diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 17:43:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 17:43:51 +0000 |
commit | be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b (patch) | |
tree | 779c248fb61c83f65d1f0dc867f2053d76b4e03a /lib/el3_runtime | |
parent | Initial commit. (diff) | |
download | arm-trusted-firmware-be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b.tar.xz arm-trusted-firmware-be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b.zip |
Adding upstream version 2.10.0+dfsg.upstream/2.10.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/el3_runtime')
-rw-r--r-- | lib/el3_runtime/aarch32/context_mgmt.c | 351 | ||||
-rw-r--r-- | lib/el3_runtime/aarch32/cpu_data.S | 42 | ||||
-rw-r--r-- | lib/el3_runtime/aarch64/context.S | 684 | ||||
-rw-r--r-- | lib/el3_runtime/aarch64/context_mgmt.c | 1531 | ||||
-rw-r--r-- | lib/el3_runtime/aarch64/cpu_data.S | 48 | ||||
-rw-r--r-- | lib/el3_runtime/cpu_data_array.c | 13 |
6 files changed, 2669 insertions, 0 deletions
diff --git a/lib/el3_runtime/aarch32/context_mgmt.c b/lib/el3_runtime/aarch32/context_mgmt.c new file mode 100644 index 0000000..b60b8e0 --- /dev/null +++ b/lib/el3_runtime/aarch32/context_mgmt.c @@ -0,0 +1,351 @@ +/* + * Copyright (c) 2016-2023, Arm Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <stdbool.h> +#include <string.h> + +#include <platform_def.h> + +#include <arch.h> +#include <arch_features.h> +#include <arch_helpers.h> +#include <common/bl_common.h> +#include <context.h> +#include <lib/el3_runtime/context_mgmt.h> +#include <lib/extensions/amu.h> +#include <lib/extensions/pmuv3.h> +#include <lib/extensions/sys_reg_trace.h> +#include <lib/extensions/trf.h> +#include <lib/utils.h> + +/******************************************************************************* + * Context management library initialisation routine. This library is used by + * runtime services to share pointers to 'cpu_context' structures for the secure + * and non-secure states. Management of the structures and their associated + * memory is not done by the context management library e.g. the PSCI service + * manages the cpu context used for entry from and exit to the non-secure state. + * The Secure payload manages the context(s) corresponding to the secure state. + * It also uses this library to get access to the non-secure + * state cpu context pointers. + ******************************************************************************/ +void cm_init(void) +{ + /* + * The context management library has only global data to initialize, but + * that will be done when the BSS is zeroed out + */ +} + +/******************************************************************************* + * The following function initializes the cpu_context 'ctx' for + * first use, and sets the initial entrypoint state as specified by the + * entry_point_info structure. + * + * The security state to initialize is determined by the SECURE attribute + * of the entry_point_info. + * + * The EE and ST attributes are used to configure the endianness and secure + * timer availability for the new execution context. + * + * To prepare the register state for entry call cm_prepare_el3_exit() and + * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to + * cm_el1_sysregs_context_restore(). + ******************************************************************************/ +void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) +{ + unsigned int security_state; + uint32_t scr, sctlr; + regs_t *reg_ctx; + + assert(ctx != NULL); + + security_state = GET_SECURITY_STATE(ep->h.attr); + + /* Clear any residual register values from the context */ + zeromem(ctx, sizeof(*ctx)); + + reg_ctx = get_regs_ctx(ctx); + + /* + * Base the context SCR on the current value, adjust for entry point + * specific requirements + */ + scr = read_scr(); + scr &= ~(SCR_NS_BIT | SCR_HCE_BIT); + + if (security_state != SECURE) + scr |= SCR_NS_BIT; + + if (security_state != SECURE) { + /* + * Set up SCTLR for the Non-secure context. + * + * SCTLR.EE: Endianness is taken from the entrypoint attributes. + * + * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as + * required by PSCI specification) + * + * Set remaining SCTLR fields to their architecturally defined + * values. Some fields reset to an IMPLEMENTATION DEFINED value: + * + * SCTLR.TE: Set to zero so that exceptions to an Exception + * Level executing at PL1 are taken to A32 state. + * + * SCTLR.V: Set to zero to select the normal exception vectors + * with base address held in VBAR. + */ + assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) == + (EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT)); + + sctlr = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U; + sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT)); + write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr); + } + + /* + * The target exception level is based on the spsr mode requested. If + * execution is requested to hyp mode, HVC is enabled via SCR.HCE. + */ + if (GET_M32(ep->spsr) == MODE32_hyp) + scr |= SCR_HCE_BIT; + + /* + * Store the initialised values for SCTLR and SCR in the cpu_context. + * The Hyp mode registers are not part of the saved context and are + * set-up in cm_prepare_el3_exit(). + */ + write_ctx_reg(reg_ctx, CTX_SCR, scr); + write_ctx_reg(reg_ctx, CTX_LR, ep->pc); + write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr); + + /* + * Store