summaryrefslogtreecommitdiffstats
path: root/src/zstd/tests/automated_benchmarking.py
blob: d0cfb1fbe37c01ae215814b3b07931f8d38b1fb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# ################################################################
# Copyright (c) 2020-2020, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ##########################################################################

import argparse
import glob
import json
import os
import time
import pickle as pk
import subprocess
import urllib.request


GITHUB_API_PR_URL = "https://api.github.com/repos/facebook/zstd/pulls?state=open"
GITHUB_URL_TEMPLATE = "https://github.com/{}/zstd"
MASTER_BUILD = {"user": "facebook", "branch": "dev", "hash": None}

# check to see if there are any new PRs every minute
DEFAULT_MAX_API_CALL_FREQUENCY_SEC = 60
PREVIOUS_PRS_FILENAME = "prev_prs.pk"

# Not sure what the threshold for triggering alarms should be
# 1% regression sounds like a little too sensitive but the desktop
# that I'm running it on is pretty stable so I think this is fine
CSPEED_REGRESSION_TOLERANCE = 0.01
DSPEED_REGRESSION_TOLERANCE = 0.01


def get_new_open_pr_builds(prev_state=True):
    prev_prs = None
    if os.path.exists(PREVIOUS_PRS_FILENAME):
        with open(PREVIOUS_PRS_FILENAME, "rb") as f:
            prev_prs = pk.load(f)
    data = json.loads(urllib.request.urlopen(GITHUB_API_PR_URL).read().decode("utf-8"))
    prs = {
        d["url"]: {
            "user": d["user"]["login"],
            "branch": d["head"]["ref"],
            "hash": d["head"]["sha"].strip(),
        }
        for d in data
    }
    with open(PREVIOUS_PRS_FILENAME, "wb") as f:
        pk.dump(prs, f)
    if not prev_state or prev_prs == None:
        return list(prs.values())
    return [pr for url, pr in prs.items() if url not in prev_prs or prev_prs[url] != pr]


def get_latest_hashes():
    tmp = subprocess.run(["git", "log", "-1"], stdout=subprocess.PIPE).stdout.decode(
        "utf-8"
    )
    sha1 = tmp.split("\n")[0].split(" ")[1]
    tmp = subprocess.run(
        ["git", "show", "{}^1".format(sha1)], stdout=subprocess.PIPE
    ).stdout.decode("utf-8")
    sha2 = tmp.split("\n")[0].split(" ")[1]
    tmp = subprocess.run(
        ["git", "show", "{}^2".format(sha1)], stdout=subprocess.PIPE
    ).stdout.decode("utf-8")
    sha3 = "" if len(tmp) == 0 else tmp.split("\n")[0].split(" ")[1]
    return [sha1.strip(), sha2.strip(), sha3.strip()]


def get_builds_for_latest_hash():
    hashes = get_latest_hashes()
    for b in get_new_open_pr_builds(False):
        if b["hash"] in hashes:
            return [b]
    return []


def clone_and_build(build):
    if build["user"] != None:
        github_url = GITHUB_URL_TEMPLATE.format(build["user"])
        os.system(
            """
            rm -rf zstd-{user}-{sha} &&
            git clone {github_url} zstd-{user}-{sha} &&
            cd zstd-{user}-{sha} &&
            {checkout_command}
            make &&
            cd ../
        """.format(
                user=build["user"],
                github_url=github_url,
                sha=build["hash"],
                checkout_command="git checkout {} &&".format(build["hash"])
                if build["hash"] != None
                else "",
            )
        )
        return "zstd-{user}-{sha}/zstd".format(user=build["user"], sha=build["hash"])
    else:
        os.system("cd ../ && make && cd tests")
        return "../zstd"


def parse_benchmark_output(output):
    idx = [i for i, d in enumerate(output) if d == "MB/s"]
    return [float(output[idx[0] - 1]), float(output[idx[1] - 1])]


def benchmark_single(executable, level, filename):
    return parse_benchmark_output((
        subprocess.run(
            [executable, "-qb{}".format(level), filename], stderr=subprocess.PIPE
        )
        .stderr.decode("utf-8")
        .split(" ")
    ))


