summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/table/cuckoo/cuckoo_table_builder.cc
blob: 296825d9480936ab299a95cf94e25ce616d8936d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#ifndef ROCKSDB_LITE
#include "table/cuckoo/cuckoo_table_builder.h"

#include <assert.h>

#include <algorithm>
#include <limits>
#include <string>
#include <vector>

#include "db/dbformat.h"
#include "file/writable_file_writer.h"
#include "rocksdb/env.h"
#include "rocksdb/table.h"
#include "table/block_based/block_builder.h"
#include "table/cuckoo/cuckoo_table_factory.h"
#include "table/format.h"
#include "table/meta_blocks.h"
#include "util/autovector.h"
#include "util/random.h"
#include "util/string_util.h"

namespace ROCKSDB_NAMESPACE {
const std::string CuckooTablePropertyNames::kEmptyKey =
    "rocksdb.cuckoo.bucket.empty.key";
const std::string CuckooTablePropertyNames::kNumHashFunc =
    "rocksdb.cuckoo.hash.num";
const std::string CuckooTablePropertyNames::kHashTableSize =
    "rocksdb.cuckoo.hash.size";
const std::string CuckooTablePropertyNames::kValueLength =
    "rocksdb.cuckoo.value.length";
const std::string CuckooTablePropertyNames::kIsLastLevel =
    "rocksdb.cuckoo.file.islastlevel";
const std::string CuckooTablePropertyNames::kCuckooBlockSize =
    "rocksdb.cuckoo.hash.cuckooblocksize";
const std::string CuckooTablePropertyNames::kIdentityAsFirstHash =
    "rocksdb.cuckoo.hash.identityfirst";
const std::string CuckooTablePropertyNames::kUseModuleHash =
    "rocksdb.cuckoo.hash.usemodule";
const std::string CuckooTablePropertyNames::kUserKeyLength =
    "rocksdb.cuckoo.hash.userkeylength";

// Obtained by running echo rocksdb.table.cuckoo | sha1sum
extern const uint64_t kCuckooTableMagicNumber = 0x926789d0c5f17873ull;

CuckooTableBuilder::CuckooTableBuilder(
    WritableFileWriter* file, double max_hash_table_ratio,
    uint32_t max_num_hash_table, uint32_t max_search_depth,
    const Comparator* user_comparator, uint32_t cuckoo_block_size,
    bool use_module_hash, bool identity_as_first_hash,
    uint64_t (*get_slice_hash)(const Slice&, uint32_t, uint64_t),
    uint32_t column_family_id, const std::string& column_family_name,
    const std::string& db_id, const std::string& db_session_id,
    uint64_t file_number)
    : num_hash_func_(2),
      file_(file),
      max_hash_table_ratio_(max_hash_table_ratio),
      max_num_hash_func_(max_num_hash_table),
      max_search_depth_(max_search_depth),
      cuckoo_block_size_(std::max(1U, cuckoo_block_size)),
      hash_table_size_(use_module_hash ? 0 : 2),
      is_last_level_file_(false),
      has_seen_first_key_(false),
      has_seen_first_value_(false),
      key_size_(0),
      value_size_(0),
      num_entries_(0),
      num_values_(0),
      ucomp_(user_comparator),
      use_module_hash_(use_module_hash),
      identity_as_first_hash_(identity_as_first_hash),
      get_slice_hash_(get_slice_hash),
      closed_(false) {
  // Data is in a huge block.
  properties_.num_data_blocks = 1;
  properties_.index_size = 0;
  properties_.filter_size = 0;
  properties_.column_family_id = column_family_id;
  properties_.column_family_name = column_family_name;
  properties_.db_id = db_id;
  properties_.db_session_id = db_session_id;
  properties_.orig_file_number = file_number;
  status_.PermitUncheckedError();
  io_status_.PermitUncheckedError();
}

void CuckooTableBuilder::Add(const Slice& key, const Slice& value) {
  if (num_entries_ >= kMaxVectorIdx - 1) {
    status_ = Status::NotSupported("Number of keys in a file must be < 2^32-1");
    return;
  }
  ParsedInternalKey ikey;
  Status pik_status =
      ParseInternalKey(key, &ikey, false /* log_err_key */);  // TODO
  if (!pik_status.ok()) {
    status_ = Status::Corruption("Unable to parse key into internal key. ",
                                 pik_status.getState());
    return;
  }
  if (ikey.type != kTypeDeletion && ikey.type != kTypeValue) {
    status_ = Status::NotSupported("Unsupported key type " +
                                   std::to_string(ikey.type));
    return;
  }

