summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/memtable/skiplistrep.cc
blob: 40f13a2c17ddcb9f2757b56c4bff07ab1df64e09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
#include <random>

#include "db/memtable.h"
#include "memory/arena.h"
#include "memtable/inlineskiplist.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/utilities/options_type.h"
#include "util/string_util.h"

namespace ROCKSDB_NAMESPACE {
namespace {
class SkipListRep : public MemTableRep {
  InlineSkipList<const MemTableRep::KeyComparator&> skip_list_;
  const MemTableRep::KeyComparator& cmp_;
  const SliceTransform* transform_;
  const size_t lookahead_;

  friend class LookaheadIterator;

 public:
  explicit SkipListRep(const MemTableRep::KeyComparator& compare,
                       Allocator* allocator, const SliceTransform* transform,
                       const size_t lookahead)
      : MemTableRep(allocator),
        skip_list_(compare, allocator),
        cmp_(compare),
        transform_(transform),
        lookahead_(lookahead) {}

  KeyHandle Allocate(const size_t len, char** buf) override {
    *buf = skip_list_.AllocateKey(len);
    return static_cast<KeyHandle>(*buf);
  }

  // Insert key into the list.
  // REQUIRES: nothing that compares equal to key is currently in the list.
  void Insert(KeyHandle handle) override {
    skip_list_.Insert(static_cast<char*>(handle));
  }

  bool InsertKey(KeyHandle handle) override {
    return skip_list_.Insert(static_cast<char*>(handle));
  }

  void InsertWithHint(KeyHandle handle, void** hint) override {
    skip_list_.InsertWithHint(static_cast<char*>(handle), hint);
  }

  bool InsertKeyWithHint(KeyHandle handle, void** hint) override {
    return skip_list_.InsertWithHint(static_cast<char*>(handle), hint);
  }

  void InsertWithHintConcurrently(KeyHandle handle, void** hint) override {
    skip_list_.InsertWithHintConcurrently(static_cast<char*>(handle), hint);
  }

  bool InsertKeyWithHintConcurrently(KeyHandle handle, void** hint) override {
    return skip_list_.InsertWithHintConcurrently(static_cast<char*>(handle),
                                                 hint);
  }

  void InsertConcurrently(KeyHandle handle) override {
    skip_list_.InsertConcurrently(static_cast<char*>(handle));
  }

  bool InsertKeyConcurrently(KeyHandle handle) override {
    return skip_list_.InsertConcurrently(static_cast<char*>(handle));
  }

  // Returns true iff an entry that compares equal to key is in the list.
  bool Contains(const char* key) const override {
    return skip_list_.Contains(key);
  }

  size_t ApproximateMemoryUsage() override {
    // All memory is allocated through allocator; nothing to report here
    return 0;
  }

  void Get(const LookupKey& k, void* callback_args,
           bool (*callback_func)(void* arg, const char* entry)) override {
    SkipListRep::Iterator iter(&skip_list_);
    Slice dummy_slice;
    for (iter.Seek(dummy_slice, k.memtable_key().data());
         iter.Valid() && callback_func(callback_args, iter.key());
         iter.Next()) {
    }
  }

  uint64_t ApproximateNumEntries(const Slice& start_ikey,
                                 const Slice& end_ikey) override {
    std::string tmp;
    uint64_t start_count =
        skip_list_.EstimateCount(EncodeKey(&tmp, start_ikey));
    uint64_t end_count = skip_list_.EstimateCount(EncodeKey(&tmp, end_ikey));
    return (end_count >= start_count) ? (end_count - start_count) : 0;
  }