def benchmark_n(executable, level, filename, n):
    speeds_arr = [benchmark_single(executable, level, filename) for _ in range(n)]
    cspeed, dspeed = max(b[0] for b in speeds_arr), max(b[1] for b in speeds_arr)
    print(
        "Bench (executable={} level={} filename={}, iterations={}):\n\t[cspeed: {} MB/s, dspeed: {} MB/s]".format(
            os.path.basename(executable),
            level,
            os.path.basename(filename),
            n,
            cspeed,
            dspeed,
        )
    )
    return (cspeed, dspeed)


def benchmark(build, filenames, levels, iterations):
    executable = clone_and_build(build)
    return [
        [benchmark_n(executable, l, f, iterations) for f in filenames] for l in levels
    ]


def benchmark_dictionary_single(executable, filenames_directory, dictionary_filename, level, iterations):
    cspeeds, dspeeds = [], []
    for _ in range(iterations):
        output = subprocess.run([executable, "-qb{}".format(level), "-D", dictionary_filename, "-r", filenames_directory], stderr=subprocess.PIPE).stderr.decode("utf-8").split(" ")
        cspeed, dspeed = parse_benchmark_output(output)
        cspeeds.append(cspeed)
        dspeeds.append(dspeed)
    max_cspeed, max_dspeed = max(cspeeds), max(dspeeds)
    print(
        "Bench (executable={} level={} filenames_directory={}, dictionary_filename={}, iterations={}):\n\t[cspeed: {} MB/s, dspeed: {} MB/s]".format(
            os.path.basename(executable),
            level,
            os.path.basename(filenames_directory),
            os.path.basename(dictionary_filename),
            iterations,
            max_cspeed,
            max_dspeed,
        )
    )
    return (max_cspeed, max_dspeed)


def benchmark_dictionary(build, filenames_directory, dictionary_filename, levels, iterations):
    executable = clone_and_build(build)
    return [benchmark_dictionary_single(executable, filenames_directory, dictionary_filename, l, iterations) for l in levels]


def parse_regressions_and_labels(old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build):
    cspeed_reg = (old_cspeed - new_cspeed) / old_cspeed
    dspeed_reg = (old_dspeed - new_dspeed) / old_dspeed
    baseline_label = "{}:{} ({})".format(
        baseline_build["user"], baseline_build["branch"], baseline_build["hash"]
    )
    test_label = "{}:{} ({})".format(
        test_build["user"], test_build["branch"], test_build["hash"]
    )
    return cspeed_reg, dspeed_reg, baseline_label, test_label


def get_regressions(baseline_build, test_build, iterations, filenames, levels):
    old = benchmark(baseline_build, filenames, levels, iterations)
    new = benchmark(test_build, filenames, levels, iterations)
    regressions = []
    for j, level in enumerate(levels):
        for k, filename in enumerate(filenames):
            old_cspeed, old_dspeed = old[j][k]
            new_cspeed, new_dspeed = new[j][k]
            cspeed_reg, dspeed_reg, baseline_label, test_label = parse_regressions_and_labels(
                old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build
            )
            if cspeed_reg > CSPEED_REGRESSION_TOLERANCE:
                regressions.append(
                    "[COMPRESSION REGRESSION] (level={} filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
                        level,
                        filename,
                        baseline_label,
                        test_label,
                        old_cspeed,
                        new_cspeed,
                        cspeed_reg * 100.0,
                    )
                )
            if dspeed_reg > DSPEED_REGRESSION_TOLERANCE:
                regressions.append(
                    "[DECOMPRESSION REGRESSION] (level={} filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
                        level,
                        filename,
                        baseline_label,
                        test_label,
                        old_dspeed,
                        new_dspeed,
                        dspeed_reg * 100.0,
                    )
                )
    return regressions

