summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/table/plain/plain_table_key_coding.cc
blob: 800d8d76fbc2e3209205e8dca9099bfe8f0c57cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#ifndef ROCKSDB_LITE
#include "table/plain/plain_table_key_coding.h"

#include <algorithm>
#include <string>

#include "db/dbformat.h"
#include "file/writable_file_writer.h"
#include "table/plain/plain_table_factory.h"
#include "table/plain/plain_table_reader.h"

namespace ROCKSDB_NAMESPACE {

enum PlainTableEntryType : unsigned char {
  kFullKey = 0,
  kPrefixFromPreviousKey = 1,
  kKeySuffix = 2,
};

namespace {

// Control byte:
// First two bits indicate type of entry
// Other bytes are inlined sizes. If all bits are 1 (0x03F), overflow bytes
// are used. key_size-0x3F will be encoded as a variint32 after this bytes.

const unsigned char kSizeInlineLimit = 0x3F;

// Return 0 for error
size_t EncodeSize(PlainTableEntryType type, uint32_t key_size,
                  char* out_buffer) {
  out_buffer[0] = type << 6;

  if (key_size < static_cast<uint32_t>(kSizeInlineLimit)) {
    // size inlined
    out_buffer[0] |= static_cast<char>(key_size);
    return 1;
  } else {
    out_buffer[0] |= kSizeInlineLimit;
    char* ptr = EncodeVarint32(out_buffer + 1, key_size - kSizeInlineLimit);
    return ptr - out_buffer;
  }
}
}  // namespace

// Fill bytes_read with number of bytes read.
inline Status PlainTableKeyDecoder::DecodeSize(uint32_t start_offset,
                                               PlainTableEntryType* entry_type,
                                               uint32_t* key_size,
                                               uint32_t* bytes_read) {
  Slice next_byte_slice;
  bool success = file_reader_.Read(start_offset, 1, &next_byte_slice);
  if (!success) {
    return file_reader_.status();
  }
  *entry_type = static_cast<PlainTableEntryType>(
      (static_cast<unsigned char>(next_byte_slice[0]) & ~kSizeInlineLimit) >>
      6);
  char inline_key_size = next_byte_slice[0] & kSizeInlineLimit;
  if (inline_key_size < kSizeInlineLimit) {
    *key_size = inline_key_size;
    *bytes_read = 1;
    return Status::OK();
  } else {
    uint32_t extra_size;
    uint32_t tmp_bytes_read;
    success = file_reader_.ReadVarint32(start_offset + 1, &extra_size,
                                        &tmp_bytes_read);
    if (!success) {
      return file_reader_.status();
    }
    assert(tmp_bytes_read > 0);
    *key_size = kSizeInlineLimit + extra_size;
    *bytes_read = tmp_bytes_read + 1;
    return Status::OK();
  }
}

IOStatus PlainTableKeyEncoder::AppendKey(const Slice& key,
                                         WritableFileWriter* file,
                                         uint64_t* offset, char* meta_bytes_buf,
                                         size_t* meta_bytes_buf_size) {
  ParsedInternalKey parsed_key;
  Status pik_status =
      ParseInternalKey(key, &parsed_key, false /* log_err_key */);  // TODO
  if (!pik_status.ok()) {
    return IOStatus::Corruption(pik_status.getState());
  }

  Slice key_to_write = key;  // Portion of internal key to write out.

  uint32_t user_key_size = static_cast<uint32_t>(key.size() - 8);
  if (encoding_type_ == kPlain) {
    if (fixed_user_key_len_ == kPlainTableVariableLength) {
      // Write key length
      char key_size_buf[5];  // tmp buffer for key size as varint32
      char* ptr = EncodeVarint32(key_size_buf, user_key_size);
      assert(ptr <= key_size_buf + sizeof(key_size_buf));
      auto len = ptr - key_size_buf;
      IOStatus io_s = file->Append(Slice(key_size_buf, len));
      if (!io_s.ok()) {
        return io_s;
      }
      *offset += len;
    }
  } else {
    assert(encoding_type_ == kPrefix);
    char size_bytes[12];
    size_t size_bytes_pos = 0;

