReadKeySpacesDesc(
    const std::string& key_spaces_path) {
  KeySpaces key_spaces;
  std::unique_ptr<SequentialFile> sfile;
  Status s1 =
      Env::Default()->NewSequentialFile(key_spaces_path, &sfile, EnvOptions());
  assert(s1.ok());
  assert(sfile);
  char buf[16];
  Slice result;
  s1 = sfile->Read(sizeof(buf), &result, buf);
  assert(s1.ok());
  if (!key_spaces.DecodeFrom(result)) {
    assert(false);
  }
  return key_spaces;
}

// Create an empty database if necessary and preload it with initial test data.
// Key range [lb_a, ub_a), [lb_c, ub_c). The key ranges will be shared by
// 'threads' threads.
// PreloadDb() also sets up KeyGenerator objects for each sub key range
// operated on by each thread.
// Both [lb_a, ub_a) and [lb_c, ub_c) are partitioned. Each thread operates on
// one sub range, using KeyGenerators to generate keys.
// For example, we choose a from [0, 10000) and c from [0, 100). Number of
// threads is 32, their tids range from 0 to 31.
// Thread k chooses a from [312*k,312*(k+1)) and c from [3*k,3*(k+1)) if k<31.
// Thread 31 chooses a from [9672, 10000) and c from [93, 100).
// Within each subrange: a from [low1, high1), c from [low2, high2).
// high1 - low1 > high2 - low2
// We reserve {high1 - 1} and {high2 - 1} as unallocated.
// The records are <low1,low2>, <low1+1,low2+1>, ...,
// <low1+k,low2+k%(high2-low2-1), <low1+k+1,low2+(k+1)%(high2-low2-1)>, ...
void MultiOpsTxnsStressTest::PreloadDb(SharedState* shared, int threads,
                                       uint32_t lb_a, uint32_t ub_a,
                                       uint32_t lb_c, uint32_t ub_c) {
#ifdef ROCKSDB_LITE
  (void)shared;
  (void)threads;
  (void)lb_a;
  (void)ub_a;
  (void)lb_c;
  (void)ub_c;
#else
  key_gen_for_a_.resize(threads);
  key_gen_for_c_.resize(threads);

  assert(ub_a > lb_a && ub_a > lb_a + threads);
  assert(ub_c > lb_c && ub_c > lb_c + threads);

  PersistKeySpacesDesc(FLAGS_key_spaces_path, lb_a, ub_a, lb_c, ub_c);

  fprintf(stdout, "a from [%u, %u), c from [%u, %u)\n",
          static_cast<unsigned int>(lb_a), static_cast<unsigned int>(ub_a),
          static_cast<unsigned int>(lb_c), static_cast<unsigned int>(ub_c));

  const uint32_t num_c = ub_c - lb_c;
  const uint32_t num_c_per_thread = num_c / threads;
  const uint32_t num_a = ub_a - lb_a;
  const uint32_t num_a_per_thread = num_a / threads;

  WriteOptions wopts;
  wopts.disableWAL = FLAGS_disable_wal;
  Random rnd(shared->GetSeed());
  assert(txn_db_);

  std::vector<KeySet> existing_a_uniqs(threads);
  std::vector<KeySet> non_existing_a_uniqs(threads);
  std::vector<KeySet> existing_c_uniqs(threads);
  std::vector<KeySet> non_existing_c_uniqs(threads);

  for (uint32_t a = lb_a; a < ub_a; ++a) {
    uint32_t tid = (a - lb_a) / num_a_per_thread;
    if (tid >= static_cast<uint32_t>(threads)) {
      tid = threads - 1;
    }

    uint32_t a_base = lb_a + tid * num_a_per_thread;
    uint32_t a_hi = (tid < static_cast<uint32_t>(threads - 1))
                        ? (a_base + num_a_per_thread)
                        : ub_a;
    uint32_t a_delta = a - a_base;

    if (a == a_hi - 1) {
      non_existing_a_uniqs[tid].insert(a);
      continue;
    }

    uint32_t c_base = lb_c + tid * num_c_per_thread;
    uint32_t c_hi = (tid < static_cast<uint32_t>(threads - 1))
                        ? (c_base + num_c_per_thread)
                        : ub_c;
    uint32_t c_delta = a_delta % (c_hi - c_base - 1);
    uint32_t c = c_base + c_delta;

    uint32_t b = rnd.Next();
    Record record(a, b, c);
    WriteBatch wb;
    const auto primary_index_entry = record.EncodePrimaryIndexEntry();
    Status s = wb.Put(primary_index_entry.first, primary_index_entry.second);
    assert(s.ok());

    const auto secondary_index_entry = record.EncodeSecondaryIndexEntry();
    s = wb.Put(secondary_index_entry.first, secondary_index_entry.second);
    assert(s.ok());

    s = txn_db_->Write(wopts, &wb);
    assert(s.ok());

