summaryrefslogtreecommitdiffstats
path: root/crypto/apr_crypto.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--crypto/apr_crypto.c608
1 files changed, 608 insertions, 0 deletions
diff --git a/crypto/apr_crypto.c b/crypto/apr_crypto.c
new file mode 100644
index 0000000..9ba190e
--- /dev/null
+++ b/crypto/apr_crypto.c
@@ -0,0 +1,608 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <ctype.h>
+#include <stdio.h>
+
+#include "apu_config.h"
+#include "apu.h"
+#include "apr_pools.h"
+#include "apr_dso.h"
+#include "apr_strings.h"
+#include "apr_hash.h"
+#include "apr_thread_mutex.h"
+#include "apr_lib.h"
+
+#if APU_HAVE_CRYPTO
+
+#include "apu_internal.h"
+#include "apr_crypto_internal.h"
+#include "apr_crypto.h"
+#include "apu_version.h"
+
+static apr_hash_t *drivers = NULL;
+
+#define ERROR_SIZE 1024
+
+#define CLEANUP_CAST (apr_status_t (*)(void*))
+
+#define APR_TYPEDEF_STRUCT(type, incompletion) \
+struct type { \
+ incompletion \
+ void *unk[]; \
+};
+
+APR_TYPEDEF_STRUCT(apr_crypto_t,
+ apr_pool_t *pool;
+ apr_crypto_driver_t *provider;
+)
+
+APR_TYPEDEF_STRUCT(apr_crypto_key_t,
+ apr_pool_t *pool;
+ apr_crypto_driver_t *provider;
+ const apr_crypto_t *f;
+)
+
+APR_TYPEDEF_STRUCT(apr_crypto_block_t,
+ apr_pool_t *pool;
+ apr_crypto_driver_t *provider;
+ const apr_crypto_t *f;
+)
+
+typedef struct apr_crypto_clear_t {
+ void *buffer;
+ apr_size_t size;
+} apr_crypto_clear_t;
+
+#if !APU_DSO_BUILD
+#define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \
+ { \
+ extern const apr_crypto_driver_t driver_name; \
+ apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \
+ if (driver_name.init) { \
+ rv = driver_name.init(pool, params, result); \
+ } \
+ *driver = &driver_name; \
+ }
+#endif
+
+static apr_status_t apr_crypto_term(void *ptr)
+{
+ /* set drivers to NULL so init can work again */
+ drivers = NULL;
+
+ /* Everything else we need is handled by cleanups registered
+ * when we created mutexes and loaded DSOs
+ */
+ return APR_SUCCESS;
+}
+
+APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool)
+{
+ apr_status_t ret = APR_SUCCESS;
+ apr_pool_t *parent;
+
+ if (drivers != NULL) {
+ return APR_SUCCESS;
+ }
+
+ /* Top level pool scope, need process-scope lifetime */
+ for (parent = apr_pool_parent_get(pool);
+ parent && parent != pool;
+ parent = apr_pool_parent_get(pool))
+ pool = parent;
+#if APU_DSO_BUILD
+ /* deprecate in 2.0 - permit implicit initialization */
+ apu_dso_init(pool);
+#endif
+ drivers = apr_hash_make(pool);
+
+ apr_pool_cleanup_register(pool, NULL, apr_crypto_term,
+ apr_pool_cleanup_null);
+
+ return ret;
+}
+
+static apr_status_t crypto_clear(void *ptr)
+{
+ apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr;
+
+ apr_crypto_memzero(clear->buffer, clear->size);
+ clear->buffer = NULL;
+ clear->size = 0;
+
+ return APR_SUCCESS;
+}
+
+APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool,
+ void *buffer, apr_size_t size)
+{
+ apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t));
+
+ clear->buffer = buffer;
+ clear->size = size;
+
+ apr_pool_cleanup_register(pool, clear, crypto_clear,
+ apr_pool_cleanup_null);
+
+ return APR_SUCCESS;
+}
+
+#if defined(HAVE_WEAK_SYMBOLS)
+void apr__memzero_explicit(void *buffer, apr_size_t size);
+
+__attribute__ ((weak))
+void apr__memzero_explicit(void *buffer, apr_size_t size)
+{
+ memset(buffer, 0, size);
+}
+#endif
+
+APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size)
+{
+#if defined(WIN32)
+ SecureZeroMemory(buffer, size);
+#elif defined(HAVE_MEMSET_S)
+ if (size) {
