summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/memtable/hash_linklist_rep.cc
blob: a717683048ce5fb93ff38eb7f4075cfab87ed32a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//

#ifndef ROCKSDB_LITE

#include <algorithm>
#include <atomic>

#include "db/memtable.h"
#include "memory/arena.h"
#include "memtable/skiplist.h"
#include "monitoring/histogram.h"
#include "port/port.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/utilities/options_type.h"
#include "util/hash.h"

namespace ROCKSDB_NAMESPACE {
namespace {

using Key = const char*;
using MemtableSkipList = SkipList<Key, const MemTableRep::KeyComparator&>;
using Pointer = std::atomic<void*>;

// A data structure used as the header of a link list of a hash bucket.
struct BucketHeader {
  Pointer next;
  std::atomic<uint32_t> num_entries;

  explicit BucketHeader(void* n, uint32_t count)
      : next(n), num_entries(count) {}

  bool IsSkipListBucket() {
    return next.load(std::memory_order_relaxed) == this;
  }

  uint32_t GetNumEntries() const {
    return num_entries.load(std::memory_order_relaxed);
  }

  // REQUIRES: called from single-threaded Insert()
  void IncNumEntries() {
    // Only one thread can do write at one time. No need to do atomic
    // incremental. Update it with relaxed load and store.
    num_entries.store(GetNumEntries() + 1, std::memory_order_relaxed);
  }
};

// A data structure used as the header of a skip list of a hash bucket.
struct SkipListBucketHeader {
  BucketHeader Counting_header;
  MemtableSkipList skip_list;

  explicit SkipListBucketHeader(const MemTableRep::KeyComparator& cmp,
                                Allocator* allocator, uint32_t count)
      : Counting_header(this,  // Pointing to itself to indicate header type.
                        count),
        skip_list(cmp, allocator) {}
};

struct Node {
  // Accessors/mutators for links.  Wrapped in methods so we can
  // add the appropriate barriers as necessary.
  Node* Next() {
    // Use an 'acquire load' so that we observe a fully initialized
    // version of the returned Node.
    return next_.load(std::memory_order_acquire);
  }
  void SetNext(Node* x) {
    // Use a 'release store' so that anybody who reads through this
    // pointer observes a fully initialized version of the inserted node.
    next_.store(x, std::memory_order_release);
  }
  // No-barrier variants that can be safely used in a few locations.
  Node* NoBarrier_Next() { return next_.load(std::memory_order_relaxed); }

  void NoBarrier_SetNext(Node* x) { next_.store(x, std::memory_order_relaxed); }

  // Needed for placement new below which is fine
  Node() {}

 private:
  std::atomic<Node*> next_;

  // Prohibit copying due to the below
  Node(const Node&) = delete;
  Node& operator=(const Node&) = delete;

 public:
  char key[1];
};