    Slice prefix =
        prefix_extractor_->Transform(Slice(key.data(), user_key_size));
    if (key_count_for_prefix_ == 0 || prefix != pre_prefix_.GetUserKey() ||
        key_count_for_prefix_ % index_sparseness_ == 0) {
      key_count_for_prefix_ = 1;
      pre_prefix_.SetUserKey(prefix);
      size_bytes_pos += EncodeSize(kFullKey, user_key_size, size_bytes);
      IOStatus io_s = file->Append(Slice(size_bytes, size_bytes_pos));
      if (!io_s.ok()) {
        return io_s;
      }
      *offset += size_bytes_pos;
    } else {
      key_count_for_prefix_++;
      if (key_count_for_prefix_ == 2) {
        // For second key within a prefix, need to encode prefix length
        size_bytes_pos +=
            EncodeSize(kPrefixFromPreviousKey,
                       static_cast<uint32_t>(pre_prefix_.GetUserKey().size()),
                       size_bytes + size_bytes_pos);
      }
      uint32_t prefix_len =
          static_cast<uint32_t>(pre_prefix_.GetUserKey().size());
      size_bytes_pos += EncodeSize(kKeySuffix, user_key_size - prefix_len,
                                   size_bytes + size_bytes_pos);
      IOStatus io_s = file->Append(Slice(size_bytes, size_bytes_pos));
      if (!io_s.ok()) {
        return io_s;
      }
      *offset += size_bytes_pos;
      key_to_write = Slice(key.data() + prefix_len, key.size() - prefix_len);
    }
  }

  // Encode full key
  // For value size as varint32 (up to 5 bytes).
  // If the row is of value type with seqId 0, flush the special flag together
  // in this buffer to safe one file append call, which takes 1 byte.
  if (parsed_key.sequence == 0 && parsed_key.type == kTypeValue) {
    IOStatus io_s =
        file->Append(Slice(key_to_write.data(), key_to_write.size() - 8));
    if (!io_s.ok()) {
      return io_s;
    }
    *offset += key_to_write.size() - 8;
    meta_bytes_buf[*meta_bytes_buf_size] = PlainTableFactory::kValueTypeSeqId0;
    *meta_bytes_buf_size += 1;
  } else {
    IOStatus io_s = file->Append(key_to_write);
    if (!io_s.ok()) {
      return io_s;
    }
    *offset += key_to_write.size();
  }

  return IOStatus::OK();
}

Slice PlainTableFileReader::GetFromBuffer(Buffer* buffer, uint32_t file_offset,
                                          uint32_t len) {
  assert(file_offset + len <= file_info_->data_end_offset);
  return Slice(buffer->buf.get() + (file_offset - buffer->buf_start_offset),
               len);
}

bool PlainTableFileReader::ReadNonMmap(uint32_t file_offset, uint32_t len,
                                       Slice* out) {
  const uint32_t kPrefetchSize = 256u;

  // Try to read from buffers.
  for (uint32_t i = 0; i < num_buf_; i++) {
    Buffer* buffer = buffers_[num_buf_ - 1 - i].get();
    if (file_offset >= buffer->buf_start_offset &&
        file_offset + len <= buffer->buf_start_offset + buffer->buf_len) {
      *out = GetFromBuffer(buffer, file_offset, len);
      return true;
    }
  }

  Buffer* new_buffer;
  // Data needed is not in any of the buffer. Allocate a new buffer.
  if (num_buf_ < buffers_.size()) {
    // Add a new buffer
    new_buffer = new Buffer();
    buffers_[num_buf_++].reset(new_buffer);
  } else {
    // Now simply replace the last buffer. Can improve the placement policy
    // if needed.
    new_buffer = buffers_[num_buf_ - 1].get();
  }

  assert(file_offset + len <= file_info_->data_end_offset);
  uint32_t size_to_read = std::min(file_info_->data_end_offset - file_offset,
                                   std::max(kPrefetchSize, len));
  if (size_to_read > new_buffer->buf_capacity) {
    new_buffer->buf.reset(new char[size_to_read]);
    new_buffer->buf_capacity = size_to_read;
    new_buffer->buf_len = 0;
  }
  Slice read_result;
  // TODO: rate limit plain table reads.
  Status s =
      file_info_->file->Read(IOOptions(), file_offset, size_to_read,
                             &read_result, new_buffer->buf.get(), nullptr,
                             Env::IO_TOTAL /* rate_limiter_priority */);
  if (!s.ok()) {
    status_ = s;
    return false;
  }
  new_buffer->buf_start_offset = file_offset;
  new_buffer->buf_len = size_to_read;
  *out = GetFromBuffer(new_buffer, file_offset, len);
  return true;
}

inline bool PlainTableFileReader::ReadVarint32(uint32_t offset, uint32_t* out,
                                               uint32_t* bytes_read) {
  if (file_info_->is_mmap_mode) {
    const char* start = file_info_->file_data.data() + offset;
    const char* limit =
        file_info_->file_data.data() + file_info_->data_end_offset;
    const char* key_ptr = GetVarint32Ptr(start, limit, out);
    assert(key_ptr != nullptr);
    *bytes_read = static_cast<uint32_t>(key_ptr - start);
    return true;
  } else {
    return ReadVarint32NonMmap(offset, out, bytes_read);
  }
}

bool PlainTableFileReader::ReadVarint32NonMmap(uint32_t offset, uint32_t* out,
                                               uint32_t* bytes_read) {
  const char* start;
  const char* limit;
  const uint32_t kMaxVarInt32Size = 6u;
  uint32_t bytes_to_read =
      std::min(file_info_->data_end_offset - offset, kMaxVarInt32Size);
  Slice bytes;
  if (!Read(offset, bytes_to_read, &bytes)) {
    return false;
  }
  start = bytes.data();
  limit = bytes.data() + bytes.size();

  const char* key_ptr = GetVarint32Ptr(start, limit, out);
  *bytes_read =
      (key_ptr != nullptr) ? static_cast<uint32_t>(key_ptr - start) : 0;
  return true;
}