  void UniqueRandomSample(const uint64_t num_entries,
                          const uint64_t target_sample_size,
                          std::unordered_set<const char*>* entries) override {
    entries->clear();
    // Avoid divide-by-0.
    assert(target_sample_size > 0);
    assert(num_entries > 0);
    // NOTE: the size of entries is not enforced to be exactly
    // target_sample_size at the end of this function, it might be slightly
    // greater or smaller.
    SkipListRep::Iterator iter(&skip_list_);
    // There are two methods to create the subset of samples (size m)
    // from the table containing N elements:
    // 1-Iterate linearly through the N memtable entries. For each entry i,
    //   add it to the sample set with a probability
    //   (target_sample_size - entries.size() ) / (N-i).
    //
    // 2-Pick m random elements without repetition.
    // We pick Option 2 when m<sqrt(N) and
    // Option 1 when m > sqrt(N).
    if (target_sample_size >
        static_cast<uint64_t>(std::sqrt(1.0 * num_entries))) {
      Random* rnd = Random::GetTLSInstance();
      iter.SeekToFirst();
      uint64_t counter = 0, num_samples_left = target_sample_size;
      for (; iter.Valid() && (num_samples_left > 0); iter.Next(), counter++) {
        // Add entry to sample set with probability
        // num_samples_left/(num_entries - counter).
        if (rnd->Next() % (num_entries - counter) < num_samples_left) {
          entries->insert(iter.key());
          num_samples_left--;
        }
      }
    } else {
      // Option 2: pick m random elements with no duplicates.
      // If Option 2 is picked, then target_sample_size<sqrt(N)
      // Using a set spares the need to check for duplicates.
      for (uint64_t i = 0; i < target_sample_size; i++) {
        // We give it 5 attempts to find a non-duplicate
        // With 5 attempts, the chances of returning `entries` set
        // of size target_sample_size is:
        // PROD_{i=1}^{target_sample_size-1} [1-(i/N)^5]
        // which is monotonically increasing with N in the worse case
        // of target_sample_size=sqrt(N), and is always >99.9% for N>4.
        // At worst, for the final pick , when m=sqrt(N) there is
        // a probability of p= 1/sqrt(N) chances to find a duplicate.
        for (uint64_t j = 0; j < 5; j++) {
          iter.RandomSeek();
          // unordered_set::insert returns pair<iterator, bool>.
          // The second element is true if an insert successfully happened.
          // If element is already in the set, this bool will be false, and
          // true otherwise.
          if ((entries->insert(iter.key())).second) {
            break;
          }
        }
      }
    }
  }

  ~SkipListRep() override {}

  // Iteration over the contents of a skip list
  class Iterator : public MemTableRep::Iterator {
    InlineSkipList<const MemTableRep::KeyComparator&>::Iterator iter_;

   public:
    // Initialize an iterator over the specified list.
    // The returned iterator is not valid.
    explicit Iterator(
        const InlineSkipList<const MemTableRep::KeyComparator&>* list)
        : iter_(list) {}

    ~Iterator() override {}

    // Returns true iff the iterator is positioned at a valid node.
    bool Valid() const override { return iter_.Valid(); }

    // Returns the key at the current position.
    // REQUIRES: Valid()
    const char* key() const override { return iter_.key(); }

    // Advances to the next position.
    // REQUIRES: Valid()
    void Next() override { iter_.Next(); }

    // Advances to the previous position.
    // REQUIRES: Valid()
    void Prev() override { iter_.Prev(); }

    // Advance to the first entry with a key >= target
    void Seek(const Slice& user_key, const char* memtable_key) override {
      if (memtable_key != nullptr) {
        iter_.Seek(memtable_key);
      } else {
        iter_.Seek(EncodeKey(&tmp_, user_key));
      }
    }

    // Retreat to the last entry with a key <= target
    void SeekForPrev(const Slice& user_key, const char* memtable_key) override {
      if (memtable_key != nullptr) {
        iter_.SeekForPrev(memtable_key);
      } else {
        iter_.SeekForPrev(EncodeKey(&tmp_, user_key));
      }
    }

    void RandomSeek() override { iter_.RandomSeek(); }

    // Position at the first entry in list.
    // Final state of iterator is Valid() iff list is not empty.
    void SeekToFirst() override { iter_.SeekToFirst(); }

    // Position at the last entry in list.
    // Final state of iterator is Valid() iff list is not empty.
    void SeekToLast() override { iter_.SeekToLast(); }

   protected:
    std::string tmp_;  // For passing to EncodeKey
  };

  // Iterator over the contents of a skip list which also keeps track of the
  // previously visited node. In Seek(), it examines a few nodes after it
  // first, falling back to O(log n) search from the head of the list only if
  // the target key hasn't been found.
  class LookaheadIterator : public MemTableRep::Iterator {
   public:
    explicit LookaheadIterator(const SkipListRep& rep)
        : rep_(rep), iter_(&rep_.skip_list_), prev_(iter_) {}