// Memory structure of the mem table:
// It is a hash table, each bucket points to one entry, a linked list or a
// skip list. In order to track total number of records in a bucket to determine
// whether should switch to skip list, a header is added just to indicate
// number of entries in the bucket.
//
//
//          +-----> NULL    Case 1. Empty bucket
//          |
//          |
//          | +---> +-------+
//          | |     | Next  +--> NULL
//          | |     +-------+
//  +-----+ | |     |       |  Case 2. One Entry in bucket.
//  |     +-+ |     | Data  |          next pointer points to
//  +-----+   |     |       |          NULL. All other cases
//  |     |   |     |       |          next pointer is not NULL.
//  +-----+   |     +-------+
//  |     +---+
//  +-----+     +-> +-------+  +> +-------+  +-> +-------+
//  |     |     |   | Next  +--+  | Next  +--+   | Next  +-->NULL
//  +-----+     |   +-------+     +-------+      +-------+
//  |     +-----+   | Count |     |       |      |       |
//  +-----+         +-------+     | Data  |      | Data  |
//  |     |                       |       |      |       |
//  +-----+          Case 3.      |       |      |       |
//  |     |          A header     +-------+      +-------+
//  +-----+          points to
//  |     |          a linked list. Count indicates total number
//  +-----+          of rows in this bucket.
//  |     |
//  +-----+    +-> +-------+ <--+
//  |     |    |   | Next  +----+
//  +-----+    |   +-------+   Case 4. A header points to a skip
//  |     +----+   | Count |           list and next pointer points to
//  +-----+        +-------+           itself, to distinguish case 3 or 4.
//  |     |        |       |           Count still is kept to indicates total
//  +-----+        | Skip +-->         of entries in the bucket for debugging
//  |     |        | List  |   Data    purpose.
//  |     |        |      +-->
//  +-----+        |       |
//  |     |        +-------+
//  +-----+
//
// We don't have data race when changing cases because:
// (1) When changing from case 2->3, we create a new bucket header, put the
//     single node there first without changing the original node, and do a
//     release store when changing the bucket pointer. In that case, a reader
//     who sees a stale value of the bucket pointer will read this node, while
//     a reader sees the correct value because of the release store.
// (2) When changing case 3->4, a new header is created with skip list points
//     to the data, before doing an acquire store to change the bucket pointer.
//     The old header and nodes are never changed, so any reader sees any
//     of those existing pointers will guarantee to be able to iterate to the
//     end of the linked list.
// (3) Header's next pointer in case 3 might change, but they are never equal
//     to itself, so no matter a reader sees any stale or newer value, it will
//     be able to correctly distinguish case 3 and 4.
//
// The reason that we use case 2 is we want to make the format to be efficient
// when the utilization of buckets is relatively low. If we use case 3 for
// single entry bucket, we will need to waste 12 bytes for every entry,
// which can be significant decrease of memory utilization.
class HashLinkListRep : public MemTableRep {
 public:
  HashLinkListRep(const MemTableRep::KeyComparator& compare,
                  Allocator* allocator, const SliceTransform* transform,
                  size_t bucket_size, uint32_t threshold_use_skiplist,
                  size_t huge_page_tlb_size, Logger* logger,
                  int bucket_entries_logging_threshold,
                  bool if_log_bucket_dist_when_flash);

  KeyHandle Allocate(const size_t len, char** buf) override;

  void Insert(KeyHandle handle) override;

  bool Contains(const char* key) const override;

  size_t ApproximateMemoryUsage() override;

  void Get(const LookupKey& k, void* callback_args,
           bool (*callback_func)(void* arg, const char* entry)) override;

  ~HashLinkListRep() override;

  MemTableRep::Iterator* GetIterator(Arena* arena = nullptr) override;

  MemTableRep::Iterator* GetDynamicPrefixIterator(
      Arena* arena = nullptr) override;

 private:
  friend class DynamicIterator;

  size_t bucket_size_;

  // Maps slices (which are transformed user keys) to buckets of keys sharing
  // the same transform.
  Pointer* buckets_;

  const uint32_t threshold_use_skiplist_;

  // The user-supplied transform whose domain is the user keys.
  const SliceTransform* transform_;

  const MemTableRep::KeyComparator& compare_;

  Logger* logger_;
  int bucket_entries_logging_threshold_;
  bool if_log_bucket_dist_when_flash_;

  bool LinkListContains(Node* head, const Slice& key) const;

  bool IsEmptyBucket(Pointer& bucket_pointer) const {
    return bucket_pointer.load(std::memory_order_acquire) == nullptr;
  }

  // Precondition: GetLinkListFirstNode() must have been called first and return
  // null so that it must be a skip list bucket
  SkipListBucketHeader* GetSkipListBucketHeader(Pointer& bucket_pointer) const;

  // Returning nullptr indicates it is a skip list bucket.
  Node* GetLinkListFirstNode(Pointer& bucket_pointer) const;

  Slice GetPrefix(const Slice& internal_key) const {
    return transform_->Transform(ExtractUserKey(internal_key));
  }

  size_t GetHash(const Slice& slice) const {
    return GetSliceRangedNPHash(slice, bucket_size_);
  }

