diff options
Diffstat (limited to '')
-rw-r--r-- | crypto/apr_crypto.c | 608 |
1 files changed, 608 insertions, 0 deletions
diff --git a/crypto/apr_crypto.c b/crypto/apr_crypto.c new file mode 100644 index 0000000..9ba190e --- /dev/null +++ b/crypto/apr_crypto.c @@ -0,0 +1,608 @@ +/* Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <ctype.h> +#include <stdio.h> + +#include "apu_config.h" +#include "apu.h" +#include "apr_pools.h" +#include "apr_dso.h" +#include "apr_strings.h" +#include "apr_hash.h" +#include "apr_thread_mutex.h" +#include "apr_lib.h" + +#if APU_HAVE_CRYPTO + +#include "apu_internal.h" +#include "apr_crypto_internal.h" +#include "apr_crypto.h" +#include "apu_version.h" + +static apr_hash_t *drivers = NULL; + +#define ERROR_SIZE 1024 + +#define CLEANUP_CAST (apr_status_t (*)(void*)) + +#define APR_TYPEDEF_STRUCT(type, incompletion) \ +struct type { \ + incompletion \ + void *unk[]; \ +}; + +APR_TYPEDEF_STRUCT(apr_crypto_t, + apr_pool_t *pool; + apr_crypto_driver_t *provider; +) + +APR_TYPEDEF_STRUCT(apr_crypto_key_t, + apr_pool_t *pool; + apr_crypto_driver_t *provider; + const apr_crypto_t *f; +) + +APR_TYPEDEF_STRUCT(apr_crypto_block_t, + apr_pool_t *pool; + apr_crypto_driver_t *provider; + const apr_crypto_t *f; +) + +typedef struct apr_crypto_clear_t { + void *buffer; + apr_size_t size; +} apr_crypto_clear_t; + +#if !APU_DSO_BUILD +#define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \ + { \ + extern const apr_crypto_driver_t driver_name; \ + apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \ + if (driver_name.init) { \ + rv = driver_name.init(pool, params, result); \ + } \ + *driver = &driver_name; \ + } +#endif + +static apr_status_t apr_crypto_term(void *ptr) +{ + /* set drivers to NULL so init can work again */ + drivers = NULL; + + /* Everything else we need is handled by cleanups registered + * when we created mutexes and loaded DSOs + */ + return APR_SUCCESS; +} + +APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool) +{ + apr_status_t ret = APR_SUCCESS; + apr_pool_t *parent; + + if (drivers != NULL) { + return APR_SUCCESS; + } + + /* Top level pool scope, need process-scope lifetime */ + for (parent = apr_pool_parent_get(pool); + parent && parent != pool; + parent = apr_pool_parent_get(pool)) + pool = parent; +#if APU_DSO_BUILD + /* deprecate in 2.0 - permit implicit initialization */ + apu_dso_init(pool); +#endif + drivers = apr_hash_make(pool); + + apr_pool_cleanup_register(pool, NULL, apr_crypto_term, + apr_pool_cleanup_null); + + return ret; +} + +static apr_status_t crypto_clear(void *ptr) +{ + apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr; + + apr_crypto_memzero(clear->buffer, clear->size); + clear->buffer = NULL; + clear->size = 0; + + return APR_SUCCESS; +} + +APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool, + void *buffer, apr_size_t size) +{ + apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t)); + + clear->buffer = buffer; + clear->size = size; + + apr_pool_cleanup_register(pool, clear, crypto_clear, + apr_pool_cleanup_null); + + return APR_SUCCESS; +} + +#if defined(HAVE_WEAK_SYMBOLS) +void apr__memzero_explicit(void *buffer, apr_size_t size); + +__attribute__ ((weak)) +void apr__memzero_explicit(void *buffer, apr_size_t size) +{ + memset(buffer, 0, size); +} +#endif + +APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size) +{ +#if defined(WIN32) + SecureZeroMemory(buffer, size); +#elif defined(HAVE_MEMSET_S) + if (size) { + return memset_s(buffer, (rsize_t)size, 0, (rsize_t)size); + } +#elif defined(HAVE_EXPLICIT_BZERO) + explicit_bzero(buffer, size); +#elif defined(HAVE_WEAK_SYMBOLS) + apr__memzero_explicit(buffer, size); +#else + apr_size_t i; + volatile unsigned char *volatile ptr = buffer; + for (i = 0; i < size; ++i) { + ptr[i] = 0; + } +#endif + return APR_SUCCESS; +} + +APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2, + apr_size_t size) +{ + const unsigned char *p1 = buf1; + const unsigned char *p2 = buf2; + unsigned char diff = 0; + apr_size_t i; + + for (i = 0; i < size; ++i) { + diff |= p1[i] ^ p2[i]; + } + + return 1 & ((diff - 1) >> 8); +} + +APU_DECLARE(apr_status_t) apr_crypto_get_driver( + const apr_crypto_driver_t **driver, const char *name, + const char *params, const apu_err_t **result, apr_pool_t *pool) +{ +#if APU_DSO_BUILD + char modname[32]; + char symname[34]; + apr_dso_handle_t *dso; + apr_dso_handle_sym_t symbol; +#endif + apr_status_t rv; + + if (result) { + *result = NULL; /* until further notice */ + } + +#if APU_DSO_BUILD + rv = apu_dso_mutex_lock(); + if (rv) { + return rv; + } +#endif + *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING); + if (*driver) { +#if APU_DSO_BUILD + apu_dso_mutex_unlock(); +#endif + return APR_SUCCESS; + } + + /* The driver must have exactly the same lifetime as the + * drivers hash table; ignore the passed-in pool */ + pool = apr_hash_pool_get(drivers); + +#if APU_DSO_BUILD +#if defined(NETWARE) + apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name); +#elif defined(WIN32) || defined(__CYGWIN__) + apr_snprintf(modname, sizeof(modname), + "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name); +#else + apr_snprintf(modname, sizeof(modname), + "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name); +#endif + apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name); + rv = apu_dso_load(&dso, &symbol, modname, symname, pool); + if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */ + apr_crypto_driver_t *d = symbol; + rv = APR_SUCCESS; + if (d->init) { + rv = d->init(pool, params, result); + } + if (APR_SUCCESS == rv) { + *driver = symbol; + name = apr_pstrdup(pool, name); + apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver); + } + } + apu_dso_mutex_unlock(); + + if (APR_SUCCESS != rv && result && !