summaryrefslogtreecommitdiffstats
path: root/random/unix
diff options
context:
space:
mode:
Diffstat (limited to 'random/unix')
-rw-r--r--random/unix/apr_random.c326
-rw-r--r--random/unix/sha2.c528
-rw-r--r--random/unix/sha2.h59
-rw-r--r--random/unix/sha2_glue.c49
4 files changed, 962 insertions, 0 deletions
diff --git a/random/unix/apr_random.c b/random/unix/apr_random.c
new file mode 100644
index 0000000..9aee3e9
--- /dev/null
+++ b/random/unix/apr_random.c
@@ -0,0 +1,326 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/*
+ * See the paper "On Randomness" by Ben Laurie for an explanation of this PRNG.
+ * http://www.apache-ssl.org/randomness.pdf
+ * XXX: Is there a formal proof of this PRNG? Couldn't we use the more popular
+ * Mersenne Twister PRNG (and BSD licensed)?
+ */
+
+#include "apr.h"
+#include "apr_pools.h"
+#include "apr_random.h"
+#include "apr_thread_proc.h"
+#include <assert.h>
+
+#ifdef min
+#undef min
+#endif
+#define min(a,b) ((a) < (b) ? (a) : (b))
+
+#define APR_RANDOM_DEFAULT_POOLS 32
+#define APR_RANDOM_DEFAULT_REHASH_SIZE 1024
+#define APR_RANDOM_DEFAULT_RESEED_SIZE 32
+#define APR_RANDOM_DEFAULT_HASH_SECRET_SIZE 32
+#define APR_RANDOM_DEFAULT_G_FOR_INSECURE 32
+#define APR_RANDOM_DEFAULT_G_FOR_SECURE 320
+
+typedef struct apr_random_pool_t {
+ unsigned char *pool;
+ unsigned int bytes;
+ unsigned int pool_size;
+} apr_random_pool_t;
+
+#define hash_init(h) (h)->init(h)
+#define hash_add(h,b,n) (h)->add(h,b,n)
+#define hash_finish(h,r) (h)->finish(h,r)
+
+#define hash(h,r,b,n) hash_init(h),hash_add(h,b,n),hash_finish(h,r)
+
+#define crypt_setkey(c,k) (c)->set_key((c)->data,k)
+#define crypt_crypt(c,out,in) (c)->crypt((c)->date,out,in)
+
+struct apr_random_t {
+ apr_pool_t *apr_pool;
+ apr_crypto_hash_t *pool_hash;
+ unsigned int npools;
+ apr_random_pool_t *pools;
+ unsigned int next_pool;
+ unsigned int generation;
+ apr_size_t rehash_size;
+ apr_size_t reseed_size;
+ apr_crypto_hash_t *key_hash;
+#define K_size(g) ((g)->key_hash->size)
+ apr_crypto_hash_t *prng_hash;
+#define B_size(g) ((g)->prng_hash->size)
+
+ unsigned char *H;
+ unsigned char *H_waiting;
+#define H_size(g) (B_size(g)+K_size(g))
+#define H_current(g) (((g)->insecure_started && !(g)->secure_started) \
+ ? (g)->H_waiting : (g)->H)
+
+ unsigned char *randomness;
+ apr_size_t random_bytes;
+ unsigned int g_for_insecure;
+ unsigned int g_for_secure;
+ unsigned int secure_base;
+ unsigned int insecure_started:1;
+ unsigned int secure_started:1;
+
+ apr_random_t *next;
+};
+
+static apr_random_t *all_random;
+
+static apr_status_t random_cleanup(void *data)
+{
+ apr_random_t *remove_this = data,
+ *cur = all_random,
+ **prev_ptr = &all_random;
+ while (cur) {
+ if (cur == remove_this) {
+ *prev_ptr = cur->next;
+ break;
+ }
+ prev_ptr = &cur->next;
+ cur = cur->next;
+ }
+ return APR_SUCCESS;
+}
+
+
+APR_DECLARE(void) apr_random_init(apr_random_t *g,apr_pool_t *p,
+ apr_crypto_hash_t *pool_hash,
+ apr_crypto_hash_t *key_hash,
+ apr_crypto_hash_t *prng_hash)
+{
+ unsigned int n;
+
+ g->apr_pool = p;
+
+ g->pool_hash = pool_hash;