  Pointer& GetBucket(size_t i) const { return buckets_[i]; }

  Pointer& GetBucket(const Slice& slice) const {
    return GetBucket(GetHash(slice));
  }

  bool Equal(const Slice& a, const Key& b) const {
    return (compare_(b, a) == 0);
  }

  bool Equal(const Key& a, const Key& b) const { return (compare_(a, b) == 0); }

  bool KeyIsAfterNode(const Slice& internal_key, const Node* n) const {
    // nullptr n is considered infinite
    return (n != nullptr) && (compare_(n->key, internal_key) < 0);
  }

  bool KeyIsAfterNode(const Key& key, const Node* n) const {
    // nullptr n is considered infinite
    return (n != nullptr) && (compare_(n->key, key) < 0);
  }

  bool KeyIsAfterOrAtNode(const Slice& internal_key, const Node* n) const {
    // nullptr n is considered infinite
    return (n != nullptr) && (compare_(n->key, internal_key) <= 0);
  }

  bool KeyIsAfterOrAtNode(const Key& key, const Node* n) const {
    // nullptr n is considered infinite
    return (n != nullptr) && (compare_(n->key, key) <= 0);
  }

  Node* FindGreaterOrEqualInBucket(Node* head, const Slice& key) const;
  Node* FindLessOrEqualInBucket(Node* head, const Slice& key) const;

  class FullListIterator : public MemTableRep::Iterator {
   public:
    explicit FullListIterator(MemtableSkipList* list, Allocator* allocator)
        : iter_(list), full_list_(list), allocator_(allocator) {}

    ~FullListIterator() override {}

    // Returns true iff the iterator is positioned at a valid node.
    bool Valid() const override { return iter_.Valid(); }

    // Returns the key at the current position.
    // REQUIRES: Valid()
    const char* key() const override {
      assert(Valid());
      return iter_.key();
    }

    // Advances to the next position.
    // REQUIRES: Valid()
    void Next() override {
      assert(Valid());
      iter_.Next();
    }

    // Advances to the previous position.
    // REQUIRES: Valid()
    void Prev() override {
      assert(Valid());
      iter_.Prev();
    }

    // Advance to the first entry with a key >= target
    void Seek(const Slice& internal_key, const char* memtable_key) override {
      const char* encoded_key = (memtable_key != nullptr)
                                    ? memtable_key
                                    : EncodeKey(&tmp_, internal_key);
      iter_.Seek(encoded_key);
    }

    // Retreat to the last entry with a key <= target
    void SeekForPrev(const Slice& internal_key,
                     const char* memtable_key) override {
      const char* encoded_key = (memtable_key != nullptr)
                                    ? memtable_key
                                    : EncodeKey(&tmp_, internal_key);
      iter_.SeekForPrev(encoded_key);
    }

    // Position at the first entry in collection.
    // Final state of iterator is Valid() iff collection is not empty.
    void SeekToFirst() override { iter_.SeekToFirst(); }

    // Position at the last entry in collection.
    // Final state of iterator is Valid() iff collection is not empty.
    void SeekToLast() override { iter_.SeekToLast(); }

   private:
    MemtableSkipList::Iterator iter_;
    // To destruct with the iterator.
    std::unique_ptr<MemtableSkipList> full_list_;
    std::unique_ptr<Allocator> allocator_;
    std::string tmp_;  // For passing to EncodeKey
  };

  class LinkListIterator : public MemTableRep::Iterator {
   public:
    explicit LinkListIterator(const HashLinkListRep* const hash_link_list_rep,
                              Node* head)
        : hash_link_list_rep_(hash_link_list_rep),
          head_(head),
          node_(nullptr) {}

    ~LinkListIterator() override {}

    // Returns true iff the iterator is positioned at a valid node.
    bool Valid() const override { return node_ != nullptr; }

    // Returns the key at the current position.
    // REQUIRES: Valid()
    const char* key() const override {
      assert(Valid());
      return node_->key;
    }

    // Advances to the next position.
    // REQUIRES: Valid()
    void Next() override {
      assert(Valid());
      node_ = node_->Next();
    }

    // Advances to the previous position.
    // REQUIRES: Valid()
    void Prev() override {
      // Prefix iterator does not support total order.
      // We simply set the iterator to invalid state
      Reset(nullptr);
    }

    // Advance to the first entry with a key >= target
    void Seek(const Slice& internal_key,
              const char* /*memtable_key*/) override {
      node_ =
          hash_link_list_rep_->FindGreaterOrEqualInBucket(head_, internal_key);
    }

    // Retreat to the last entry with a key <= target
    void SeekForPrev(const Slice& /*internal_key*/,
                     const char* /*memtable_key*/) override {
      // Since we do not support Prev()
      // We simply do not support SeekForPrev
      Reset(nullptr);
    }