*result) { + char *buffer = apr_pcalloc(pool, ERROR_SIZE); + apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t)); + if (err && buffer) { + apr_dso_error(dso, buffer, ERROR_SIZE - 1); + err->msg = buffer; + err->reason = apr_pstrdup(pool, modname); + *result = err; + } + } + +#else /* not builtin and !APR_HAS_DSO => not implemented */ + rv = APR_ENOTIMPL; + + /* Load statically-linked drivers: */ +#if APU_HAVE_OPENSSL + if (name[0] == 'o' && !strcmp(name, "openssl")) { + DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result); + } +#endif +#if APU_HAVE_NSS + if (name[0] == 'n' && !strcmp(name, "nss")) { + DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result); + } +#endif +#if APU_HAVE_COMMONCRYPTO + if (name[0] == 'c' && !strcmp(name, "commoncrypto")) { + DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result); + } +#endif +#if APU_HAVE_MSCAPI + if (name[0] == 'm' && !strcmp(name, "mscapi")) { + DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result); + } +#endif +#if APU_HAVE_MSCNG + if (name[0] == 'm' && !strcmp(name, "mscng")) { + DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result); + } +#endif + +#endif + + return rv; +} + +/** + * @brief Return the name of the driver. + * + * @param driver - The driver in use. + * @return The name of the driver. + */ +APU_DECLARE(const char *)apr_crypto_driver_name ( + const apr_crypto_driver_t *driver) +{ + return driver->name; +} + +/** + * @brief Get the result of the last operation on a context. If the result + * is NULL, the operation was successful. + * @param result - the result structure + * @param f - context pointer + * @return APR_SUCCESS for success + */ +APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result, + const apr_crypto_t *f) +{ + return f->provider->error(result, f); +} + +/** + * @brief Create a context for supporting encryption. Keys, certificates, + * algorithms and other parameters will be set per context. More than + * one context can be created at one time. A cleanup will be automatically + * registered with the given pool to guarantee a graceful shutdown. + * @param f - context pointer will be written here + * @param driver - driver to use + * @param params - array of key parameters + * @param pool - process pool + * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE + * if the engine cannot be initialised. + * @remarks NSS: currently no params are supported. + * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal + * sign and a value. + */ +APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f, + const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool) +{ + return driver->make(f, driver, params, pool); +} + +/** + * @brief Get a hash table of key types, keyed by the name of the type against + * a pointer to apr_crypto_block_key_type_t, which in turn begins with an + * integer. + * + * @param types - hashtable of key types keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types, + const apr_crypto_t *f) +{ + return f->provider->get_block_key_types(types, f); +} + +/** + * @brief Get a hash table of key modes, keyed by the name of the mode against + * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an + * integer. + * + * @param modes - hashtable of key modes keyed to constants. + * @param f - encryption context + * @return APR_SUCCESS for success + */ +APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes, + const apr_crypto_t *f) +{ + return f->provider->get_block_key_modes(modes, f); +} + +/** + * @brief Create a key from the provided secret or passphrase. The key is cleaned + * up when the context is cleaned, and may be reused with multiple encryption + * or decryption operations. + * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If + * *key is not NULL, *key must point at a previously created structure. + * @param key The key returned, see note. + * @param rec The key record, from which the key will be derived. + * @param f The context to use. + * @param p The pool to use. + * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend + * error occurred while generating the key. APR_ENOCIPHER if the type or mode + * is not supported by the particular backend. APR_EKEYTYPE if the key type is + * not known. APR_EPADDING if padding was requested but is not supported. + * APR_ENOTIMPL if not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key, + const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p) +{ + return f->provider->key(key, rec, f, p); +} + +/** + * @brief Create a key from the given passphrase. By default, the PBKDF2 + * algorithm is used to generate the key from the passphrase. It is expected + * that the same pass phrase will generate the same key, regardless of the + * backend crypto platform used. The key is cleaned up when the context + * is cleaned, and may be reused with multiple encryption or decryption + * operations. + * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If + * *key is not NULL, *key must point at a previously created structure. + * @param key The key returned, see note. + * @param ivSize The size of the initialisation vector will be returned, based + * on whether an IV is relevant for this type of crypto. + * @param pass The passphrase to use. + * @param passLen The passphrase length in bytes + * @param salt The salt to use. + * @param saltLen The salt length in bytes + * @param type 3DES_192, AES_128, AES_192, AES_256. + * @param mode Electronic Code Book / Cipher Block Chaining. + * @param doPad Pad if necessary. + * @param iterations Number of iterations to use in algorithm + * @param f The context to use. + * @param p