+ g->key_hash = key_hash;
+ g->prng_hash = prng_hash;
+
+ g->npools = APR_RANDOM_DEFAULT_POOLS;
+ g->pools = apr_palloc(p,g->npools*sizeof *g->pools);
+ for (n = 0; n < g->npools; ++n) {
+ g->pools[n].bytes = g->pools[n].pool_size = 0;
+ g->pools[n].pool = NULL;
+ }
+ g->next_pool = 0;
+
+ g->generation = 0;
+
+ g->rehash_size = APR_RANDOM_DEFAULT_REHASH_SIZE;
+ /* Ensure that the rehash size is twice the size of the pool hasher */
+ g->rehash_size = ((g->rehash_size+2*g->pool_hash->size-1)/g->pool_hash->size
+ /2)*g->pool_hash->size*2;
+ g->reseed_size = APR_RANDOM_DEFAULT_RESEED_SIZE;
+
+ g->H = apr_pcalloc(p,H_size(g));
+ g->H_waiting = apr_pcalloc(p,H_size(g));
+
+ g->randomness = apr_palloc(p,B_size(g));
+ g->random_bytes = 0;
+
+ g->g_for_insecure = APR_RANDOM_DEFAULT_G_FOR_INSECURE;
+ g->secure_base = 0;
+ g->g_for_secure = APR_RANDOM_DEFAULT_G_FOR_SECURE;
+ g->secure_started = g->insecure_started = 0;
+
+ g->next = all_random;
+ all_random = g;
+ apr_pool_cleanup_register(p, g, random_cleanup, apr_pool_cleanup_null);
+}
+
+static void mix_pid(apr_random_t *g,unsigned char *H,pid_t pid)
+{
+ hash_init(g->key_hash);
+ hash_add(g->key_hash,H,H_size(g));
+ hash_add(g->key_hash,&pid,sizeof pid);
+ hash_finish(g->key_hash,H);
+}
+
+static void mixer(apr_random_t *g,pid_t pid)
+{
+ unsigned char *H = H_current(g);
+
+ /* mix the PID into the current H */
+ mix_pid(g,H,pid);
+ /* if we are in waiting, then also mix into main H */
+ if (H != g->H)
+ mix_pid(g,g->H,pid);
+ /* change order of pool mixing for good measure - note that going
+ backwards is much better than going forwards */
+ --g->generation;
+ /* blow away any lingering randomness */
+ g->random_bytes = 0;
+}
+
+APR_DECLARE(void) apr_random_after_fork(apr_proc_t *proc)
+{
+ apr_random_t *r;
+
+ for (r = all_random; r; r = r->next)
+ /*
+ * XXX Note: the pid does not provide sufficient entropy to
+ * actually call this secure. See Ben's paper referenced at
+ * the top of this file.
+ */
+ mixer(r,proc->pid);
+}
+
+APR_DECLARE(apr_random_t *) apr_random_standard_new(apr_pool_t *p)
+{
+ apr_random_t *r = apr_palloc(p,sizeof *r);
+
+ apr_random_init(r,p,apr_crypto_sha256_new(p),apr_crypto_sha256_new(p),
+ apr_crypto_sha256_new(p));
+ return r;
+}
+
+static void rekey(apr_random_t *g)
+{
+ unsigned int n;
+ unsigned char *H = H_current(g);
+
+ hash_init(g->key_hash);
+ hash_add(g->key_hash,H,H_size(g));
+ for (n = 0 ; n < g->npools && (n == 0 || g->generation&(1 << (n-1)))
+ ; ++n) {
+ hash_add(g->key_hash,g->pools[n].pool,g->pools[n].bytes);
+ g->pools[n].bytes = 0;
+ }
+ hash_finish(g->key_hash,H+B_size(g));
+
+ ++g->generation;
+ if (!g->insecure_started && g->generation > g->g_for_insecure) {
+ g->insecure_started = 1;
+ if (!g->secure_started) {
+ memcpy(g->H_waiting,g->H,H_size(g));
+ g->secure_base = g->generation;
+ }
+ }
+
+ if (!g->secure_started && g->generation > g->secure_base+g->g_for_secure) {
+ g->secure_started = 1;
+ memcpy(g->H,g->H_waiting,H_size(g));
+ }
+}
+
+APR_DECLARE(void) apr_random_add_entropy(apr_random_t *g,const void *entropy_,
+ apr_size_t bytes)
+{