    // Position at the first entry in collection.
    // Final state of iterator is Valid() iff collection is not empty.
    void SeekToFirst() override {
      // Prefix iterator does not support total order.
      // We simply set the iterator to invalid state
      Reset(nullptr);
    }

    // Position at the last entry in collection.
    // Final state of iterator is Valid() iff collection is not empty.
    void SeekToLast() override {
      // Prefix iterator does not support total order.
      // We simply set the iterator to invalid state
      Reset(nullptr);
    }

   protected:
    void Reset(Node* head) {
      head_ = head;
      node_ = nullptr;
    }

   private:
    friend class HashLinkListRep;
    const HashLinkListRep* const hash_link_list_rep_;
    Node* head_;
    Node* node_;

    virtual void SeekToHead() { node_ = head_; }
  };

  class DynamicIterator : public HashLinkListRep::LinkListIterator {
   public:
    explicit DynamicIterator(HashLinkListRep& memtable_rep)
        : HashLinkListRep::LinkListIterator(&memtable_rep, nullptr),
          memtable_rep_(memtable_rep) {}

    // Advance to the first entry with a key >= target
    void Seek(const Slice& k, const char* memtable_key) override {
      auto transformed = memtable_rep_.GetPrefix(k);
      Pointer& bucket = memtable_rep_.GetBucket(transformed);

      if (memtable_rep_.IsEmptyBucket(bucket)) {
        skip_list_iter_.reset();
        Reset(nullptr);
      } else {
        Node* first_linked_list_node =
            memtable_rep_.GetLinkListFirstNode(bucket);
        if (first_linked_list_node != nullptr) {
          // The bucket is organized as a linked list
          skip_list_iter_.reset();
          Reset(first_linked_list_node);
          HashLinkListRep::LinkListIterator::Seek(k, memtable_key);

        } else {
          SkipListBucketHeader* skip_list_header =
              memtable_rep_.GetSkipListBucketHeader(bucket);
          assert(skip_list_header != nullptr);
          // The bucket is organized as a skip list
          if (!skip_list_iter_) {
            skip_list_iter_.reset(
                new MemtableSkipList::Iterator(&skip_list_header->skip_list));
          } else {
            skip_list_iter_->SetList(&skip_list_header->skip_list);
          }
          if (memtable_key != nullptr) {
            skip_list_iter_->Seek(memtable_key);
          } else {
            IterKey encoded_key;
            encoded_key.EncodeLengthPrefixedKey(k);
            skip_list_iter_->Seek(encoded_key.GetUserKey().data());
          }
        }
      }
    }

    bool Valid() const override {
      if (skip_list_iter_) {
        return skip_list_iter_->Valid();
      }
      return HashLinkListRep::LinkListIterator::Valid();
    }

    const char* key() const override {
      if (skip_list_iter_) {
        return skip_list_iter_->key();
      }
      return HashLinkListRep::LinkListIterator::key();
    }

    void Next() override {
      if (skip_list_iter_) {
        skip_list_iter_->Next();
      } else {
        HashLinkListRep::LinkListIterator::Next();
      }
    }

   private:
    // the underlying memtable
    const HashLinkListRep& memtable_rep_;
    std::unique_ptr<MemtableSkipList::Iterator> skip_list_iter_;
  };

  class EmptyIterator : public MemTableRep::Iterator {
    // This is used when there wasn't a bucket. It is cheaper than
    // instantiating an empty bucket over which to iterate.
   public:
    EmptyIterator() {}
    bool Valid() const override { return false; }
    const char* key() const override {
      assert(false);
      return nullptr;
    }
    void Next() override {}
    void Prev() override {}
    void Seek(const Slice& /*user_key*/,
              const char* /*memtable_key*/) override {}
    void SeekForPrev(const Slice& /*user_key*/,
                     const char* /*memtable_key*/) override {}
    void SeekToFirst() override {}
    void SeekToLast() override {}

   private:
  };
};