    ~LookaheadIterator() override {}

    bool Valid() const override { return iter_.Valid(); }

    const char* key() const override {
      assert(Valid());
      return iter_.key();
    }

    void Next() override {
      assert(Valid());

      bool advance_prev = true;
      if (prev_.Valid()) {
        auto k1 = rep_.UserKey(prev_.key());
        auto k2 = rep_.UserKey(iter_.key());

        if (k1.compare(k2) == 0) {
          // same user key, don't move prev_
          advance_prev = false;
        } else if (rep_.transform_) {
          // only advance prev_ if it has the same prefix as iter_
          auto t1 = rep_.transform_->Transform(k1);
          auto t2 = rep_.transform_->Transform(k2);
          advance_prev = t1.compare(t2) == 0;
        }
      }

      if (advance_prev) {
        prev_ = iter_;
      }
      iter_.Next();
    }

    void Prev() override {
      assert(Valid());
      iter_.Prev();
      prev_ = iter_;
    }

    void Seek(const Slice& internal_key, const char* memtable_key) override {
      const char* encoded_key = (memtable_key != nullptr)
                                    ? memtable_key
                                    : EncodeKey(&tmp_, internal_key);

      if (prev_.Valid() && rep_.cmp_(encoded_key, prev_.key()) >= 0) {
        // prev_.key() is smaller or equal to our target key; do a quick
        // linear search (at most lookahead_ steps) starting from prev_
        iter_ = prev_;

        size_t cur = 0;
        while (cur++ <= rep_.lookahead_ && iter_.Valid()) {
          if (rep_.cmp_(encoded_key, iter_.key()) <= 0) {
            return;
          }
          Next();
        }
      }

      iter_.Seek(encoded_key);
      prev_ = iter_;
    }

    void SeekForPrev(const Slice& internal_key,
                     const char* memtable_key) override {
      const char* encoded_key = (memtable_key != nullptr)
                                    ? memtable_key
                                    : EncodeKey(&tmp_, internal_key);
      iter_.SeekForPrev(encoded_key);
      prev_ = iter_;
    }

    void SeekToFirst() override {
      iter_.SeekToFirst();
      prev_ = iter_;
    }

    void SeekToLast() override {
      iter_.SeekToLast();
      prev_ = iter_;
    }

   protected:
    std::string tmp_;  // For passing to EncodeKey

   private:
    const SkipListRep& rep_;
    InlineSkipList<const MemTableRep::KeyComparator&>::Iterator iter_;
    InlineSkipList<const MemTableRep::KeyComparator&>::Iterator prev_;
  };

  MemTableRep::Iterator* GetIterator(Arena* arena = nullptr) override {
    if (lookahead_ > 0) {
      void* mem =
          arena ? arena->AllocateAligned(sizeof(SkipListRep::LookaheadIterator))
                :
                operator new(sizeof(SkipListRep::LookaheadIterator));
      return new (mem) SkipListRep::LookaheadIterator(*this);
    } else {
      void* mem = arena ? arena->AllocateAligned(sizeof(SkipListRep::Iterator))
                        :
                        operator new(sizeof(SkipListRep::Iterator));
      return new (mem) SkipListRep::Iterator(&skip_list_);
    }
  }
};
}  // namespace

static std::unordered_map<std::string, OptionTypeInfo> skiplist_factory_info = {
#ifndef ROCKSDB_LITE
    {"lookahead",
     {0, OptionType::kSizeT, OptionVerificationType::kNormal,
      OptionTypeFlags::kDontSerialize /*Since it is part of the ID*/}},
#endif
};

SkipListFactory::SkipListFactory(size_t lookahead) : lookahead_(lookahead) {
  RegisterOptions("SkipListFactoryOptions", &lookahead_,
                  &skiplist_factory_info);
}

std::string SkipListFactory::GetId() const {
  std::string id = Name();
  if (lookahead_ > 0) {
    id.append(":").append(std::to_string(lookahead_));
  }
  return id;
}

MemTableRep* SkipListFactory::CreateMemTableRep(
    const MemTableRep::KeyComparator& compare, Allocator* allocator,
    const SliceTransform* transform, Logger* /*logger*/) {
  return new SkipListRep(compare, allocator, transform, lookahead_);
}

}  // namespace ROCKSDB_NAMESPACE