+ return memset_s(buffer, (rsize_t)size, 0, (rsize_t)size);
+ }
+#elif defined(HAVE_EXPLICIT_BZERO)
+ explicit_bzero(buffer, size);
+#elif defined(HAVE_WEAK_SYMBOLS)
+ apr__memzero_explicit(buffer, size);
+#else
+ apr_size_t i;
+ volatile unsigned char *volatile ptr = buffer;
+ for (i = 0; i < size; ++i) {
+ ptr[i] = 0;
+ }
+#endif
+ return APR_SUCCESS;
+}
+
+APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2,
+ apr_size_t size)
+{
+ const unsigned char *p1 = buf1;
+ const unsigned char *p2 = buf2;
+ unsigned char diff = 0;
+ apr_size_t i;
+
+ for (i = 0; i < size; ++i) {
+ diff |= p1[i] ^ p2[i];
+ }
+
+ return 1 & ((diff - 1) >> 8);
+}
+
+APU_DECLARE(apr_status_t) apr_crypto_get_driver(
+ const apr_crypto_driver_t **driver, const char *name,
+ const char *params, const apu_err_t **result, apr_pool_t *pool)
+{
+#if APU_DSO_BUILD
+ char modname[32];
+ char symname[34];
+ apr_dso_handle_t *dso;
+ apr_dso_handle_sym_t symbol;
+#endif
+ apr_status_t rv;
+
+ if (result) {
+ *result = NULL; /* until further notice */
+ }
+
+#if APU_DSO_BUILD
+ rv = apu_dso_mutex_lock();
+ if (rv) {
+ return rv;
+ }
+#endif
+ *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING);
+ if (*driver) {
+#if APU_DSO_BUILD
+ apu_dso_mutex_unlock();
+#endif
+ return APR_SUCCESS;
+ }
+
+ /* The driver must have exactly the same lifetime as the
+ * drivers hash table; ignore the passed-in pool */
+ pool = apr_hash_pool_get(drivers);
+
+#if APU_DSO_BUILD
+#if defined(NETWARE)
+ apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name);
+#elif defined(WIN32) || defined(__CYGWIN__)
+ apr_snprintf(modname, sizeof(modname),
+ "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name);
+#else
+ apr_snprintf(modname, sizeof(modname),
+ "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name);
+#endif
+ apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name);
+ rv = apu_dso_load(&dso, &symbol, modname, symname, pool);
+ if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */
+ apr_crypto_driver_t *d = symbol;
+ rv = APR_SUCCESS;
+ if (d->init) {
+ rv = d->init(pool, params, result);
+ }
+ if (APR_SUCCESS == rv) {
+ *driver = symbol;
+ name = apr_pstrdup(pool, name);
+ apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver);
+ }
+ }
+ apu_dso_mutex_unlock();
+
+ if (APR_SUCCESS != rv && result && !*result) {
+ char *buffer = apr_pcalloc(pool, ERROR_SIZE);
+ apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
+ if (err && buffer) {
+ apr_dso_error(dso, buffer, ERROR_SIZE - 1);
+ err->msg = buffer;
+ err->reason = apr_pstrdup(pool, modname);
+ *result = err;
+ }
+ }
+
+#else /* not builtin and !APR_HAS_DSO => not implemented */
+ rv = APR_ENOTIMPL;
+
+ /* Load statically-linked drivers: */
+#if APU_HAVE_OPENSSL
+ if (name[0] == 'o' && !strcmp(name, "openssl")) {
+ DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result);
+ }
+#endif
+#if APU_HAVE_NSS
+ if (name[0] == 'n' && !strcmp(name, "nss")) {
+ DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result);
+ }
+#endif
+#if APU_HAVE_COMMONCRYPTO
+ if (name[0] == 'c' && !strcmp(name, "commoncrypto")) {
+ DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result);
+ }
+#endif
+#if APU_HAVE_MSCAPI
+ if (name[0] == 'm' && !strcmp(name, "mscapi")) {
+ DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result);
+ }
+#endif
+#if APU_HAVE_MSCNG
+ if (name[0] == 'm' && !strcmp(name, "mscng")) {
+ DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result);
+ }
+#endif
+
+#endif
+
+ return rv;
+}
+
+/**
+ * @brief Return the name of the driver.