HashLinkListRep::HashLinkListRep(
    const MemTableRep::KeyComparator& compare, Allocator* allocator,
    const SliceTransform* transform, size_t bucket_size,
    uint32_t threshold_use_skiplist, size_t huge_page_tlb_size, Logger* logger,
    int bucket_entries_logging_threshold, bool if_log_bucket_dist_when_flash)
    : MemTableRep(allocator),
      bucket_size_(bucket_size),
      // Threshold to use skip list doesn't make sense if less than 3, so we
      // force it to be minimum of 3 to simplify implementation.
      threshold_use_skiplist_(std::max(threshold_use_skiplist, 3U)),
      transform_(transform),
      compare_(compare),
      logger_(logger),
      bucket_entries_logging_threshold_(bucket_entries_logging_threshold),
      if_log_bucket_dist_when_flash_(if_log_bucket_dist_when_flash) {
  char* mem = allocator_->AllocateAligned(sizeof(Pointer) * bucket_size,
                                          huge_page_tlb_size, logger);

  buckets_ = new (mem) Pointer[bucket_size];

  for (size_t i = 0; i < bucket_size_; ++i) {
    buckets_[i].store(nullptr, std::memory_order_relaxed);
  }
}

HashLinkListRep::~HashLinkListRep() {}

KeyHandle HashLinkListRep::Allocate(const size_t len, char** buf) {
  char* mem = allocator_->AllocateAligned(sizeof(Node) + len);
  Node* x = new (mem) Node();
  *buf = x->key;
  return static_cast<void*>(x);
}

SkipListBucketHeader* HashLinkListRep::GetSkipListBucketHeader(
    Pointer& bucket_pointer) const {
  Pointer* first_next_pointer =
      static_cast<Pointer*>(bucket_pointer.load(std::memory_order_acquire));
  assert(first_next_pointer != nullptr);
  assert(first_next_pointer->load(std::memory_order_relaxed) != nullptr);

  // Counting header
  BucketHeader* header = reinterpret_cast<BucketHeader*>(first_next_pointer);
  assert(header->IsSkipListBucket());
  assert(header->GetNumEntries() > threshold_use_skiplist_);
  auto* skip_list_bucket_header =
      reinterpret_cast<SkipListBucketHeader*>(header);
  assert(skip_list_bucket_header->Counting_header.next.load(
             std::memory_order_relaxed) == header);
  return skip_list_bucket_header;
}

Node* HashLinkListRep::GetLinkListFirstNode(Pointer& bucket_pointer) const {
  Pointer* first_next_pointer =
      static_cast<Pointer*>(bucket_pointer.load(std::memory_order_acquire));
  assert(first_next_pointer != nullptr);
  if (first_next_pointer->load(std::memory_order_relaxed) == nullptr) {
    // Single entry bucket
    return reinterpret_cast<Node*>(first_next_pointer);
  }

  // It is possible that after we fetch first_next_pointer it is modified
  // and the next is not null anymore. In this case, the bucket should have been
  // modified to a counting header, so we should reload the first_next_pointer
  // to make sure we see the update.
  first_next_pointer =
      static_cast<Pointer*>(bucket_pointer.load(std::memory_order_acquire));
  // Counting header
  BucketHeader* header = reinterpret_cast<BucketHeader*>(first_next_pointer);
  if (!header->IsSkipListBucket()) {
    assert(header->GetNumEntries() <= threshold_use_skiplist_);
    return reinterpret_cast<Node*>(
        header->next.load(std::memory_order_acquire));
  }
  assert(header->GetNumEntries() > threshold_use_skiplist_);
  return nullptr;
}

void HashLinkListRep::Insert(KeyHandle handle) {
  Node* x = static_cast<Node*>(handle);
  assert(!Contains(x->key));
  Slice internal_key = GetLengthPrefixedSlice(x->key);
  auto transformed = GetPrefix(internal_key);
  auto& bucket = buckets_[GetHash(transformed)];
  Pointer* first_next_pointer =
      static_cast<Pointer*>(bucket.load(std::memory_order_relaxed));

  if (first_next_pointer == nullptr) {
    // Case 1. empty bucket
    // NoBarrier_SetNext() suffices since we will add a barrier when
    // we publish a pointer to "x" in prev[i].
    x->NoBarrier_SetNext(nullptr);
    bucket.store(x, std::memory_order_release);
    return;
  }

