summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/table/block_based/partitioned_index_iterator.cc
blob: b9bc2155a1265a1b57c03a34b55cc321b08a74c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/block_based/partitioned_index_iterator.h"

namespace ROCKSDB_NAMESPACE {
void PartitionedIndexIterator::Seek(const Slice& target) { SeekImpl(&target); }

void PartitionedIndexIterator::SeekToFirst() { SeekImpl(nullptr); }

void PartitionedIndexIterator::SeekImpl(const Slice* target) {
  SavePrevIndexValue();

  if (target) {
    index_iter_->Seek(*target);
  } else {
    index_iter_->SeekToFirst();
  }

  if (!index_iter_->Valid()) {
    ResetPartitionedIndexIter();
    return;
  }

  InitPartitionedIndexBlock();

  if (target) {
    block_iter_.Seek(*target);
  } else {
    block_iter_.SeekToFirst();
  }
  FindKeyForward();

  // We could check upper bound here, but that would be too complicated
  // and checking index upper bound is less useful than for data blocks.

  if (target) {
    assert(!Valid() || (table_->get_rep()->index_key_includes_seq
                            ? (icomp_.Compare(*target, key()) <= 0)
                            : (user_comparator_.Compare(ExtractUserKey(*target),
                                                        key()) <= 0)));
  }
}

void PartitionedIndexIterator::SeekToLast() {
  SavePrevIndexValue();
  index_iter_->SeekToLast();
  if (!index_iter_->Valid()) {
    ResetPartitionedIndexIter();
    return;
  }
  InitPartitionedIndexBlock();
  block_iter_.SeekToLast();
  FindKeyBackward();
}

void PartitionedIndexIterator::Next() {
  assert(block_iter_points_to_real_block_);
  block_iter_.Next();
  FindKeyForward();
}

void PartitionedIndexIterator::Prev() {
  assert(block_iter_points_to_real_block_);
  block_iter_.Prev();

  FindKeyBackward();
}

void PartitionedIndexIterator::InitPartitionedIndexBlock() {
  BlockHandle partitioned_index_handle = index_iter_->value().handle;
  if (!block_iter_points_to_real_block_ ||
      partitioned_index_handle.offset() != prev_block_offset_ ||
      // if previous attempt of reading the block missed cache, try again
      block_iter_.status().IsIncomplete()) {
    if (block_iter_points_to_real_block_) {
      ResetPartitionedIndexIter();
    }
    auto* rep = table_->get_rep();
    bool is_for_compaction =
        lookup_context_.caller == TableReaderCaller::kCompaction;
    // Prefetch additional data for range scans (iterators).
    // Implicit auto readahead:
    //   Enabled after 2 sequential IOs when ReadOptions.readahead_size == 0.
    // Explicit user requested readahead:
    //   Enabled from the very first IO when ReadOptions.readahead_size is set.
    block_prefetcher_.PrefetchIfNeeded(
        rep, partitioned_index_handle, read_options_.readahead_size,
        is_for_compaction, /*no_sequential_checking=*/false,
        read_options_.rate_limiter_priority);
    Status s;
    table_->NewDataBlockIterator<IndexBlockIter>(
        read_options_, partitioned_index_handle, &block_iter_,
        BlockType::kIndex,
        /*get_context=*/nullptr, &lookup_context_,
        block_prefetcher_.prefetch_buffer(),
        /*for_compaction=*/is_for_compaction, /*async_read=*/false, s);
    block_iter_points_to_real_block_ = true;
    // We could check upper bound here but it is complicated to reason about
    // upper bound in index iterator. On the other than, in large scans, index
    // iterators are moved much less frequently compared to data blocks. So
    // the upper bound check is skipped for simplicity.
  }
}

void PartitionedIndexIterator::FindKeyForward() {
  // This method's code is kept short to make it likely to be inlined.

  assert(block_iter_points_to_real_block_);

  if (!block_iter_.Valid()) {
    // This is the only call site of FindBlockForward(), but it's extracted into
    // a separate method to keep FindKeyForward() short and likely to be
    // inlined. When transitioning to a different block, we call
    // FindBlockForward(), which is much longer and is probably not inlined.
    FindBlockForward();
  } else {
    // This is the fast path that avoids a function call.
  }
}

void PartitionedIndexIterator::FindBlockForward() {
  // TODO the while loop inherits from two-level-iterator. We don't know
  // whether a block can be empty so it can be replaced by an "if".
  do {
    if (!block_iter_.status().ok()) {
      return;
    }
    ResetPartitionedIndexIter();
    index_iter_->Next();

    if (!index_iter_->Valid()) {
      return;
    }

    InitPartitionedIndexBlock();
    block_iter_.SeekToFirst();
  } while (!block_iter_.Valid());
}

void PartitionedIndexIterator::FindKeyBackward() {
  while (!block_iter_.Valid()) {
    if (!block_iter_.status().ok()) {
      return;
    }

    ResetPartitionedIndexIter();
    index_iter_->Prev();

    if (index_iter_->Valid()) {
      InitPartitionedIndexBlock();
      block_iter_.SeekToLast();
    } else {
      return;
    }
  }
}
}  // namespace ROCKSDB_NAMESPACE