diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 06:30:05 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 06:30:05 +0000 |
commit | a1e354165254cd9e346751e6c2ddc554feeb0e6d (patch) | |
tree | 5fd273cc604fd00efd630eb387a6f79ce102f4e3 /crypto/apr_crypto_commoncrypto.c | |
parent | Initial commit. (diff) | |
download | apr-util-a1e354165254cd9e346751e6c2ddc554feeb0e6d.tar.xz apr-util-a1e354165254cd9e346751e6c2ddc554feeb0e6d.zip |
Adding upstream version 1.6.3.upstream/1.6.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'crypto/apr_crypto_commoncrypto.c')
-rw-r--r-- | crypto/apr_crypto_commoncrypto.c | 906 |
1 files changed, 906 insertions, 0 deletions
diff --git a/crypto/apr_crypto_commoncrypto.c b/crypto/apr_crypto_commoncrypto.c new file mode 100644 index 0000000..81b0299 --- /dev/null +++ b/crypto/apr_crypto_commoncrypto.c @@ -0,0 +1,906 @@ +/* Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "apr.h" +#include "apr_lib.h" +#include "apu.h" +#include "apu_errno.h" + +#include <ctype.h> +#include <assert.h> +#include <stdlib.h> + +#include "apr_strings.h" +#include "apr_time.h" +#include "apr_buckets.h" +#include "apr_random.h" + +#include "apr_crypto_internal.h" + +#if APU_HAVE_CRYPTO + +#include <CommonCrypto/CommonCrypto.h> + +#define LOG_PREFIX "apr_crypto_commoncrypto: " + +struct apr_crypto_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + apu_err_t *result; + apr_hash_t *types; + apr_hash_t *modes; + apr_random_t *rng; +}; + +struct apr_crypto_key_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + const apr_crypto_t *f; + CCAlgorithm algorithm; + CCOptions options; + unsigned char *key; + int keyLen; + int ivSize; + apr_size_t blockSize; +}; + +struct apr_crypto_block_t +{ + apr_pool_t *pool; + const apr_crypto_driver_t *provider; + const apr_crypto_t *f; + const apr_crypto_key_t *key; + CCCryptorRef ref; +}; + +static struct apr_crypto_block_key_type_t key_types[] = +{ +{ APR_KEY_3DES_192, 24, 8, 8 }, +{ APR_KEY_AES_128, 16, 16, 16 }, +{ APR_KEY_AES_192, 24, 16, 16 }, +{ APR_KEY_AES_256, 32, 16, 16 } }; + +static struct apr_crypto_block_key_mode_t key_modes[] = +{ +{ APR_MODE_ECB }, +{ APR_MODE_CBC } }; + +/** + * Fetch the most recent error from this driver. + */ +static apr_status_t crypto_error(const apu_err_t **result, + const apr_crypto_t *f) +{ + *result = f->result; + return APR_SUCCESS; +} + +/** + * Shutdown the crypto library and release resources. + */ +static apr_status_t crypto_shutdown(void) +{ + return APR_SUCCESS; +} + +static apr_status_t crypto_shutdown_helper(void *data) +{ + return crypto_shutdown(); +} + +/** + * Initialise the crypto library and perform one time initialisation. + */ +static apr_status_t crypto_init(apr_pool_t *pool, const char *params, + const apu_err_t **result) +{ + + apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper, + apr_pool_cleanup_null); + + return APR_SUCCESS; +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param ctx The block context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +static apr_status_t crypto_block_cleanup(apr_crypto_block_t *ctx) +{ + + if (ctx->ref) { + CCCryptorRelease(ctx->ref); + ctx->ref = NULL; + } + + return APR_SUCCESS; + +} + +static apr_status_t crypto_block_cleanup_helper(void *data) +{ + apr_crypto_block_t *block = (apr_crypto_block_t *) data; + return crypto_block_cleanup(block); +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param f The context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +static apr_status_t crypto_cleanup(apr_crypto_t *f) +{ + + return APR_SUCCESS; + +} + +static apr_status_t crypto_cleanup_helper(void *data) +{ + apr_crypto_t *f = (apr_crypto_t *) data; + return crypto_cleanup(f); +} + +/** + * @brief Create a context for supporting encryption. Keys, certificates, + * algorithms and other parameters will be set per context. More than + * one context can be created at one time. A cleanup will be automatically + * registered with the given pool to guarantee a graceful shutdown. + * @param f - context pointer will be written here + * @param