  BucketHeader* header = nullptr;
  if (first_next_pointer->load(std::memory_order_relaxed) == nullptr) {
    // Case 2. only one entry in the bucket
    // Need to convert to a Counting bucket and turn to case 4.
    Node* first = reinterpret_cast<Node*>(first_next_pointer);
    // Need to add a bucket header.
    // We have to first convert it to a bucket with header before inserting
    // the new node. Otherwise, we might need to change next pointer of first.
    // In that case, a reader might sees the next pointer is NULL and wrongly
    // think the node is a bucket header.
    auto* mem = allocator_->AllocateAligned(sizeof(BucketHeader));
    header = new (mem) BucketHeader(first, 1);
    bucket.store(header, std::memory_order_release);
  } else {
    header = reinterpret_cast<BucketHeader*>(first_next_pointer);
    if (header->IsSkipListBucket()) {
      // Case 4. Bucket is already a skip list
      assert(header->GetNumEntries() > threshold_use_skiplist_);
      auto* skip_list_bucket_header =
          reinterpret_cast<SkipListBucketHeader*>(header);
      // Only one thread can execute Insert() at one time. No need to do atomic
      // incremental.
      skip_list_bucket_header->Counting_header.IncNumEntries();
      skip_list_bucket_header->skip_list.Insert(x->key);
      return;
    }
  }

  if (bucket_entries_logging_threshold_ > 0 &&
      header->GetNumEntries() ==
          static_cast<uint32_t>(bucket_entries_logging_threshold_)) {
    Info(logger_,
         "HashLinkedList bucket %" ROCKSDB_PRIszt
         " has more than %d "
         "entries. Key to insert: %s",
         GetHash(transformed), header->GetNumEntries(),
         GetLengthPrefixedSlice(x->key).ToString(true).c_str());
  }

  if (header->GetNumEntries() == threshold_use_skiplist_) {
    // Case 3. number of entries reaches the threshold so need to convert to
    // skip list.
    LinkListIterator bucket_iter(
        this, reinterpret_cast<Node*>(
                  first_next_pointer->load(std::memory_order_relaxed)));
    auto mem = allocator_->AllocateAligned(sizeof(SkipListBucketHeader));
    SkipListBucketHeader* new_skip_list_header = new (mem)
        SkipListBucketHeader(compare_, allocator_, header->GetNumEntries() + 1);
    auto& skip_list = new_skip_list_header->skip_list;

    // Add all current entries to the skip list
    for (bucket_iter.SeekToHead(); bucket_iter.Valid(); bucket_iter.Next()) {
      skip_list.Insert(bucket_iter.key());
    }

    // insert the new entry
    skip_list.Insert(x->key);
    // Set the bucket
    bucket.store(new_skip_list_header, std::memory_order_release);
  } else {
    // Case 5. Need to insert to the sorted linked list without changing the
    // header.
    Node* first =
        reinterpret_cast<Node*>(header->next.load(std::memory_order_relaxed));
    assert(first != nullptr);
    // Advance counter unless the bucket needs to be advanced to skip list.
    // In that case, we need to make sure the previous count never exceeds
    // threshold_use_skiplist_ to avoid readers to cast to wrong format.
    header->IncNumEntries();

    Node* cur = first;
    Node* prev = nullptr;
    while (true) {
      if (cur == nullptr) {
        break;
      }
      Node* next = cur->Next();
      // Make sure the lists are sorted.
      // If x points to head_ or next points nullptr, it is trivially satisfied.
      assert((cur == first) || (next == nullptr) ||
             KeyIsAfterNode(next->key, cur));
      if (KeyIsAfterNode(internal_key, cur)) {
        // Keep searching in this list
        prev = cur;
        cur = next;
      } else {
        break;
      }
    }

    // Our data structure does not allow duplicate insertion
    assert(cur == nullptr || !Equal(x->key, cur->key));

    // NoBarrier_SetNext() suffices since we will add a barrier when
    // we publish a pointer to "x" in prev[i].
    x->NoBarrier_SetNext(cur);

    if (prev) {
      prev->SetNext(x);
    } else {
      header->next.store(static_cast<void*>(x), std::memory_order_release);
    }
  }
}

bool HashLinkListRep::Contains(const char* key) const {
  Slice internal_key = GetLengthPrefixedSlice(key);

  auto transformed = GetPrefix(internal_key);
  Pointer& bucket = GetBucket(transformed);
  if (IsEmptyBucket(bucket)) {
    return false;
  }