    // TODO (yanqin): make the following check optional, especially when data
    // size is large.
    Record tmp_rec;
    tmp_rec.SetB(record.b_value());
    s = tmp_rec.DecodeSecondaryIndexEntry(secondary_index_entry.first,
                                          secondary_index_entry.second);
    assert(s.ok());
    assert(tmp_rec == record);

    existing_a_uniqs[tid].insert(a);
    existing_c_uniqs[tid].insert(c);
  }

  for (int i = 0; i < threads; ++i) {
    uint32_t my_seed = i + shared->GetSeed();

    auto& key_gen_for_a = key_gen_for_a_[i];
    assert(!key_gen_for_a);
    uint32_t low = lb_a + i * num_a_per_thread;
    uint32_t high = (i < threads - 1) ? (low + num_a_per_thread) : ub_a;
    assert(existing_a_uniqs[i].size() == high - low - 1);
    assert(non_existing_a_uniqs[i].size() == 1);
    key_gen_for_a = std::make_unique<KeyGenerator>(
        my_seed, low, high, std::move(existing_a_uniqs[i]),
        std::move(non_existing_a_uniqs[i]));

    auto& key_gen_for_c = key_gen_for_c_[i];
    assert(!key_gen_for_c);
    low = lb_c + i * num_c_per_thread;
    high = (i < threads - 1) ? (low + num_c_per_thread) : ub_c;
    non_existing_c_uniqs[i].insert(high - 1);
    assert(existing_c_uniqs[i].size() == high - low - 1);
    assert(non_existing_c_uniqs[i].size() == 1);
    key_gen_for_c = std::make_unique<KeyGenerator>(
        my_seed, low, high, std::move(existing_c_uniqs[i]),
        std::move(non_existing_c_uniqs[i]));
  }
#endif  // !ROCKSDB_LITE
}

// Scan an existing, non-empty database.
// Set up [lb_a, ub_a) and [lb_c, ub_c) as test key ranges.
// Set up KeyGenerator objects for each sub key range operated on by each
// thread.
// Scan the entire database and for each subrange, populate the existing keys
// and non-existing keys. We currently require the non-existing keys be
// non-empty after initialization.
void MultiOpsTxnsStressTest::ScanExistingDb(SharedState* shared, int threads) {
  key_gen_for_a_.resize(threads);
  key_gen_for_c_.resize(threads);

  KeySpaces key_spaces = ReadKeySpacesDesc(FLAGS_key_spaces_path);

  const uint32_t lb_a = key_spaces.lb_a;
  const uint32_t ub_a = key_spaces.ub_a;
  const uint32_t lb_c = key_spaces.lb_c;
  const uint32_t ub_c = key_spaces.ub_c;

  assert(lb_a < ub_a && lb_c < ub_c);

  fprintf(stdout, "a from [%u, %u), c from [%u, %u)\n",
          static_cast<unsigned int>(lb_a), static_cast<unsigned int>(ub_a),
          static_cast<unsigned int>(lb_c), static_cast<unsigned int>(ub_c));

  assert(ub_a > lb_a && ub_a > lb_a + threads);
  assert(ub_c > lb_c && ub_c > lb_c + threads);

  const uint32_t num_c = ub_c - lb_c;
  const uint32_t num_c_per_thread = num_c / threads;
  const uint32_t num_a = ub_a - lb_a;
  const uint32_t num_a_per_thread = num_a / threads;

  assert(db_);
  ReadOptions ropts;
  std::vector<KeySet> existing_a_uniqs(threads);
  std::vector<KeySet> non_existing_a_uniqs(threads);
  std::vector<KeySet> existing_c_uniqs(threads);
  std::vector<KeySet> non_existing_c_uniqs(threads);
  {
    std::string pk_lb_str = Record::EncodePrimaryKey(0);
    std::string pk_ub_str =
        Record::EncodePrimaryKey(std::numeric_limits<uint32_t>::max());
    Slice pk_lb = pk_lb_str;
    Slice pk_ub = pk_ub_str;
    ropts.iterate_lower_bound = &pk_lb;
    ropts.iterate_upper_bound = &pk_ub;
    ropts.total_order_seek = true;
    std::unique_ptr<Iterator> it(db_->NewIterator(ropts));

    for (it->SeekToFirst(); it->Valid(); it->Next()) {
      Record record;
      Status s = record.DecodePrimaryIndexEntry(it->key(), it->value());
      if (!s.ok()) {
        fprintf(stderr, "Cannot decode primary index entry (%s => %s): %s\n",
                it->key().ToString(true).c_str(),
                it->value().ToString(true).c_str(), s.ToString().c_str());
        assert(false);
      }
      uint32_t a = record.a_value();
      assert(a >= lb_a);
      assert(a < ub_a);
      uint32_t tid = (a - lb_a) / num_a_per_thread;
      if (tid >= static_cast<uint32_t>(threads)) {
        tid = threads - 1;
      }

      existing_a_uniqs[tid].insert(a);

      uint32_t c = record.c_value();
      assert(c >= lb_c);
      assert(c < ub_c);
      tid = (c - lb_c) / num_c_per_thread;
      if (tid >= static_cast<uint32_t>(threads)) {
        tid = threads - 1;
      }
      auto& existing_c_uniq = existing_c_uniqs[tid];
      existing_c_uniq.insert(c);
    }