provider - provider to use + * @param params - array of key parameters + * @param pool - process pool + * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE + * if the engine cannot be initialised. + */ +static apr_status_t crypto_make(apr_crypto_t **ff, + const apr_crypto_driver_t *provider, const char *params, + apr_pool_t *pool) +{ + apr_crypto_t *f = apr_pcalloc(pool, sizeof(apr_crypto_t)); + apr_status_t rv; + + if (!f) { + return APR_ENOMEM; + } + *ff = f; + f->pool = pool; + f->provider = provider; + + /* seed the secure random number generator */ + f->rng = apr_random_standard_new(pool); + if (!f->rng) { + return APR_ENOMEM; + } + do { + unsigned char seed[8]; + rv = apr_generate_random_bytes(seed, sizeof(seed)); + if (rv != APR_SUCCESS) { + return rv; + } + apr_random_add_entropy(f->rng, seed, sizeof(seed)); + rv = apr_random_secure_ready(f->rng); + } while (rv == APR_ENOTENOUGHENTROPY); + + f->result = apr_pcalloc(pool, sizeof(apu_err_t)); + if (!f->result) { + return APR_ENOMEM; + } + + f->types = apr_hash_make(pool); + if (!f->types) { + return APR_ENOMEM; + } + apr_hash_set(f->types, "3des192", APR_HASH_KEY_STRING, &(key_types[0])); + apr_hash_set(f->types, "aes128", APR_HASH_KEY_STRING, &(key_types[1])); + apr_hash_set(f->types, "aes192", APR_HASH_KEY_STRING, &(key_types[2])); + apr_hash_set(f->types, "aes256", APR_HASH_KEY_STRING, &(key_types[3])); + + f->modes = apr_hash_make(pool); + if (!f->modes) { + return APR_ENOMEM; + } + apr_hash_set(f->modes, "ecb", APR_HASH_KEY_STRING, &(key_modes[0])); + apr_hash_set(f->modes, "cbc", APR_HASH_KEY_STRING, &(key_modes[1])); + + apr_pool_cleanup_register(pool, f, crypto_cleanup_helper, + apr_pool_cleanup_null); + + return APR_SUCCESS; + +} + +/** + * @brief Get a hash table of key types, keyed by the name of the type against + * a pointer to apr_crypto_block_key_type_t. + * + * @param types - hashtable of key types keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +static apr_status_t crypto_get_block_key_types(apr_hash_t **types, + const apr_crypto_t *f) +{ + *types = f->types; + return APR_SUCCESS; +} + +/** + * @brief Get a hash table of key modes, keyed by the name of the mode against + * a pointer to apr_crypto_block_key_mode_t. + * + * @param modes - hashtable of key modes keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +static apr_status_t crypto_get_block_key_modes(apr_hash_t **modes, + const apr_crypto_t *f) +{ + *modes = f->modes; + return APR_SUCCESS; +} + +/* + * Work out which mechanism to use. + */ +static apr_status_t crypto_cipher_mechanism(apr_crypto_key_t *key, + const apr_crypto_block_key_type_e type, + const apr_crypto_block_key_mode_e mode, const int doPad, apr_pool_t *p) +{ + /* handle padding */ + key->options = doPad ? kCCOptionPKCS7Padding : 0; + + /* determine the algorithm to be used */ + switch (type) { + + case (APR_KEY_3DES_192): + + /* A 3DES key */ + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithm3DES; + key->keyLen = kCCKeySize3DES; + key->ivSize = kCCBlockSize3DES; + key->blockSize = kCCBlockSize3DES; + } + else { + key->algorithm = kCCAlgorithm3DES; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySize3DES; + key->ivSize = 0; + key->blockSize = kCCBlockSize3DES; + } + break; + + case (APR_KEY_AES_128): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES128; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES128; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + case (APR_KEY_AES_192): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES192; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES192; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + case (APR_KEY_AES_256): + + if (mode == APR_MODE_CBC) { + key->algorithm = kCCAlgorithmAES128; + key->keyLen = kCCKeySizeAES256; + key->ivSize = kCCBlockSizeAES128; + key->blockSize = kCCBlockSizeAES128; + } + else { + key->algorithm = kCCAlgorithmAES128; + key->options += kCCOptionECBMode; + key->keyLen = kCCKeySizeAES256; + key->ivSize = 0; + key->blockSize = kCCBlockSizeAES128; + } + break; + + default: + + /* TODO: Support