  // Determine if we can ignore the sequence number and value type from
  // internal keys by looking at sequence number from first key. We assume
  // that if first key has a zero sequence number, then all the remaining
  // keys will have zero seq. no.
  if (!has_seen_first_key_) {
    is_last_level_file_ = ikey.sequence == 0;
    has_seen_first_key_ = true;
    smallest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
    largest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
    key_size_ = is_last_level_file_ ? ikey.user_key.size() : key.size();
  }
  if (key_size_ != (is_last_level_file_ ? ikey.user_key.size() : key.size())) {
    status_ = Status::NotSupported("all keys have to be the same size");
    return;
  }

  if (ikey.type == kTypeValue) {
    if (!has_seen_first_value_) {
      has_seen_first_value_ = true;
      value_size_ = value.size();
    }
    if (value_size_ != value.size()) {
      status_ = Status::NotSupported("all values have to be the same size");
      return;
    }

    if (is_last_level_file_) {
      kvs_.append(ikey.user_key.data(), ikey.user_key.size());
    } else {
      kvs_.append(key.data(), key.size());
    }
    kvs_.append(value.data(), value.size());
    ++num_values_;
  } else {
    if (is_last_level_file_) {
      deleted_keys_.append(ikey.user_key.data(), ikey.user_key.size());
    } else {
      deleted_keys_.append(key.data(), key.size());
    }
  }
  ++num_entries_;

  // In order to fill the empty buckets in the hash table, we identify a
  // key which is not used so far (unused_user_key). We determine this by
  // maintaining smallest and largest keys inserted so far in bytewise order
  // and use them to find a key outside this range in Finish() operation.
  // Note that this strategy is independent of user comparator used here.
  if (ikey.user_key.compare(smallest_user_key_) < 0) {
    smallest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
  } else if (ikey.user_key.compare(largest_user_key_) > 0) {
    largest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
  }
  if (!use_module_hash_) {
    if (hash_table_size_ < num_entries_ / max_hash_table_ratio_) {
      hash_table_size_ *= 2;
    }
  }
}

bool CuckooTableBuilder::IsDeletedKey(uint64_t idx) const {
  assert(closed_);
  return idx >= num_values_;
}

Slice CuckooTableBuilder::GetKey(uint64_t idx) const {
  assert(closed_);
  if (IsDeletedKey(idx)) {
    return Slice(
        &deleted_keys_[static_cast<size_t>((idx - num_values_) * key_size_)],
        static_cast<size_t>(key_size_));
  }
  return Slice(&kvs_[static_cast<size_t>(idx * (key_size_ + value_size_))],
               static_cast<size_t>(key_size_));
}

Slice CuckooTableBuilder::GetUserKey(uint64_t idx) const {
  assert(closed_);
  return is_last_level_file_ ? GetKey(idx) : ExtractUserKey(GetKey(idx));
}

Slice CuckooTableBuilder::GetValue(uint64_t idx) const {
  assert(closed_);
  if (IsDeletedKey(idx)) {
    static std::string empty_value(static_cast<unsigned int>(value_size_), 'a');
    return Slice(empty_value);
  }
  return Slice(
      &kvs_[static_cast<size_t>(idx * (key_size_ + value_size_) + key_size_)],
      static_cast<size_t>(value_size_));
}