    for (uint32_t a = lb_a; a < ub_a; ++a) {
      uint32_t tid = (a - lb_a) / num_a_per_thread;
      if (tid >= static_cast<uint32_t>(threads)) {
        tid = threads - 1;
      }
      if (0 == existing_a_uniqs[tid].count(a)) {
        non_existing_a_uniqs[tid].insert(a);
      }
    }

    for (uint32_t c = lb_c; c < ub_c; ++c) {
      uint32_t tid = (c - lb_c) / num_c_per_thread;
      if (tid >= static_cast<uint32_t>(threads)) {
        tid = threads - 1;
      }
      if (0 == existing_c_uniqs[tid].count(c)) {
        non_existing_c_uniqs[tid].insert(c);
      }
    }

    for (int i = 0; i < threads; ++i) {
      uint32_t my_seed = i + shared->GetSeed();
      auto& key_gen_for_a = key_gen_for_a_[i];
      assert(!key_gen_for_a);
      uint32_t low = lb_a + i * num_a_per_thread;
      uint32_t high = (i < threads - 1) ? (low + num_a_per_thread) : ub_a;

      // The following two assertions assume the test thread count and key
      // space remain the same across different runs. Will need to relax.
      assert(existing_a_uniqs[i].size() == high - low - 1);
      assert(non_existing_a_uniqs[i].size() == 1);

      key_gen_for_a = std::make_unique<KeyGenerator>(
          my_seed, low, high, std::move(existing_a_uniqs[i]),
          std::move(non_existing_a_uniqs[i]));

      auto& key_gen_for_c = key_gen_for_c_[i];
      assert(!key_gen_for_c);
      low = lb_c + i * num_c_per_thread;
      high = (i < threads - 1) ? (low + num_c_per_thread) : ub_c;

      // The following two assertions assume the test thread count and key
      // space remain the same across different runs. Will need to relax.
      assert(existing_c_uniqs[i].size() == high - low - 1);
      assert(non_existing_c_uniqs[i].size() == 1);

      key_gen_for_c = std::make_unique<KeyGenerator>(
          my_seed, low, high, std::move(existing_c_uniqs[i]),
          std::move(non_existing_c_uniqs[i]));
    }
  }
}

StressTest* CreateMultiOpsTxnsStressTest() {
  return new MultiOpsTxnsStressTest();
}

void CheckAndSetOptionsForMultiOpsTxnStressTest() {
#ifndef ROCKSDB_LITE
  if (FLAGS_test_batches_snapshots || FLAGS_test_cf_consistency) {
    fprintf(stderr,
            "-test_multi_ops_txns is not compatible with "
            "-test_bathces_snapshots and -test_cf_consistency\n");
    exit(1);
  }
  if (!FLAGS_use_txn) {
    fprintf(stderr, "-use_txn must be true if -test_multi_ops_txns\n");
    exit(1);
  } else if (FLAGS_test_secondary > 0) {
    fprintf(
        stderr,
        "secondary instance does not support replaying logs (MANIFEST + WAL) "
        "of TransactionDB with write-prepared/write-unprepared policy\n");
    exit(1);
  }
  if (FLAGS_clear_column_family_one_in > 0) {
    fprintf(stderr,
            "-test_multi_ops_txns is not compatible with clearing column "
            "families\n");
    exit(1);
  }
  if (FLAGS_column_families > 1) {
    // TODO (yanqin) support separating primary index and secondary index in
    // different column families.
    fprintf(stderr,
            "-test_multi_ops_txns currently does not use more than one column "
            "family\n");
    exit(1);
  }
  if (FLAGS_writepercent > 0 || FLAGS_delpercent > 0 ||
      FLAGS_delrangepercent > 0) {
    fprintf(stderr,
            "-test_multi_ops_txns requires that -writepercent, -delpercent and "
            "-delrangepercent be 0\n");
    exit(1);
  }
  if (FLAGS_key_spaces_path.empty()) {
    fprintf(stderr,
            "Must specify a file to store ranges of A and C via "
            "-key_spaces_path\n");
    exit(1);
  }
  if (FLAGS_create_timestamped_snapshot_one_in > 0) {
    if (FLAGS_txn_write_policy !=
        static_cast<uint64_t>(TxnDBWritePolicy::WRITE_COMMITTED)) {
      fprintf(stderr,
              "Timestamped snapshot is not yet supported by "
              "write-prepared/write-unprepared transactions\n");
      exit(1);
    }
  }
  if (FLAGS_sync_fault_injection == 1) {
    fprintf(stderr,
            "Sync fault injection is currently not supported in "
            "-test_multi_ops_txns\n");
    exit(1);
  }
#else
  fprintf(stderr, "-test_multi_ops_txns not supported in ROCKSDB_LITE mode\n");
  exit(1);
#endif  // !ROCKSDB_LITE
}
}  // namespace ROCKSDB_NAMESPACE

#endif  // GFLAGS