CAST, Blowfish */ + + /* unknown key type, give up */ + return APR_EKEYTYPE; + + } + + /* make space for the key */ + key->key = apr_palloc(p, key->keyLen); + if (!key->key) { + return APR_ENOMEM; + } + apr_crypto_clear(p, key->key, key->keyLen); + + return APR_SUCCESS; +} + +/** + * @brief Create a key from the provided secret or passphrase. The key is cleaned + * up when the context is cleaned, and may be reused with multiple encryption + * or decryption operations. + * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If + * *key is not NULL, *key must point at a previously created structure. + * @param key The key returned, see note. + * @param rec The key record, from which the key will be derived. + * @param f The context to use. + * @param p The pool to use. + * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend + * error occurred while generating the key. APR_ENOCIPHER if the type or mode + * is not supported by the particular backend. APR_EKEYTYPE if the key type is + * not known. APR_EPADDING if padding was requested but is not supported. + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_key(apr_crypto_key_t **k, + const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p) +{ + apr_status_t rv; + apr_crypto_key_t *key = *k; + + if (!key) { + *k = key = apr_pcalloc(p, sizeof *key); + } + if (!key) { + return APR_ENOMEM; + } + + key->f = f; + key->provider = f->provider; + + /* decide on what cipher mechanism we will be using */ + rv = crypto_cipher_mechanism(key, rec->type, rec->mode, rec->pad, p); + if (APR_SUCCESS != rv) { + return rv; + } + + switch (rec->ktype) { + + case APR_CRYPTO_KTYPE_PASSPHRASE: { + + /* generate the key */ + if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, + rec->k.passphrase.pass, rec->k.passphrase.passLen, + rec->k.passphrase.salt, rec->k.passphrase.saltLen, + kCCPRFHmacAlgSHA1, rec->k.passphrase.iterations, key->key, + key->keyLen)) == kCCParamError) { + return APR_ENOKEY; + } + + break; + } + + case APR_CRYPTO_KTYPE_SECRET: { + + /* sanity check - key correct size? */ + if (rec->k.secret.secretLen != key->keyLen) { + return APR_EKEYLENGTH; + } + + /* copy the key */ + memcpy(key->key, rec->k.secret.secret, rec->k.secret.secretLen); + + break; + } + + default: { + + return APR_ENOKEY; + + } + } + + return APR_SUCCESS; +} + +/** + * @brief Create a key from the given passphrase. By default, the PBKDF2 + * algorithm is used to generate the key from the passphrase. It is expected + * that the same pass phrase will generate the same key, regardless of the + * backend crypto platform used. The key is cleaned up when the context + * is cleaned, and may be reused with multiple encryption or decryption + * operations. + * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If + * *key is not NULL, *key must point at a previously created structure. + * @param key The key returned, see note. + * @param ivSize The size of the initialisation vector will be returned, based + * on whether an IV is relevant for this type of crypto. + * @param pass The passphrase to use. + * @param passLen The passphrase length in bytes + * @param salt The salt to use. + * @param saltLen The salt length in bytes + * @param type 3DES_192, AES_128, AES_192, AES_256. + * @param mode Electronic Code Book / Cipher Block Chaining. + * @param doPad Pad if necessary. + * @param iterations Iteration count + * @param f The context to use. + * @param p The pool to use. + * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend + * error occurred while generating the key. APR_ENOCIPHER if the type or mode + * is not supported by the particular backend. APR_EKEYTYPE if the key type is + * not known. APR_EPADDING if padding was requested but is not supported. + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_passphrase(apr_crypto_key_t **k, apr_size_t *ivSize, + const char *pass, apr_size_t passLen, const unsigned char * salt, + apr_size_t saltLen, const apr_crypto_block_key_type_e type, + const apr_crypto_block_key_mode_e mode, const int doPad, + const int iterations, const apr_crypto_t *f, apr_pool_t *p) +{ + apr_status_t rv; + apr_crypto_key_t *key = *k; + + if (!key) { + *k = key = apr_pcalloc(p, sizeof *key); + if (!key) { + return APR_ENOMEM; + } + } + + key->f = f; + key->provider = f->provider; + + /* decide on what cipher mechanism we will be using */ + rv = crypto_cipher_mechanism(key, type, mode, doPad, p); + if (APR_SUCCESS != rv) { + return rv; + } + + /* generate the key */ + if ((f->result->rc = CCKeyDerivationPBKDF(kCCPBKDF2, pass, passLen, salt, + saltLen, kCCPRFHmacAlgSHA1, iterations, key->key, key->keyLen)) + == kCCParamError) { + return APR_ENOKEY; + } + + if (ivSize) { + *ivSize = key->ivSize; + } + + return APR_SUCCESS; +} + +/** + * @brief Initialise a context for encrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param iv Optional initialisation vector. If the buffer pointed to is NULL, + * an IV will be created at random, in space allocated from the pool. + * If the buffer pointed to is not NULL, the IV in the buffer will be + * used. + * @param key The key structure. + * @param blockSize The block size of the cipher. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_encrypt_init(apr_crypto_block_t **ctx, + const unsigned char **iv, const apr_crypto_key_t *key, + apr_size_t *blockSize, apr_pool_t *p) +{ + unsigned char *usedIv; + apr_crypto_block_t *block = *ctx; + if (!block) { + *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); + } + if (!block) { + return APR_ENOMEM; + } + block->f = key->f; + block->pool = p; + block->provider = key->provider; + block->key = key; + + apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, + apr_pool_cleanup_null); + + /* generate an IV, if necessary */ + usedIv = NULL; + if (key->ivSize) { + if (iv == NULL) { + return APR_ENOIV; + } + if (*iv == NULL) { + apr_status_t status; + usedIv = apr_pcalloc(p, key->ivSize); + if (!usedIv) { + return APR_ENOMEM; + } + apr_crypto_clear(p, usedIv, key->ivSize); + status = apr_random_secure_bytes(block->f->rng, usedIv, + key->ivSize); + if (APR_SUCCESS != status) { + return status; + } + *iv = usedIv; + } + else { + usedIv = (unsigned char *) *iv; + } + } + + /* create a new context for encryption */ + switch ((block->f->result->rc = CCCryptorCreate(kCCEncrypt, key->algorithm, + key->options, key->key, key->keyLen, usedIv, &block->ref))) { + case kCCSuccess: { + break; + } + case kCCParamError: { + return APR_EINIT; + } + case kCCMemoryFailure: { + return APR_ENOMEM; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCUnimplemented: { + return APR_ENOTIMPL; + } + default: { + return APR_EINIT; + } + } + + if (blockSize) { + *blockSize = key->blockSize; + } + + return APR_SUCCESS; + +} + +/** + * @brief Encrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_encrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +static apr_status_t crypto_block_encrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + apr_size_t outl = *outlen; + unsigned char *buffer; + + /* are we after the maximum size of the out buffer? */ + if (!out) { + *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + return APR_SUCCESS; + } + + /* must we allocate the output buffer from a pool? */ + if (!*out) { + outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + buffer = apr_palloc(ctx->pool, outl); + if (!buffer) { + return APR_ENOMEM; + } + apr_crypto_clear(ctx->pool, buffer, outl); + *out = buffer; + } + + switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out), + outl, &outl))) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + default: { + return APR_ECRYPT; + } + } + *outlen = outl; + + return APR_SUCCESS; + +} + +/** + * @brief Encrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_encrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_encrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_encrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_encrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + apr_size_t len = *outlen; + + ctx->f->result->rc = CCCryptorFinal(ctx->ref, out, + CCCryptorGetOutputLength(ctx->ref, 0, 1), &len); + + /* always clean up */ + crypto_block_cleanup(ctx); + + switch (ctx->f->result->rc) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCDecodeError: { + return APR_ECRYPT; + } + default: { + return APR_ECRYPT; + } + } + *outlen = len; + + return APR_SUCCESS; + +} + +/** + * @brief Initialise a context for decrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param blockSize The block size of the cipher. + * @param iv Optional initialisation vector. If the buffer pointed to is NULL, + * an IV will be created at random, in space allocated from the pool. + * If the buffer is not NULL, the IV in the buffer will be used. + * @param key The key structure. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_decrypt_init(apr_crypto_block_t **ctx, + apr_size_t *blockSize, const unsigned char *iv, + const apr_crypto_key_t *key, apr_pool_t *p) +{ + apr_crypto_block_t *block = *ctx; + if (!block) { + *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); + } + if (!block) { + return APR_ENOMEM; + } + block->f = key->f; + block->pool = p; + block->provider = key->provider; + + apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, + apr_pool_cleanup_null); + + /* generate an IV, if necessary */ + if (key->ivSize) { + if (iv == NULL) { + return APR_ENOIV; + } + } + + /* create a new context for decryption */ + switch ((block->f->result->rc = CCCryptorCreate(kCCDecrypt, key->algorithm, + key->options, key->key, key->keyLen, iv, &block->ref))) { + case kCCSuccess: { + break; + } + case kCCParamError: { + return APR_EINIT; + } + case kCCMemoryFailure: { + return APR_ENOMEM; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCUnimplemented: { + return APR_ENOTIMPL; + } + default: { + return APR_EINIT; + } + } + + if (blockSize) { + *blockSize = key->blockSize; + } + + return APR_SUCCESS; + +} + +/** + * @brief Decrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_decrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +static apr_status_t crypto_block_decrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + apr_size_t outl = *outlen; + unsigned char *buffer; + + /* are we after the maximum size of the out buffer? */ + if (!out) { + *outlen = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + return APR_SUCCESS; + } + + /* must we allocate the output buffer from a pool? */ + if (!*out) { + outl = CCCryptorGetOutputLength(ctx->ref, inlen, 1); + buffer = apr_palloc(ctx->pool, outl); + if (!buffer) { + return APR_ENOMEM; + } + apr_crypto_clear(ctx->pool, buffer, outl); + *out = buffer; + } + + switch ((ctx->f->result->rc = CCCryptorUpdate(ctx->ref, in, inlen, (*out), + outl, &outl))) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + default: { + return APR_ECRYPT; + } + } + *outlen = outl; + + return APR_SUCCESS; + +} + +/** + * @brief Decrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_decrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_decrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_decrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +static apr_status_t crypto_block_decrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + apr_size_t len = *outlen; + + ctx->f->result->rc = CCCryptorFinal(ctx->ref, out, + CCCryptorGetOutputLength(ctx->ref, 0, 1), &len); + + /* always clean up */ + crypto_block_cleanup(ctx); + + switch (ctx->f->result->rc) { + case kCCSuccess: { + break; + } + case kCCBufferTooSmall: { + return APR_ENOSPACE; + } + case kCCAlignmentError: { + return APR_EPADDING; + } + case kCCDecodeError: { + return APR_ECRYPT; + } + default: { + return APR_ECRYPT; + } + } + *outlen = len; + + return APR_SUCCESS; + +} + +/** + * OSX Common Crypto module. + */ +APU_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_commoncrypto_driver = +{ + "commoncrypto", crypto_init, crypto_make, crypto_get_block_key_types, + crypto_get_block_key_modes, crypto_passphrase, + crypto_block_encrypt_init, crypto_block_encrypt, + crypto_block_encrypt_finish, crypto_block_decrypt_init, + crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup, + crypto_cleanup, crypto_shutdown, crypto_error, crypto_key +}; + +#endif |