Status PlainTableKeyDecoder::ReadInternalKey(
    uint32_t file_offset, uint32_t user_key_size, ParsedInternalKey* parsed_key,
    uint32_t* bytes_read, bool* internal_key_valid, Slice* internal_key) {
  Slice tmp_slice;
  bool success = file_reader_.Read(file_offset, user_key_size + 1, &tmp_slice);
  if (!success) {
    return file_reader_.status();
  }
  if (tmp_slice[user_key_size] == PlainTableFactory::kValueTypeSeqId0) {
    // Special encoding for the row with seqID=0
    parsed_key->user_key = Slice(tmp_slice.data(), user_key_size);
    parsed_key->sequence = 0;
    parsed_key->type = kTypeValue;
    *bytes_read += user_key_size + 1;
    *internal_key_valid = false;
  } else {
    success = file_reader_.Read(file_offset, user_key_size + 8, internal_key);
    if (!success) {
      return file_reader_.status();
    }
    *internal_key_valid = true;
    Status pik_status = ParseInternalKey(*internal_key, parsed_key,
                                         false /* log_err_key */);  // TODO
    if (!pik_status.ok()) {
      return Status::Corruption(
          Slice("Corrupted key found during next key read. "),
          pik_status.getState());
    }
    *bytes_read += user_key_size + 8;
  }
  return Status::OK();
}

Status PlainTableKeyDecoder::NextPlainEncodingKey(uint32_t start_offset,
                                                  ParsedInternalKey* parsed_key,
                                                  Slice* internal_key,
                                                  uint32_t* bytes_read,
                                                  bool* /*seekable*/) {
  uint32_t user_key_size = 0;
  Status s;
  if (fixed_user_key_len_ != kPlainTableVariableLength) {
    user_key_size = fixed_user_key_len_;
  } else {
    uint32_t tmp_size = 0;
    uint32_t tmp_read;
    bool success =
        file_reader_.ReadVarint32(start_offset, &tmp_size, &tmp_read);
    if (!success) {
      return file_reader_.status();
    }
    assert(tmp_read > 0);
    user_key_size = tmp_size;
    *bytes_read = tmp_read;
  }
  // dummy initial value to avoid compiler complain
  bool decoded_internal_key_valid = true;
  Slice decoded_internal_key;
  s = ReadInternalKey(start_offset + *bytes_read, user_key_size, parsed_key,
                      bytes_read, &decoded_internal_key_valid,
                      &decoded_internal_key);
  if (!s.ok()) {
    return s;
  }
  if (!file_reader_.file_info()->is_mmap_mode) {
    cur_key_.SetInternalKey(*parsed_key);
    parsed_key->user_key =
        Slice(cur_key_.GetInternalKey().data(), user_key_size);
    if (internal_key != nullptr) {
      *internal_key = cur_key_.GetInternalKey();
    }
  } else if (internal_key != nullptr) {
    if (decoded_internal_key_valid) {
      *internal_key = decoded_internal_key;
    } else {
      // Need to copy out the internal key
      cur_key_.SetInternalKey(*parsed_key);
      *internal_key = cur_key_.GetInternalKey();
    }
  }
  return Status::OK();
}

Status PlainTableKeyDecoder::NextPrefixEncodingKey(
    uint32_t start_offset, ParsedInternalKey* parsed_key, Slice* internal_key,
    uint32_t* bytes_read, bool* seekable) {
  PlainTableEntryType entry_type;

  bool expect_suffix = false;
  Status s;
  do {
    uint32_t size = 0;
    // dummy initial value to avoid compiler complain
    bool decoded_internal_key_valid = true;
    uint32_t my_bytes_read = 0;
    s = DecodeSize(start_offset + *bytes_read, &entry_type, &size,
                   &my_bytes_read);
    if (!s.ok()) {
      return s;
    }
    if (my_bytes_read == 0) {
      return Status::Corruption("Unexpected EOF when reading size of the key");
    }
    *bytes_read += my_bytes_read;