+ unsigned int n;
+ const unsigned char *entropy = entropy_;
+
+ for (n = 0; n < bytes; ++n) {
+ apr_random_pool_t *p = &g->pools[g->next_pool];
+
+ if (++g->next_pool == g->npools)
+ g->next_pool = 0;
+
+ if (p->pool_size < p->bytes+1) {
+ unsigned char *np = apr_palloc(g->apr_pool,(p->bytes+1)*2);
+
+ if (p->pool) memcpy(np,p->pool,p->bytes);
+ p->pool = np;
+ p->pool_size = (p->bytes+1)*2;
+ }
+ p->pool[p->bytes++] = entropy[n];
+
+ if (p->bytes == g->rehash_size) {
+ apr_size_t r;
+
+ for (r = 0; r < p->bytes/2; r+=g->pool_hash->size)
+ hash(g->pool_hash,p->pool+r,p->pool+r*2,g->pool_hash->size*2);
+ p->bytes/=2;
+ }
+ assert(p->bytes < g->rehash_size);
+ }
+
+ if (g->pools[0].bytes >= g->reseed_size)
+ rekey(g);
+}
+
+/* This will give g->B_size bytes of randomness */
+static void apr_random_block(apr_random_t *g,unsigned char *random)
+{
+ /* FIXME: in principle, these are different hashes */
+ hash(g->prng_hash,g->H,g->H,H_size(g));
+ hash(g->prng_hash,random,g->H,B_size(g));
+}
+
+static void apr_random_bytes(apr_random_t *g,unsigned char *random,
+ apr_size_t bytes)
+{
+ apr_size_t n;
+
+ for (n = 0; n < bytes; ) {
+ apr_size_t l;
+
+ if (g->random_bytes == 0) {
+ apr_random_block(g,g->randomness);
+ g->random_bytes = B_size(g);
+ }
+ l = min(bytes-n,g->random_bytes);
+ memcpy(&random[n],g->randomness+B_size(g)-g->random_bytes,l);
+ g->random_bytes-=l;
+ n+=l;
+ }
+}
+
+APR_DECLARE(apr_status_t) apr_random_secure_bytes(apr_random_t *g,
+ void *random,
+ apr_size_t bytes)
+{
+ if (!g->secure_started)
+ return APR_ENOTENOUGHENTROPY;
+ apr_random_bytes(g,random,bytes);
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(apr_status_t) apr_random_insecure_bytes(apr_random_t *g,
+ void *random,
+ apr_size_t bytes)
+{
+ if (!g->insecure_started)
+ return APR_ENOTENOUGHENTROPY;
+ apr_random_bytes(g,random,bytes);
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(void) apr_random_barrier(apr_random_t *g)
+{
+ g->secure_started = 0;
+ g->secure_base = g->generation;
+}
+
+APR_DECLARE(apr_status_t) apr_random_secure_ready(apr_random_t *r)
+{
+ if (!r->secure_started)
+ return APR_ENOTENOUGHENTROPY;
+ return APR_SUCCESS;
+}
+
+APR_DECLARE(apr_status_t) apr_random_insecure_ready(apr_random_t *r)
+{
+ if (!r->insecure_started)
+ return APR_ENOTENOUGHENTROPY;
+ return APR_SUCCESS;
+}
diff --git a/random/unix/sha2.c b/random/unix/sha2.c
new file mode 100644
index 0000000..8059a9d
--- /dev/null
+++ b/random/unix/sha2.c
@@ -0,0 +1,528 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/*
+ * FILE: sha2.c
+ * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
+ *
+ * A licence was granted to the ASF by Aaron on 4 November 2003.
+ */
+
+#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
+#include <assert.h> /* assert() */
+#include "sha2.h"
+
+/*
+ * ASSERT NOTE:
+ * Some sanity checking code is included using assert(). On my FreeBSD
+ * system, this additional code can be removed by compiling with NDEBUG
+ * defined. Check your own systems manpage on assert() to see how to
+ * compile WITHOUT the sanity checking code on your system.