def get_regressions_dictionary(baseline_build, test_build, filenames_directory, dictionary_filename, levels, iterations):
    old = benchmark_dictionary(baseline_build, filenames_directory, dictionary_filename, levels, iterations)
    new = benchmark_dictionary(test_build, filenames_directory, dictionary_filename, levels, iterations)
    regressions = []
    for j, level in enumerate(levels):
        old_cspeed, old_dspeed = old[j]
        new_cspeed, new_dspeed = new[j]
        cspeed_reg, dspeed_reg, baesline_label, test_label = parse_regressions_and_labels(
            old_cspeed, new_cspeed, old_dspeed, new_dspeed, baseline_build, test_build
        )
        if cspeed_reg > CSPEED_REGRESSION_TOLERANCE:
            regressions.append(
                "[COMPRESSION REGRESSION] (level={} filenames_directory={} dictionary_filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
                    level,
                    filenames_directory,
                    dictionary_filename,
                    baseline_label,
                    test_label,
                    old_cspeed,
                    new_cspeed,
                    cspeed_reg * 100.0,
                )
            )
        if dspeed_reg > DSPEED_REGRESSION_TOLERANCE:
            regressions.append(
                "[DECOMPRESSION REGRESSION] (level={} filenames_directory={} dictionary_filename={})\n\t{} -> {}\n\t{} -> {} ({:0.2f}%)".format(
                    level,
                    filenames_directory,
                    dictionary_filename,
                    baseline_label,
                    test_label,
                    old_dspeed,
                    new_dspeed,
                    dspeed_reg * 100.0,
                )
            )
        return regressions


def main(filenames, levels, iterations, builds=None, emails=None, continuous=False, frequency=DEFAULT_MAX_API_CALL_FREQUENCY_SEC, dictionary_filename=None):
    if builds == None:
        builds = get_new_open_pr_builds()
    while True:
        for test_build in builds:
            if dictionary_filename == None:
                regressions = get_regressions(
                    MASTER_BUILD, test_build, iterations, filenames, levels
                )
            else:
                regressions = get_regressions_dictionary(
                    MASTER_BUILD, test_build, filenames, dictionary_filename, levels, iterations
                )
            body = "\n".join(regressions)
            if len(regressions) > 0:
                if emails != None:
                    os.system(
                        """
                        echo "{}" | mutt -s "[zstd regression] caused by new pr" {}
                    """.format(
                            body, emails
                        )
                    )
                    print("Emails sent to {}".format(emails))
                print(body)
        if not continuous:
            break
        time.sleep(frequency)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--directory", help="directory with files to benchmark", default="golden-compression")
    parser.add_argument("--levels", help="levels to test eg ('1,2,3')", default="1")
    parser.add_argument("--iterations", help="number of benchmark iterations to run", default="1")
    parser.add_argument("--emails", help="email addresses of people who will be alerted upon regression. Only for continuous mode", default=None)
    parser.add_argument("--frequency", help="specifies the number of seconds to wait before each successive check for new PRs in continuous mode", default=DEFAULT_MAX_API_CALL_FREQUENCY_SEC)
    parser.add_argument("--mode", help="'fastmode', 'onetime', 'current', or 'continuous' (see README.md for details)", default="current")
    parser.add_argument("--dict", help="filename of dictionary to use (when set, this dictioanry will be used to compress the files provided inside --directory)", default=None)

    args = parser.parse_args()
    filenames = args.directory
    levels = [int(l) for l in args.levels.split(",")]
    mode = args.mode
    iterations = int(args.iterations)
    emails = args.emails
    frequency = int(args.frequency)
    dictionary_filename = args.dict

    if dictionary_filename == None:
        filenames = glob.glob("{}/**".format(filenames))

    if (len(filenames) == 0):
        print("0 files found")
        quit()

    if mode == "onetime":
        main(filenames, levels, iterations, frequency=frequenc, dictionary_filename=dictionary_filename)
    elif mode == "current":
        builds = [{"user": None, "branch": "None", "hash": None}]
        main(filenames, levels, iterations, builds, frequency=frequency, dictionary_filename=dictionary_filename)
    elif mode == "fastmode":
        builds = [{"user": "facebook", "branch": "master", "hash": None}]
        main(filenames, levels, iterations, builds, frequency=frequency, dictionary_filename=dictionary_filename)
    else:
        main(filenames, levels, iterations, None, emails, True, frequency=frequency, dictionary_filename=dictionary_filename)