/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*Read/Write locking implementation based on the MultiLock code from * Stephen Beaulieu */ #include "apr_arch_proc_mutex.h" #include "apr_strings.h" #include "apr_portable.h" static apr_status_t _proc_mutex_cleanup(void * data) { apr_proc_mutex_t *lock = (apr_proc_mutex_t*)data; if (lock->LockCount != 0) { /* we're still locked... */ while (atomic_add(&lock->LockCount , -1) > 1){ /* OK we had more than one person waiting on the lock so * the sem is also locked. Release it until we have no more * locks left. */ release_sem (lock->Lock); } } delete_sem(lock->Lock); return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_proc_mutex_create(apr_proc_mutex_t **mutex, const char *fname, apr_lockmech_e mech, apr_pool_t *pool) { apr_proc_mutex_t *new; apr_status_t stat = APR_SUCCESS; if (mech != APR_LOCK_DEFAULT && mech != APR_LOCK_DEFAULT_TIMED) { return APR_ENOTIMPL; } new = (apr_proc_mutex_t *)apr_pcalloc(pool, sizeof(apr_proc_mutex_t)); if (new == NULL){ return APR_ENOMEM; } if ((stat = create_sem(0, "APR_Lock")) < B_NO_ERROR) { _proc_mutex_cleanup(new); return stat; } new->LockCount = 0; new->Lock = stat; new->pool = pool; apr_pool_cleanup_register(new->pool, (void *)new, _proc_mutex_cleanup, apr_pool_cleanup_null); (*mutex) = new; return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_proc_mutex_child_init(apr_proc_mutex_t **mutex, const char *fname, apr_pool_t *pool) { return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_proc_mutex_lock(apr_proc_mutex_t *mutex) { int32 stat; if (atomic_add(&mutex->LockCount, 1) > 0) { if ((stat = acquire_sem(mutex->Lock)) < B_NO_ERROR) { atomic_add(&mutex->LockCount, -1); return stat; } } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_proc_mutex_trylock(apr_proc_mutex_t *mutex) { int32 stat; if (atomic_add(&mutex->LockCount, 1) > 0) { stat = acquire_sem_etc(mutex->Lock, 1, 0, 0); if (stat < B_NO_ERROR) { atomic_add(&mutex->LockCount, -1); if (stat == B_WOULD_BLOCK) { stat = APR_EBUSY; } return stat; } } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_proc_mutex_timedlock(apr_proc_mutex_t *mutex, apr_interval_time_t timeout) { int32 stat; if (atomic_add(&mutex->LockCount, 1) > 0) { if (timeout <= 0) { stat = B_TIMED_OUT; } else { stat = acquire_sem_etc(mutex->Lock, 1, B_RELATIVE_TIMEOUT, timeout); } if (stat < B_NO_ERROR) { atomic_add(&mutex->LockCount, -1); if (stat == B_TIMED_OUT) { stat = APR_TIMEUP; } return stat; } } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_proc_mutex_unlock(apr_proc_mutex_t *mutex) { int32 stat; if (atomic_add(&mutex->LockCount, -1) > 1) { if ((stat = release_sem(mutex->Lock)) < B_NO_ERROR) { atomic_add(&mutex->LockCount, 1); return stat; } } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_proc_mutex_destroy(apr_proc_mutex_t *mutex) { apr_status_t stat; if ((stat = _proc_mutex_cleanup(mutex)) == APR_SUCCESS) { apr_pool_cleanup_kill(mutex->pool, mutex, _proc_mutex_cleanup); return APR_SUCCESS; } return stat; } APR_DECLARE(apr_status_t) apr_proc_mutex_cleanup(void *mutex) { return _proc_mutex_cleanup(mutex); } APR_DECLARE(const char *) apr_proc_mutex_lockfile(apr_proc_mutex_t *mutex) { return NULL; } APR_DECLARE(apr_lockmech_e) apr_proc_mutex_mech(apr_proc_mutex_t *mutex) { return APR_LOCK_DEFAULT; } APR_DECLARE(const char *) apr_proc_mutex_name(apr_proc_mutex_t *mutex) { return "beossem"; } APR_DECLARE(const char *) apr_proc_mutex_defname(void) { return "beossem"; } APR_PERMS_SET_ENOTIMPL(proc_mutex) APR_POOL_IMPLEMENT_ACCESSOR(proc_mutex) /* Implement OS-specific accessors defined in apr_portable.h */ APR_DECLARE(apr_status_t) apr_os_proc_mutex_get_ex(apr_os_proc_mutex_t *ospmutex, apr_proc_mutex_t *pmutex, apr_lockmech_e *mech) { ospmutex->sem = pmutex->Lock; ospmutex->ben = pmutex->LockCount; if (mech) { *mech = APR_LOCK_DEFAULT; } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_os_proc_mutex_get(apr_os_proc_mutex_t *ospmutex, apr_proc_mutex_t *pmutex) { return apr_os_proc_mutex_get_ex(ospmutex, pmutex, NULL); } APR_DECLARE(apr_status_t) apr_os_proc_mutex_put_ex(apr_proc_mutex_t **pmutex, apr_os_proc_mutex_t *ospmutex, apr_lockmech_e mech, int register_cleanup, apr_pool_t *pool) { if (pool == NULL) { return APR_ENOPOOL; } if (mech != APR_LOCK_DEFAULT && mech != APR_LOCK_DEFAULT_TIMED) { return APR_ENOTIMPL; } if ((*pmutex) == NULL) { (*pmutex) = (apr_proc_mutex_t *)apr_pcalloc(pool, sizeof(apr_proc_mutex_t)); (*pmutex)->pool = pool; } (*pmutex)->Lock = ospmutex->sem; (*pmutex)->LockCount = ospmutex->ben; if (register_cleanup) { apr_pool_cleanup_register(pool, *pmutex, _proc_mutex_cleanup, apr_pool_cleanup_null); } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_os_proc_mutex_put(apr_proc_mutex_t **pmutex, apr_os_proc_mutex_t *ospmutex, apr_pool_t *pool) { return apr_os_proc_mutex_put_ex(pmutex, ospmutex, APR_LOCK_DEFAULT, 0, pool); }