+ *
+ * UNROLLED TRANSFORM LOOP NOTE:
+ * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
+ * loop version for the hash transform rounds (defined using macros
+ * later in this file). Either define on the command line, for example:
+ *
+ * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
+ *
+ * or define below:
+ *
+ * #define SHA2_UNROLL_TRANSFORM
+ *
+ */
+
+/*** SHA-256/384/512 Machine Architecture Definitions *****************/
+typedef apr_byte_t sha2_byte; /* Exactly 1 byte */
+typedef apr_uint32_t sha2_word32; /* Exactly 4 bytes */
+typedef apr_uint64_t sha2_word64; /* Exactly 8 bytes */
+
+/*** SHA-256/384/512 Various Length Definitions ***********************/
+/* NOTE: Most of these are in sha2.h */
+#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
+
+
+/*** ENDIAN REVERSAL MACROS *******************************************/
+#if !APR_IS_BIGENDIAN
+#define REVERSE32(w,x) { \
+ sha2_word32 tmp = (w); \
+ tmp = (tmp >> 16) | (tmp << 16); \
+ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
+}
+#define REVERSE64(w,x) { \
+ sha2_word64 tmp = (w); \
+ tmp = (tmp >> 32) | (tmp << 32); \
+ tmp = ((tmp & APR_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \
+ ((tmp & APR_UINT64_C(0x00ff00ff00ff00ff)) << 8); \
+ (x) = ((tmp & APR_UINT64_C(0xffff0000ffff0000)) >> 16) | \
+ ((tmp & APR_UINT64_C(0x0000ffff0000ffff)) << 16); \
+}
+#endif /* !APR_IS_BIGENDIAN */
+
+/*
+ * Macro for incrementally adding the unsigned 64-bit integer n to the
+ * unsigned 128-bit integer (represented using a two-element array of
+ * 64-bit words):
+ */
+#define ADDINC128(w,n) { \
+ (w)[0] += (sha2_word64)(n); \
+ if ((w)[0] < (n)) { \
+ (w)[1]++; \
+ } \
+}
+
+/*
+ * Macros for copying blocks of memory and for zeroing out ranges
+ * of memory. Using these macros makes it easy to switch from
+ * using memset()/memcpy() and using bzero()/bcopy().
+ *
+ * Please define either SHA2_USE_MEMSET_MEMCPY or define
+ * SHA2_USE_BZERO_BCOPY depending on which function set you
+ * choose to use:
+ */
+#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
+/* Default to memset()/memcpy() if no option is specified */
+#define SHA2_USE_MEMSET_MEMCPY 1
+#endif
+#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
+/* Abort with an error if BOTH options are defined */
+#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
+#endif
+
+#ifdef SHA2_USE_MEMSET_MEMCPY
+#define MEMSET_BZERO(p,l) memset((p), 0, (l))
+#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
+#endif
+#ifdef SHA2_USE_BZERO_BCOPY
+#define MEMSET_BZERO(p,l) bzero((p), (l))
+#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
+#endif
+
+
+/*** THE SIX LOGICAL FUNCTIONS ****************************************/
+/*
+ * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
+ *
+ * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
+ * S is a ROTATION) because the SHA-256/384/512 description document
+ * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
+ * same "backwards" definition.
+ */
+/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
+#define R(b,x) ((x) >> (b))
+/* 32-bit Rotate-right (used in SHA-256): */
+#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
+/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
+#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
+
+/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
+#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+/* Four of six logical functions used in SHA-256: */
+#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
+#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
+#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
+#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
+
+/* Four of six logical functions used in SHA-384 and SHA-512: */
+#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
+#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
+#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
+#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
+
+/*** INTERNAL FUNCTION PROTOTYPES *************************************/
+/* NOTE: These should not be accessed directly from outside this
+ * library -- they are intended for private internal visibility/use
+ * only.