Status CuckooTableBuilder::MakeHashTable(std::vector<CuckooBucket>* buckets) {
  buckets->resize(
      static_cast<size_t>(hash_table_size_ + cuckoo_block_size_ - 1));
  uint32_t make_space_for_key_call_id = 0;
  for (uint32_t vector_idx = 0; vector_idx < num_entries_; vector_idx++) {
    uint64_t bucket_id = 0;
    bool bucket_found = false;
    autovector<uint64_t> hash_vals;
    Slice user_key = GetUserKey(vector_idx);
    for (uint32_t hash_cnt = 0; hash_cnt < num_hash_func_ && !bucket_found;
         ++hash_cnt) {
      uint64_t hash_val =
          CuckooHash(user_key, hash_cnt, use_module_hash_, hash_table_size_,
                     identity_as_first_hash_, get_slice_hash_);
      // If there is a collision, check next cuckoo_block_size_ locations for
      // empty locations. While checking, if we reach end of the hash table,
      // stop searching and proceed for next hash function.
      for (uint32_t block_idx = 0; block_idx < cuckoo_block_size_;
           ++block_idx, ++hash_val) {
        if ((*buckets)[static_cast<size_t>(hash_val)].vector_idx ==
            kMaxVectorIdx) {
          bucket_id = hash_val;
          bucket_found = true;
          break;
        } else {
          if (ucomp_->Compare(
                  user_key, GetUserKey((*buckets)[static_cast<size_t>(hash_val)]
                                           .vector_idx)) == 0) {
            return Status::NotSupported("Same key is being inserted again.");
          }
          hash_vals.push_back(hash_val);
        }
      }
    }
    while (!bucket_found &&
           !MakeSpaceForKey(hash_vals, ++make_space_for_key_call_id, buckets,
                            &bucket_id)) {
      // Rehash by increashing number of hash tables.
      if (num_hash_func_ >= max_num_hash_func_) {
        return Status::NotSupported("Too many collisions. Unable to hash.");
      }
      // We don't really need to rehash the entire table because old hashes are
      // still valid and we only increased the number of hash functions.
      uint64_t hash_val = CuckooHash(user_key, num_hash_func_, use_module_hash_,
                                     hash_table_size_, identity_as_first_hash_,
                                     get_slice_hash_);
      ++num_hash_func_;
      for (uint32_t block_idx = 0; block_idx < cuckoo_block_size_;
           ++block_idx, ++hash_val) {
        if ((*buckets)[static_cast<size_t>(hash_val)].vector_idx ==
            kMaxVectorIdx) {
          bucket_found = true;
          bucket_id = hash_val;
          break;
        } else {
          hash_vals.push_back(hash_val);
        }
      }
    }
    (*buckets)[static_cast<size_t>(bucket_id)].vector_idx = vector_idx;
  }
  return Status::OK();
}

Status CuckooTableBuilder::Finish() {
  assert(!closed_);
  closed_ = true;
  std::vector<CuckooBucket> buckets;
  std::string unused_bucket;
  if (num_entries_ > 0) {
    // Calculate the real hash size if module hash is enabled.
    if (use_module_hash_) {
      hash_table_size_ =
          static_cast<uint64_t>(num_entries_ / max_hash_table_ratio_);
    }
    status_ = MakeHashTable(&buckets);
    if (!status_.ok()) {
      return status_;
    }
    // Determine unused_user_key to fill empty buckets.
    std::string unused_user_key = smallest_user_key_;
    int curr_pos = static_cast<int>(unused_user_key.size()) - 1;
    while (curr_pos >= 0) {
      --unused_user_key[curr_pos];
      if (Slice(unused_user_key).compare(smallest_user_key_) < 0) {
        break;
      }
      --curr_pos;
    }
    if (curr_pos < 0) {
      // Try using the largest key to identify an unused key.
      unused_user_key = largest_user_key_;
      curr_pos = static_cast<int>(unused_user_key.size()) - 1;
      while (curr_pos >= 0) {
        ++unused_user_key[curr_pos];
        if (Slice(unused_user_key).compare(largest_user_key_) > 0) {
          break;
        }
        --curr_pos;
      }
    }
    if (curr_pos < 0) {
      return Status::Corruption("Unable to find unused key");
    }
    if (is_last_level_file_) {
      unused_bucket = unused_user_key;
    } else {
      ParsedInternalKey ikey(unused_user_key, 0, kTypeValue);
      AppendInternalKey(&unused_bucket, ikey);
    }
  }
  properties_.num_entries = num_entries_;
  properties_.num_deletions = num_entries_ - num_values_;
  properties_.fixed_key_len = key_size_;
  properties_.user_collected_properties[CuckooTablePropertyNames::kValueLength]
      .assign(reinterpret_cast<const char*>(&value_size_), sizeof(value_size_));

  uint64_t bucket_size = key_size_ + value_size_;
  unused_bucket.resize(static_cast<size_t>(bucket_size), 'a');
  // Write the table.
  uint32_t num_added = 0;
  for (auto& bucket : buckets) {
    if (bucket.vector_idx == kMaxVectorIdx) {
      io_status_ = file_->Append(Slice(unused_bucket));
    } else {
      ++num_added;
      io_status_ = file_->Append(GetKey(bucket.vector_idx));
      if (io_status_.ok()) {
        if (value_size_ > 0) {
          io_status_ = file_->Append(GetValue(bucket.vector_idx));
        }
      }
    }
    if (!io_status_.ok()) {
      status_ = io_status_;
      return status_;
    }
  }
  assert(num_added == NumEntries());
  properties_.raw_key_size = num_added * properties_.fixed_key_len;
  properties_.raw_value_size = num_added * value_size_;