  Node* linked_list_node = GetLinkListFirstNode(bucket);
  if (linked_list_node != nullptr) {
    return LinkListContains(linked_list_node, internal_key);
  }

  SkipListBucketHeader* skip_list_header = GetSkipListBucketHeader(bucket);
  if (skip_list_header != nullptr) {
    return skip_list_header->skip_list.Contains(key);
  }
  return false;
}

size_t HashLinkListRep::ApproximateMemoryUsage() {
  // Memory is always allocated from the allocator.
  return 0;
}

void HashLinkListRep::Get(const LookupKey& k, void* callback_args,
                          bool (*callback_func)(void* arg, const char* entry)) {
  auto transformed = transform_->Transform(k.user_key());
  Pointer& bucket = GetBucket(transformed);

  if (IsEmptyBucket(bucket)) {
    return;
  }

  auto* link_list_head = GetLinkListFirstNode(bucket);
  if (link_list_head != nullptr) {
    LinkListIterator iter(this, link_list_head);
    for (iter.Seek(k.internal_key(), nullptr);
         iter.Valid() && callback_func(callback_args, iter.key());
         iter.Next()) {
    }
  } else {
    auto* skip_list_header = GetSkipListBucketHeader(bucket);
    if (skip_list_header != nullptr) {
      // Is a skip list
      MemtableSkipList::Iterator iter(&skip_list_header->skip_list);
      for (iter.Seek(k.memtable_key().data());
           iter.Valid() && callback_func(callback_args, iter.key());
           iter.Next()) {
      }
    }
  }
}

MemTableRep::Iterator* HashLinkListRep::GetIterator(Arena* alloc_arena) {
  // allocate a new arena of similar size to the one currently in use
  Arena* new_arena = new Arena(allocator_->BlockSize());
  auto list = new MemtableSkipList(compare_, new_arena);
  HistogramImpl keys_per_bucket_hist;

  for (size_t i = 0; i < bucket_size_; ++i) {
    int count = 0;
    Pointer& bucket = GetBucket(i);
    if (!IsEmptyBucket(bucket)) {
      auto* link_list_head = GetLinkListFirstNode(bucket);
      if (link_list_head != nullptr) {
        LinkListIterator itr(this, link_list_head);
        for (itr.SeekToHead(); itr.Valid(); itr.Next()) {
          list->Insert(itr.key());
          count++;
        }
      } else {
        auto* skip_list_header = GetSkipListBucketHeader(bucket);
        assert(skip_list_header != nullptr);
        // Is a skip list
        MemtableSkipList::Iterator itr(&skip_list_header->skip_list);
        for (itr.SeekToFirst(); itr.Valid(); itr.Next()) {
          list->Insert(itr.key());
          count++;
        }
      }
    }
    if (if_log_bucket_dist_when_flash_) {
      keys_per_bucket_hist.Add(count);
    }
  }
  if (if_log_bucket_dist_when_flash_ && logger_ != nullptr) {
    Info(logger_, "hashLinkedList Entry distribution among buckets: %s",
         keys_per_bucket_hist.ToString().c_str());
  }

  if (alloc_arena == nullptr) {
    return new FullListIterator(list, new_arena);
  } else {
    auto mem = alloc_arena->AllocateAligned(sizeof(FullListIterator));
    return new (mem) FullListIterator(list, new_arena);
  }
}

MemTableRep::Iterator* HashLinkListRep::GetDynamicPrefixIterator(
    Arena* alloc_arena) {
  if (alloc_arena == nullptr) {
    return new DynamicIterator(*this);
  } else {
    auto mem = alloc_arena->AllocateAligned(sizeof(DynamicIterator));
    return new (mem) DynamicIterator(*this);
  }
}

bool HashLinkListRep::LinkListContains(Node* head,
                                       const Slice& user_key) const {
  Node* x = FindGreaterOrEqualInBucket(head, user_key);
  return (x != nullptr && Equal(user_key, x->key));
}