    switch (entry_type) {
      case kFullKey: {
        expect_suffix = false;
        Slice decoded_internal_key;
        s = ReadInternalKey(start_offset + *bytes_read, size, parsed_key,
                            bytes_read, &decoded_internal_key_valid,
                            &decoded_internal_key);
        if (!s.ok()) {
          return s;
        }
        if (!file_reader_.file_info()->is_mmap_mode ||
            (internal_key != nullptr && !decoded_internal_key_valid)) {
          // In non-mmap mode, always need to make a copy of keys returned to
          // users, because after reading value for the key, the key might
          // be invalid.
          cur_key_.SetInternalKey(*parsed_key);
          saved_user_key_ = cur_key_.GetUserKey();
          if (!file_reader_.file_info()->is_mmap_mode) {
            parsed_key->user_key =
                Slice(cur_key_.GetInternalKey().data(), size);
          }
          if (internal_key != nullptr) {
            *internal_key = cur_key_.GetInternalKey();
          }
        } else {
          if (internal_key != nullptr) {
            *internal_key = decoded_internal_key;
          }
          saved_user_key_ = parsed_key->user_key;
        }
        break;
      }
      case kPrefixFromPreviousKey: {
        if (seekable != nullptr) {
          *seekable = false;
        }
        prefix_len_ = size;
        assert(prefix_extractor_ == nullptr ||
               prefix_extractor_->Transform(saved_user_key_).size() ==
                   prefix_len_);
        // Need read another size flag for suffix
        expect_suffix = true;
        break;
      }
      case kKeySuffix: {
        expect_suffix = false;
        if (seekable != nullptr) {
          *seekable = false;
        }

        Slice tmp_slice;
        s = ReadInternalKey(start_offset + *bytes_read, size, parsed_key,
                            bytes_read, &decoded_internal_key_valid,
                            &tmp_slice);
        if (!s.ok()) {
          return s;
        }
        if (!file_reader_.file_info()->is_mmap_mode) {
          // In non-mmap mode, we need to make a copy of keys returned to
          // users, because after reading value for the key, the key might
          // be invalid.
          // saved_user_key_ points to cur_key_. We are making a copy of
          // the prefix part to another string, and construct the current
          // key from the prefix part and the suffix part back to cur_key_.
          std::string tmp =
              Slice(saved_user_key_.data(), prefix_len_).ToString();
          cur_key_.Reserve(prefix_len_ + size);
          cur_key_.SetInternalKey(tmp, *parsed_key);
          parsed_key->user_key =
              Slice(cur_key_.GetInternalKey().data(), prefix_len_ + size);
          saved_user_key_ = cur_key_.GetUserKey();
        } else {
          cur_key_.Reserve(prefix_len_ + size);
          cur_key_.SetInternalKey(Slice(saved_user_key_.data(), prefix_len_),
                                  *parsed_key);
        }
        parsed_key->user_key = cur_key_.GetUserKey();
        if (internal_key != nullptr) {
          *internal_key = cur_key_.GetInternalKey();
        }
        break;
      }
      default:
        return Status::Corruption("Un-identified size flag.");
    }
  } while (expect_suffix);  // Another round if suffix is expected.
  return Status::OK();
}

Status PlainTableKeyDecoder::NextKey(uint32_t start_offset,
                                     ParsedInternalKey* parsed_key,
                                     Slice* internal_key, Slice* value,
                                     uint32_t* bytes_read, bool* seekable) {
  assert(value != nullptr);
  Status s = NextKeyNoValue(start_offset, parsed_key, internal_key, bytes_read,
                            seekable);
  if (s.ok()) {
    assert(bytes_read != nullptr);
    uint32_t value_size;
    uint32_t value_size_bytes;
    bool success = file_reader_.ReadVarint32(start_offset + *bytes_read,
                                             &value_size, &value_size_bytes);
    if (!success) {
      return file_reader_.status();
    }
    if (value_size_bytes == 0) {
      return Status::Corruption(
          "Unexpected EOF when reading the next value's size.");
    }
    *bytes_read += value_size_bytes;
    success = file_reader_.Read(start_offset + *bytes_read, value_size, value);
    if (!success) {
      return file_reader_.status();
    }
    *bytes_read += value_size;
  }
  return s;
}

Status PlainTableKeyDecoder::NextKeyNoValue(uint32_t start_offset,
                                            ParsedInternalKey* parsed_key,
                                            Slice* internal_key,
                                            uint32_t* bytes_read,
                                            bool* seekable) {
  *bytes_read = 0;
  if (seekable != nullptr) {
    *seekable = true;
  }
  if (encoding_type_ == kPlain) {
    return NextPlainEncodingKey(start_offset, parsed_key, internal_key,
                                bytes_read, seekable);
  } else {
    assert(encoding_type_ == kPrefix);
    return NextPrefixEncodingKey(start_offset, parsed_key, internal_key,
                                 bytes_read, seekable);
  }
}

}  // namespace ROCKSDB_NAMESPACE
#endif  // ROCKSDB_LIT