+ *
+ * @param driver - The driver in use.
+ * @return The name of the driver.
+ */
+APU_DECLARE(const char *)apr_crypto_driver_name (
+ const apr_crypto_driver_t *driver)
+{
+ return driver->name;
+}
+
+/**
+ * @brief Get the result of the last operation on a context. If the result
+ * is NULL, the operation was successful.
+ * @param result - the result structure
+ * @param f - context pointer
+ * @return APR_SUCCESS for success
+ */
+APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result,
+ const apr_crypto_t *f)
+{
+ return f->provider->error(result, f);
+}
+
+/**
+ * @brief Create a context for supporting encryption. Keys, certificates,
+ * algorithms and other parameters will be set per context. More than
+ * one context can be created at one time. A cleanup will be automatically
+ * registered with the given pool to guarantee a graceful shutdown.
+ * @param f - context pointer will be written here
+ * @param driver - driver to use
+ * @param params - array of key parameters
+ * @param pool - process pool
+ * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
+ * if the engine cannot be initialised.
+ * @remarks NSS: currently no params are supported.
+ * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal
+ * sign and a value.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f,
+ const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool)
+{
+ return driver->make(f, driver, params, pool);
+}
+
+/**
+ * @brief Get a hash table of key types, keyed by the name of the type against
+ * a pointer to apr_crypto_block_key_type_t, which in turn begins with an
+ * integer.
+ *
+ * @param types - hashtable of key types keyed to constants.
+ * @param f - encryption context
+ * @return APR_SUCCESS for success
+ */
+APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types,
+ const apr_crypto_t *f)
+{
+ return f->provider->get_block_key_types(types, f);
+}
+
+/**
+ * @brief Get a hash table of key modes, keyed by the name of the mode against
+ * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an
+ * integer.
+ *
+ * @param modes - hashtable of key modes keyed to constants.
+ * @param f - encryption context
+ * @return APR_SUCCESS for success
+ */
+APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes,
+ const apr_crypto_t *f)
+{
+ return f->provider->get_block_key_modes(modes, f);
+}
+
+/**
+ * @brief Create a key from the provided secret or passphrase. The key is cleaned
+ * up when the context is cleaned, and may be reused with multiple encryption
+ * or decryption operations.
+ * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
+ * *key is not NULL, *key must point at a previously created structure.
+ * @param key The key returned, see note.
+ * @param rec The key record, from which the key will be derived.
+ * @param f The context to use.
+ * @param p The pool to use.
+ * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
+ * error occurred while generating the key. APR_ENOCIPHER if the type or mode
+ * is not supported by the particular backend. APR_EKEYTYPE if the key type is
+ * not known. APR_EPADDING if padding was requested but is not supported.
+ * APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key,
+ const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
+{
+ return f->provider->key(key, rec, f, p);
+}
+
+/**
+ * @brief Create a key from the given passphrase. By default, the PBKDF2
+ * algorithm is used to generate the key from the passphrase. It is expected
+ * that the same pass phrase will generate the same key, regardless of the
+ * backend crypto platform used. The key is cleaned up when the context
+ * is cleaned, and may be reused with multiple encryption or decryption
+ * operations.
+ * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
+ * *key is not NULL, *key must point at a previously created structure.
+ * @param key The key returned, see note.
+ * @param ivSize The size of the initialisation vector will be returned, based
+ * on whether an IV is relevant for this type of crypto.
+ * @param pass The passphrase to use.
+ * @param passLen The passphrase length in bytes
+ * @param salt The salt to use.
+ * @param saltLen The salt length in bytes
+ * @param type 3DES_192, AES_128, AES_192, AES_256.
+ * @param mode Electronic Code Book / Cipher Block Chaining.
+ * @param doPad Pad if necessary.
+ * @param iterations Number of iterations to use in algorithm
+ * @param f The context to use.
+ * @param p The pool to use.
+ * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
+ * error occurred while generating the key. APR_ENOCIPHER if the type or mode
+ * is not supported by the particular backend. APR_EKEYTYPE if the key type is
+ * not known. APR_EPADDING if padding was requested but is not supported.
+ * APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key,
+ apr_size_t *ivSize, const char *pass, apr_size_t passLen,
+ const unsigned char * salt, apr_size_t saltLen,
+ const apr_crypto_block_key_type_e type,
+ const apr_crypto_block_key_mode_e mode, const int doPad,
+ const int iterations, const apr_crypto_t *f, apr_pool_t *p)
+{
+ return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen,
+ type, mode, doPad, iterations, f, p);
+}
+
+/**
+ * @brief Initialise a context for encrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param ctx The block context returned, see note.
+ * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
+ * an IV will be created at random, in space allocated from the pool.
+ * If the buffer pointed to is not NULL, the IV in the buffer will be
+ * used.
+ * @param key The key structure to use.
+ * @param blockSize The block size of the cipher.
+ * @param p The pool to use.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
+ apr_crypto_block_t **ctx, const unsigned char **iv,
+ const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p)
+{
+ return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p);
+}
+
+/**
+ * @brief Encrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_encrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out,
+ apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
+ apr_crypto_block_t *ctx)
+{
+ return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx);
+}
+
+/**
+ * @brief Encrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_encrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_encrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_encrypt_init().
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out,
+ apr_size_t *outlen, apr_crypto_block_t *ctx)
+{
+ return ctx->provider->block_encrypt_finish(out, outlen, ctx);
+}
+
+/**
+ * @brief Initialise a context for decrypting arbitrary data using the given key.
+ * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
+ * *ctx is not NULL, *ctx must point at a previously created structure.
+ * @param ctx The block context returned, see note.
+ * @param blockSize The block size of the cipher.
+ * @param iv Optional initialisation vector.
+ * @param key The key structure to use.
+ * @param p The pool to use.
+ * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
+ * Returns APR_EINIT if the backend failed to initialise the context. Returns
+ * APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
+ apr_crypto_block_t **ctx, apr_size_t *blockSize,
+ const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p)
+{
+ return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p);
+}
+
+/**
+ * @brief Decrypt data provided by in, write it to out.
+ * @note The number of bytes written will be written to outlen. If
+ * out is NULL, outlen will contain the maximum size of the
+ * buffer needed to hold the data, including any data
+ * generated by apr_crypto_block_decrypt_finish below. If *out points
+ * to NULL, a buffer sufficiently large will be created from
+ * the pool provided. If *out points to a not-NULL value, this
+ * value will be used as a buffer instead.
+ * @param out Address of a buffer to which data will be written,
+ * see note.
+ * @param outlen Length of the output will be written here.
+ * @param in Address of the buffer to read.
+ * @param inlen Length of the buffer to read.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
+ * not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out,
+ apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
+ apr_crypto_block_t *ctx)
+{
+ return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx);
+}
+
+/**
+ * @brief Decrypt final data block, write it to out.
+ * @note If necessary the final block will be written out after being
+ * padded. Typically the final block will be written to the
+ * same buffer used by apr_crypto_block_decrypt, offset by the
+ * number of bytes returned as actually written by the
+ * apr_crypto_block_decrypt() call. After this call, the context
+ * is cleaned and can be reused by apr_crypto_block_decrypt_init().
+ * @param out Address of a buffer to which data will be written. This
+ * buffer must already exist, and is usually the same
+ * buffer used by apr_evp_crypt(). See note.
+ * @param outlen Length of the output will be written here.
+ * @param ctx The block context to use.
+ * @return APR_ECRYPT if an error occurred.
+ * @return APR_EPADDING if padding was enabled and the block was incorrectly
+ * formatted.
+ * @return APR_ENOTIMPL if not implemented.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out,
+ apr_size_t *outlen, apr_crypto_block_t *ctx)
+{
+ return ctx->provider->block_decrypt_finish(out, outlen, ctx);
+}
+
+/**
+ * @brief Clean encryption / decryption context.
+ * @note After cleanup, a context is free to be reused if necessary.
+ * @param ctx The block context to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx)
+{
+ return ctx->provider->block_cleanup(ctx);
+}
+
+/**
+ * @brief Clean encryption / decryption context.
+ * @note After cleanup, a context is free to be reused if necessary.
+ * @param f The context to use.
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f)
+{
+ return f->provider->cleanup(f);
+}
+
+/**
+ * @brief Shutdown the crypto library.
+ * @note After shutdown, it is expected that the init function can be called again.
+ * @param driver - driver to use
+ * @return Returns APR_ENOTIMPL if not supported.
+ */
+APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver)
+{
+ return driver->shutdown();
+}
+
+#endif /* APU_HAVE_CRYPTO */