Node* HashLinkListRep::FindGreaterOrEqualInBucket(Node* head,
                                                  const Slice& key) const {
  Node* x = head;
  while (true) {
    if (x == nullptr) {
      return x;
    }
    Node* next = x->Next();
    // Make sure the lists are sorted.
    // If x points to head_ or next points nullptr, it is trivially satisfied.
    assert((x == head) || (next == nullptr) || KeyIsAfterNode(next->key, x));
    if (KeyIsAfterNode(key, x)) {
      // Keep searching in this list
      x = next;
    } else {
      break;
    }
  }
  return x;
}

struct HashLinkListRepOptions {
  static const char* kName() { return "HashLinkListRepFactoryOptions"; }
  size_t bucket_count;
  uint32_t threshold_use_skiplist;
  size_t huge_page_tlb_size;
  int bucket_entries_logging_threshold;
  bool if_log_bucket_dist_when_flash;
};

static std::unordered_map<std::string, OptionTypeInfo> hash_linklist_info = {
    {"bucket_count",
     {offsetof(struct HashLinkListRepOptions, bucket_count), OptionType::kSizeT,
      OptionVerificationType::kNormal, OptionTypeFlags::kNone}},
    {"threshold",
     {offsetof(struct HashLinkListRepOptions, threshold_use_skiplist),
      OptionType::kUInt32T, OptionVerificationType::kNormal,
      OptionTypeFlags::kNone}},
    {"huge_page_size",
     {offsetof(struct HashLinkListRepOptions, huge_page_tlb_size),
      OptionType::kSizeT, OptionVerificationType::kNormal,
      OptionTypeFlags::kNone}},
    {"logging_threshold",
     {offsetof(struct HashLinkListRepOptions, bucket_entries_logging_threshold),
      OptionType::kInt, OptionVerificationType::kNormal,
      OptionTypeFlags::kNone}},
    {"log_when_flash",
     {offsetof(struct HashLinkListRepOptions, if_log_bucket_dist_when_flash),
      OptionType::kBoolean, OptionVerificationType::kNormal,
      OptionTypeFlags::kNone}},
};

class HashLinkListRepFactory : public MemTableRepFactory {
 public:
  explicit HashLinkListRepFactory(size_t bucket_count,
                                  uint32_t threshold_use_skiplist,
                                  size_t huge_page_tlb_size,
                                  int bucket_entries_logging_threshold,
                                  bool if_log_bucket_dist_when_flash) {
    options_.bucket_count = bucket_count;
    options_.threshold_use_skiplist = threshold_use_skiplist;
    options_.huge_page_tlb_size = huge_page_tlb_size;
    options_.bucket_entries_logging_threshold =
        bucket_entries_logging_threshold;
    options_.if_log_bucket_dist_when_flash = if_log_bucket_dist_when_flash;
    RegisterOptions(&options_, &hash_linklist_info);
  }

  using MemTableRepFactory::CreateMemTableRep;
  virtual MemTableRep* CreateMemTableRep(
      const MemTableRep::KeyComparator& compare, Allocator* allocator,
      const SliceTransform* transform, Logger* logger) override;

  static const char* kClassName() { return "HashLinkListRepFactory"; }
  static const char* kNickName() { return "hash_linkedlist"; }
  virtual const char* Name() const override { return kClassName(); }
  virtual const char* NickName() const override { return kNickName(); }

 private:
  HashLinkListRepOptions options_;
};

}  // namespace

MemTableRep* HashLinkListRepFactory::CreateMemTableRep(
    const MemTableRep::KeyComparator& compare, Allocator* allocator,
    const SliceTransform* transform, Logger* logger) {
  return new HashLinkListRep(
      compare, allocator, transform, options_.bucket_count,
      options_.threshold_use_skiplist, options_.huge_page_tlb_size, logger,
      options_.bucket_entries_logging_threshold,
      options_.if_log_bucket_dist_when_flash);
}

MemTableRepFactory* NewHashLinkListRepFactory(
    size_t bucket_count, size_t huge_page_tlb_size,
    int bucket_entries_logging_threshold, bool if_log_bucket_dist_when_flash,
    uint32_t threshold_use_skiplist) {
  return new HashLinkListRepFactory(
      bucket_count, threshold_use_skiplist, huge_page_tlb_size,
      bucket_entries_logging_threshold, if_log_bucket_dist_when_flash);
}

}  // namespace ROCKSDB_NAMESPACE
#endif  // ROCKSDB_LITE