+ */
+void apr__SHA256_Transform(SHA256_CTX*, const sha2_word32*);
+
+
+/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
+/* Hash constant words K for SHA-256: */
+static const sha2_word32 K256[64] = {
+ 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
+ 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
+ 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
+ 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
+ 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
+ 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
+ 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
+ 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
+ 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
+ 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
+ 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
+ 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
+ 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
+ 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
+ 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
+ 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
+};
+
+/* Initial hash value H for SHA-256: */
+static const sha2_word32 sha256_initial_hash_value[8] = {
+ 0x6a09e667UL,
+ 0xbb67ae85UL,
+ 0x3c6ef372UL,
+ 0xa54ff53aUL,
+ 0x510e527fUL,
+ 0x9b05688cUL,
+ 0x1f83d9abUL,
+ 0x5be0cd19UL
+};
+
+/*
+ * Constant used by SHA256/384/512_End() functions for converting the
+ * digest to a readable hexadecimal character string:
+ */
+static const char *sha2_hex_digits = "0123456789abcdef";
+
+
+/*** SHA-256: *********************************************************/
+void apr__SHA256_Init(SHA256_CTX* context) {
+ if (context == (SHA256_CTX*)0) {
+ return;
+ }
+ MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
+ MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
+ context->bitcount = 0;
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-256 round macros: */
+
+#if !APR_IS_BIGENDIAN
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
+ REVERSE32(*data++, W256[j]); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ K256[j] + W256[j]; \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+
+#else /* APR_IS_BIGENDIAN */
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ K256[j] + (W256[j] = *data++); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+#endif /* APR_IS_BIGENDIAN */
+
+#define ROUND256(a,b,c,d,e,f,g,h) \
+ s0 = W256[(j+1)&0x0f]; \
+ s0 = sigma0_256(s0); \
+ s1 = W256[(j+14)&0x0f]; \
+ s1 = sigma1_256(s1); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
+
+void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+ sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word32 T1, *W256;
+ int j;
+
+ W256 = (sha2_word32*)context->buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
+ /* Rounds 0 to 15 (unrolled): */
+ ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds to 64: */
+ do {
+ ROUND256(a,b,c,d,e,f,g,h);
+ ROUND256(h,a,b,c,d,e,f,g);
+ ROUND256(g,h,a,b,c,d,e,f);
+ ROUND256(f,g,h,a,b,c,d,e);
+ ROUND256(e,f,g,h,a,b,c,d);
+ ROUND256(d,e,f,g,h,a,b,c);
+ ROUND256(c,d,e,f,g,h,a,b);
+ ROUND256(b,c,d,e,f,g,h,a);
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+ sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word32 T1, T2, *W256;
+ int j;
+
+ W256 = (sha2_word32*)context->buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
+#if !APR_IS_BIGENDIAN
+ /* Copy data while converting to host byte order */
+ REVERSE32(*data++,W256[j]);
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
+#else /* APR_IS_BIGENDIAN */
+ /* Apply the SHA-256 compression function to update a..h with copy */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
+#endif /* APR_IS_BIGENDIAN */
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W256[(j+1)&0x0f];
+ s0 = sigma0_256(s0);
+ s1 = W256[(j+14)&0x0f];
+ s1 = sigma1_256(s1);
+
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void apr__SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
+ unsigned int freespace, usedspace;
+
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
+ return;
+ }
+
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
+
+ usedspace = (unsigned int)((context->bitcount >> 3)
+ % SHA256_BLOCK_LENGTH);
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = SHA256_BLOCK_LENGTH - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
+ context->bitcount += freespace << 3;
+ len -= freespace;
+ data += freespace;
+ apr__SHA256_Transform(context, (sha2_word32*)context->buffer);
+ } else {
+ /* The buffer is not yet full */
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
+ context->bitcount += len << 3;
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= SHA256_BLOCK_LENGTH) {
+ /* Process as many complete blocks as we can */
+ apr__SHA256_Transform(context, (sha2_word32*)data);