  uint64_t offset = buckets.size() * bucket_size;
  properties_.data_size = offset;
  unused_bucket.resize(static_cast<size_t>(properties_.fixed_key_len));
  properties_.user_collected_properties[CuckooTablePropertyNames::kEmptyKey] =
      unused_bucket;
  properties_.user_collected_properties[CuckooTablePropertyNames::kNumHashFunc]
      .assign(reinterpret_cast<char*>(&num_hash_func_), sizeof(num_hash_func_));

  properties_
      .user_collected_properties[CuckooTablePropertyNames::kHashTableSize]
      .assign(reinterpret_cast<const char*>(&hash_table_size_),
              sizeof(hash_table_size_));
  properties_.user_collected_properties[CuckooTablePropertyNames::kIsLastLevel]
      .assign(reinterpret_cast<const char*>(&is_last_level_file_),
              sizeof(is_last_level_file_));
  properties_
      .user_collected_properties[CuckooTablePropertyNames::kCuckooBlockSize]
      .assign(reinterpret_cast<const char*>(&cuckoo_block_size_),
              sizeof(cuckoo_block_size_));
  properties_
      .user_collected_properties[CuckooTablePropertyNames::kIdentityAsFirstHash]
      .assign(reinterpret_cast<const char*>(&identity_as_first_hash_),
              sizeof(identity_as_first_hash_));
  properties_
      .user_collected_properties[CuckooTablePropertyNames::kUseModuleHash]
      .assign(reinterpret_cast<const char*>(&use_module_hash_),
              sizeof(use_module_hash_));
  uint32_t user_key_len = static_cast<uint32_t>(smallest_user_key_.size());
  properties_
      .user_collected_properties[CuckooTablePropertyNames::kUserKeyLength]
      .assign(reinterpret_cast<const char*>(&user_key_len),
              sizeof(user_key_len));

  // Write meta blocks.
  MetaIndexBuilder meta_index_builder;
  PropertyBlockBuilder property_block_builder;

  property_block_builder.AddTableProperty(properties_);
  property_block_builder.Add(properties_.user_collected_properties);
  Slice property_block = property_block_builder.Finish();
  BlockHandle property_block_handle;
  property_block_handle.set_offset(offset);
  property_block_handle.set_size(property_block.size());
  io_status_ = file_->Append(property_block);
  offset += property_block.size();
  if (!io_status_.ok()) {
    status_ = io_status_;
    return status_;
  }

  meta_index_builder.Add(kPropertiesBlockName, property_block_handle);
  Slice meta_index_block = meta_index_builder.Finish();

  BlockHandle meta_index_block_handle;
  meta_index_block_handle.set_offset(offset);
  meta_index_block_handle.set_size(meta_index_block.size());
  io_status_ = file_->Append(meta_index_block);
  if (!io_status_.ok()) {
    status_ = io_status_;
    return status_;
  }

  FooterBuilder footer;
  footer.Build(kCuckooTableMagicNumber, /* format_version */ 1, offset,
               kNoChecksum, meta_index_block_handle);
  io_status_ = file_->Append(footer.GetSlice());
  status_ = io_status_;
  return status_;
}

void CuckooTableBuilder::Abandon() {
  assert(!closed_);
  closed_ = true;
}

uint64_t CuckooTableBuilder::NumEntries() const { return num_entries_; }

uint64_t CuckooTableBuilder::FileSize() const {
  if (closed_) {
    return file_->GetFileSize();
  } else if (num_entries_ == 0) {
    return 0;
  }

  if (use_module_hash_) {
    return static_cast<uint64_t>((key_size_ + value_size_) * num_entries_ /
                                 max_hash_table_ratio_);
  } else {
    // Account for buckets being a power of two.
    // As elements are added, file size remains constant for a while and
    // doubles its size. Since compaction algorithm stops adding elements
    // only after it exceeds the file limit, we account for the extra element
    // being added here.
    uint64_t expected_hash_table_size = hash_table_size_;
    if (expected_hash_table_size < (num_entries_ + 1) / max_hash_table_ratio_) {
      expected_hash_table_size *= 2;
    }
    return (key_size_ + value_size_) * expected_hash_table_size - 1;
  }
}