The pool to use. + * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend + * error occurred while generating the key. APR_ENOCIPHER if the type or mode + * is not supported by the particular backend. APR_EKEYTYPE if the key type is + * not known. APR_EPADDING if padding was requested but is not supported. + * APR_ENOTIMPL if not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key, + apr_size_t *ivSize, const char *pass, apr_size_t passLen, + const unsigned char * salt, apr_size_t saltLen, + const apr_crypto_block_key_type_e type, + const apr_crypto_block_key_mode_e mode, const int doPad, + const int iterations, const apr_crypto_t *f, apr_pool_t *p) +{ + return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen, + type, mode, doPad, iterations, f, p); +} + +/** + * @brief Initialise a context for encrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param iv Optional initialisation vector. If the buffer pointed to is NULL, + * an IV will be created at random, in space allocated from the pool. + * If the buffer pointed to is not NULL, the IV in the buffer will be + * used. + * @param key The key structure to use. + * @param blockSize The block size of the cipher. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init( + apr_crypto_block_t **ctx, const unsigned char **iv, + const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p) +{ + return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p); +} + +/** + * @brief Encrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_encrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx); +} + +/** + * @brief Encrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_encrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_encrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_encrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + return ctx->provider->block_encrypt_finish(out, outlen, ctx); +} + +/** + * @brief Initialise a context for decrypting arbitrary data using the given key. + * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If + * *ctx is not NULL, *ctx must point at a previously created structure. + * @param ctx The block context returned, see note. + * @param blockSize The block size of the cipher. + * @param iv Optional initialisation vector. + * @param key The key structure to use. + * @param p The pool to use. + * @return Returns APR_ENOIV if an initialisation vector is required but not specified. + * Returns APR_EINIT if the backend failed to initialise the context. Returns + * APR_ENOTIMPL if not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init( + apr_crypto_block_t **ctx, apr_size_t *blockSize, + const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p) +{ + return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p); +} + +/** + * @brief Decrypt data provided by in, write it to out. + * @note The number of bytes written will be written to outlen. If + * out is NULL, outlen will contain the maximum size of the + * buffer needed to hold the data, including any data + * generated by apr_crypto_block_decrypt_finish below. If *out points + * to NULL, a buffer sufficiently large will be created from + * the pool provided. If *out points to a not-NULL value, this + * value will be used as a buffer instead. + * @param out Address of a buffer to which data will be written, + * see note. + * @param outlen Length of the output will be written here. + * @param in Address of the buffer to read. + * @param inlen Length of the buffer to read. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if + * not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out, + apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, + apr_crypto_block_t *ctx) +{ + return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx); +} + +/** + * @brief Decrypt final data block, write it to out. + * @note If necessary the final block will be written out after being + * padded. Typically the final block will be written to the + * same buffer used by apr_crypto_block_decrypt, offset by the + * number of bytes returned as actually written by the + * apr_crypto_block_decrypt() call. After this call, the context + * is cleaned and can be reused by apr_crypto_block_decrypt_init(). + * @param out Address of a buffer to which data will be written. This + * buffer must already exist, and is usually the same + * buffer used by apr_evp_crypt(). See note. + * @param outlen Length of the output will be written here. + * @param ctx The block context to use. + * @return APR_ECRYPT if an error occurred. + * @return APR_EPADDING if padding was enabled and the block was incorrectly + * formatted. + * @return APR_ENOTIMPL if not implemented. + */ +APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out, + apr_size_t *outlen, apr_crypto_block_t *ctx) +{ + return ctx->provider->block_decrypt_finish(out, outlen, ctx); +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param ctx The block context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx) +{ + return ctx->provider->block_cleanup(ctx); +} + +/** + * @brief Clean encryption / decryption context. + * @note After cleanup, a context is free to be reused if necessary. + * @param f The context to use. + * @return Returns APR_ENOTIMPL if not supported. + */ +APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f) +{ + return f->provider->cleanup(f); +} + +/** + * @brief Shutdown the crypto library. + * @note After shutdown, it is expected that the init function can be called again. + * @param driver - driver to use + * @return Returns APR_ENOTIMPL if not supported. + */ +APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver) +{ + return driver->shutdown(); +} + +#endif /* APU_HAVE_CRYPTO */ |