+ context->bitcount += SHA256_BLOCK_LENGTH << 3;
+ len -= SHA256_BLOCK_LENGTH;
+ data += SHA256_BLOCK_LENGTH;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ MEMCPY_BCOPY(context->buffer, data, len);
+ context->bitcount += len << 3;
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
+}
+
+void apr__SHA256_Final(sha2_byte digest[SHA256_DIGEST_LENGTH], SHA256_CTX* context) {
+ sha2_word32 *d = (sha2_word32*)digest;
+ unsigned int usedspace;
+
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0);
+
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha2_byte*)0) {
+ usedspace = (unsigned int)((context->bitcount >> 3)
+ % SHA256_BLOCK_LENGTH);
+#if !APR_IS_BIGENDIAN
+ /* Convert FROM host byte order */
+ REVERSE64(context->bitcount,context->bitcount);
+#endif
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->buffer[usedspace++] = 0x80;
+
+ if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
+ } else {
+ if (usedspace < SHA256_BLOCK_LENGTH) {
+ MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
+ }
+ /* Do second-to-last transform: */
+ apr__SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+ }
+ } else {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+
+ /* Begin padding with a 1 bit: */
+ *context->buffer = 0x80;
+ }
+ /* Set the bit count: */
+ {
+ union dummy {
+ apr_uint64_t bitcount;
+ apr_byte_t bytes[8];
+ } bitcount;
+ bitcount.bitcount = context->bitcount;
+ MEMCPY_BCOPY(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], bitcount.bytes, 8);
+ }
+
+ /* Final transform: */
+ apr__SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+#if !APR_IS_BIGENDIAN
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < 8; j++) {
+ REVERSE32(context->state[j],context->state[j]);
+ *d++ = context->state[j];
+ }
+ }
+#else
+ MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
+#endif
+ }
+
+ /* Clean up state data: */
+ MEMSET_BZERO(context, sizeof(*context));
+ usedspace = 0;
+}
+
+char *apr__SHA256_End(SHA256_CTX* context, char buffer[SHA256_DIGEST_STRING_LENGTH]) {
+ sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0);
+
+ if (buffer != (char*)0) {
+ apr__SHA256_Final(digest, context);
+
+ for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
+ *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha2_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
+ return buffer;
+}
+
+char* apr__SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
+ SHA256_CTX context;
+
+ apr__SHA256_Init(&context);
+ apr__SHA256_Update(&context, data, len);
+ return apr__SHA256_End(&context, digest);
+}
diff --git a/random/unix/sha2.h b/random/unix/sha2.h
new file mode 100644
index 0000000..0a030d7
--- /dev/null
+++ b/random/unix/sha2.h
@@ -0,0 +1,59 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+/*
+ * FILE: sha2.h
+ * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
+ *
+ * A licence was granted to the ASF by Aaron on 4 November 2003.
+ */
+
+#ifndef __SHA2_H__
+#define __SHA2_H__
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "apr.h"
+
+/*** SHA-256 Various Length Definitions ***********************/
+#define SHA256_BLOCK_LENGTH 64
+#define SHA256_DIGEST_LENGTH 32
+#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
+
+
+/*** SHA-256/384/512 Context Structures *******************************/
+typedef struct _SHA256_CTX {
+ apr_uint32_t state[8];
+ apr_uint64_t bitcount;
+ apr_byte_t buffer[SHA256_BLOCK_LENGTH];
+} SHA256_CTX;
+
+
+/*** SHA-256/384/512 Function Prototypes ******************************/
+void apr__SHA256_Init(SHA256_CTX *);
+void apr__SHA256_Update(SHA256_CTX *, const apr_byte_t *, size_t);
+void apr__SHA256_Final(apr_byte_t [SHA256_DIGEST_LENGTH], SHA256_CTX *);
+char* apr__SHA256_End(SHA256_CTX *, char [SHA256_DIGEST_STRING_LENGTH]);
+char* apr__SHA256_Data(const apr_byte_t *, size_t,
+ char [SHA256_DIGEST_STRING_LENGTH]);
+
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#endif /* __SHA2_H__ */
+
diff --git a/random/unix/sha2_glue.c b/random/unix/sha2_glue.c
new file mode 100644
index 0000000..cb6e897
--- /dev/null
+++ b/random/unix/sha2_glue.c
@@ -0,0 +1,49 @@
+/* Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <apr.h>
+#include <apr_random.h>
+#include <apr_pools.h>
+#include "sha2.h"
+
+static void sha256_init(apr_crypto_hash_t *h)
+{
+ apr__SHA256_Init(h->data);
+}
+
+static void sha256_add(apr_crypto_hash_t *h,const void *data,
+ apr_size_t bytes)
+{
+ apr__SHA256_Update(h->data,data,bytes);
+}
+
+static void sha256_finish(apr_crypto_hash_t *h,unsigned char *result)
+{
+ apr__SHA256_Final(result,h->data);
+}
+
+APR_DECLARE(apr_crypto_hash_t *) apr_crypto_sha256_new(apr_pool_t *p)
+{
+ apr_crypto_hash_t *h=apr_palloc(p,sizeof *h);
+
+ h->data=apr_palloc(p,sizeof(SHA256_CTX));
+ h->init=sha256_init;
+ h->add=sha256_add;
+ h->finish=sha256_finish;
+ h->size=256/8;
+
+ return h;
+}