// This method is invoked when there is no place to insert the target key.
// It searches for a set of elements that can be moved to accommodate target
// key. The search is a BFS graph traversal with first level (hash_vals)
// being all the buckets target key could go to.
// Then, from each node (curr_node), we find all the buckets that curr_node
// could go to. They form the children of curr_node in the tree.
// We continue the traversal until we find an empty bucket, in which case, we
// move all elements along the path from first level to this empty bucket, to
// make space for target key which is inserted at first level (*bucket_id).
// If tree depth exceedes max depth, we return false indicating failure.
bool CuckooTableBuilder::MakeSpaceForKey(
    const autovector<uint64_t>& hash_vals,
    const uint32_t make_space_for_key_call_id,
    std::vector<CuckooBucket>* buckets, uint64_t* bucket_id) {
  struct CuckooNode {
    uint64_t bucket_id;
    uint32_t depth;
    uint32_t parent_pos;
    CuckooNode(uint64_t _bucket_id, uint32_t _depth, int _parent_pos)
        : bucket_id(_bucket_id), depth(_depth), parent_pos(_parent_pos) {}
  };
  // This is BFS search tree that is stored simply as a vector.
  // Each node stores the index of parent node in the vector.
  std::vector<CuckooNode> tree;
  // We want to identify already visited buckets in the current method call so
  // that we don't add same buckets again for exploration in the tree.
  // We do this by maintaining a count of current method call in
  // make_space_for_key_call_id, which acts as a unique id for this invocation
  // of the method. We store this number into the nodes that we explore in
  // current method call.
  // It is unlikely for the increment operation to overflow because the maximum
  // no. of times this will be called is <= max_num_hash_func_ + num_entries_.
  for (uint32_t hash_cnt = 0; hash_cnt < num_hash_func_; ++hash_cnt) {
    uint64_t bid = hash_vals[hash_cnt];
    (*buckets)[static_cast<size_t>(bid)].make_space_for_key_call_id =
        make_space_for_key_call_id;
    tree.push_back(CuckooNode(bid, 0, 0));
  }
  bool null_found = false;
  uint32_t curr_pos = 0;
  while (!null_found && curr_pos < tree.size()) {
    CuckooNode& curr_node = tree[curr_pos];
    uint32_t curr_depth = curr_node.depth;
    if (curr_depth >= max_search_depth_) {
      break;
    }
    CuckooBucket& curr_bucket =
        (*buckets)[static_cast<size_t>(curr_node.bucket_id)];
    for (uint32_t hash_cnt = 0; hash_cnt < num_hash_func_ && !null_found;
         ++hash_cnt) {
      uint64_t child_bucket_id = CuckooHash(
          GetUserKey(curr_bucket.vector_idx), hash_cnt, use_module_hash_,
          hash_table_size_, identity_as_first_hash_, get_slice_hash_);
      // Iterate inside Cuckoo Block.
      for (uint32_t block_idx = 0; block_idx < cuckoo_block_size_;
           ++block_idx, ++child_bucket_id) {
        if ((*buckets)[static_cast<size_t>(child_bucket_id)]
                .make_space_for_key_call_id == make_space_for_key_call_id) {
          continue;
        }
        (*buckets)[static_cast<size_t>(child_bucket_id)]
            .make_space_for_key_call_id = make_space_for_key_call_id;
        tree.push_back(CuckooNode(child_bucket_id, curr_depth + 1, curr_pos));
        if ((*buckets)[static_cast<size_t>(child_bucket_id)].vector_idx ==
            kMaxVectorIdx) {
          null_found = true;
          break;
        }
      }
    }
    ++curr_pos;
  }

  if (null_found) {
    // There is an empty node in tree.back(). Now, traverse the path from this
    // empty node to top of the tree and at every node in the path, replace
    // child with the parent. Stop when first level is reached in the tree
    // (happens when 0 <= bucket_to_replace_pos < num_hash_func_) and return
    // this location in first level for target key to be inserted.
    uint32_t bucket_to_replace_pos = static_cast<uint32_t>(tree.size()) - 1;
    while (bucket_to_replace_pos >= num_hash_func_) {
      CuckooNode& curr_node = tree[bucket_to_replace_pos];
      (*buckets)[static_cast<size_t>(curr_node.bucket_id)] =
          (*buckets)[static_cast<size_t>(tree[curr_node.parent_pos].bucket_id)];
      bucket_to_replace_pos = curr_node.parent_pos;
    }
    *bucket_id = tree[bucket_to_replace_pos].bucket_id;
  }
  return null_found;
}

std::string CuckooTableBuilder::GetFileChecksum() const {
  if (file_ != nullptr) {
    return file_->GetFileChecksum();
  } else {
    return kUnknownFileChecksum;
  }
}

const char* CuckooTableBuilder::GetFileChecksumFuncName() const {
  if (file_ != nullptr) {
    return file_->GetFileChecksumFuncName();
  } else {
    return kUnknownFileChecksumFuncName;
  }
}

}  // namespace ROCKSDB_NAMESPACE
#endif  // ROCKSDB_LITE