the r0-r3 value from the entrypoint into the context + * Use memcpy as we are in control of the layout of the structures + */ + memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t)); +} + +/******************************************************************************* + * Enable architecture extensions on first entry to Non-secure world. + * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise + * it is zero. + ******************************************************************************/ +static void enable_extensions_nonsecure(bool el2_unused) +{ +#if IMAGE_BL32 + if (is_feat_amu_supported()) { + amu_enable(el2_unused); + } + + if (is_feat_sys_reg_trace_supported()) { + sys_reg_trace_init_el3(); + } + + if (is_feat_trf_supported()) { + trf_init_el3(); + } + + /* + * Also applies to PMU < v3. The PMU is only disabled for EL3 and Secure + * state execution. This does not affect lower NS ELs. + */ + pmuv3_init_el3(); +#endif /* IMAGE_BL32 */ +} + +/******************************************************************************* + * The following function initializes the cpu_context for a CPU specified by + * its `cpu_idx` for first use, and sets the initial entrypoint state as + * specified by the entry_point_info structure. + ******************************************************************************/ +void cm_init_context_by_index(unsigned int cpu_idx, + const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); + cm_setup_context(ctx, ep); +} + +/******************************************************************************* + * The following function initializes the cpu_context for the current CPU + * for first use, and sets the initial entrypoint state as specified by the + * entry_point_info structure. + ******************************************************************************/ +void cm_init_my_context(const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); + cm_setup_context(ctx, ep); +} + +/******************************************************************************* + * Prepare the CPU system registers for first entry into secure or normal world + * + * If execution is requested to hyp mode, HSCTLR is initialized + * If execution is requested to non-secure PL1, and the CPU supports + * HYP mode then HYP mode is disabled by configuring all necessary HYP mode + * registers. + ******************************************************************************/ +void cm_prepare_el3_exit(uint32_t security_state) +{ + uint32_t hsctlr, scr; + cpu_context_t *ctx = cm_get_context(security_state); + bool el2_unused = false; + + assert(ctx != NULL); + + if (security_state == NON_SECURE) { + scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); + if ((scr & SCR_HCE_BIT) != 0U) { + /* Use SCTLR value to initialize HSCTLR */ + hsctlr = read_ctx_reg(get_regs_ctx(ctx), + CTX_NS_SCTLR); + hsctlr |= HSCTLR_RES1; + /* Temporarily set the NS bit to access HSCTLR */ + write_scr(read_scr() | SCR_NS_BIT); + /* + * Make sure the write to SCR is complete so that + * we can access HSCTLR + */ + isb(); + write_hsctlr(hsctlr); + isb(); + + write_scr(read_scr() & ~SCR_NS_BIT); + isb(); + } else if ((read_id_pfr1() & + (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) != 0U) { + el2_unused = true; + + /* + * Set the NS bit to access NS copies of certain banked + * registers + */ + write_scr(read_scr() | SCR_NS_BIT); + isb(); + + /* + * Hyp / PL2 present but unused, need to disable safely. + * HSCTLR can be ignored in this case. + * + * Set HCR to its architectural reset value so that + * Non-secure operations do not trap to Hyp mode. + */ + write_hcr(HCR_RESET_VAL); + + /* + * Set HCPTR to its architectural reset value so that + * Non-secure access from EL1 or EL0 to trace and to + * Advanced SIMD and floating point functionality does + * not trap to Hyp mode. + */ + write_hcptr(HCPTR_RESET_VAL); + + /* + * Initialise CNTHCTL. All fields are architecturally + * UNKNOWN on reset and are set to zero except for + * field(s) listed below. + * + * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of + * Non-secure EL0 and EL1 accessed to the physical + * timer registers. + * + * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of + * Non-secure EL0 and EL1 accessed to the physical + * counter registers. + */ + write_cnthctl(CNTHCTL_RESET_VAL | + PL1PCEN_BIT | PL1PCTEN_BIT); + + /* + * Initialise CNTVOFF to zero as it resets to an + * IMPLEMENTATION DEFINED value. + */ + write64_cntvoff(0); + + /* + * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR + * respectively. + */ + write_vpidr(read_midr()); + write_vmpidr(read_mpidr()); + + /* + * Initialise VTTBR, setting all fields rather than + * relying on the hw. Some fields are architecturally + * UNKNOWN at reset. + * + * VTTBR.VMID: Set to zero which is the architecturally + * defined reset value. Even though EL1&0 stage 2 + * address translation is disabled, cache maintenance + * operations depend on the VMID. + * + * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address + * translation is disabled. + */ + write64_vttbr(VTTBR_RESET_VAL & + ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) + | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); + + /* + * Initialise HDCR, setting all the fields rather than + * relying on hw. + * + * HDCR.HPMN: Set to value of PMCR.N which is the + * architecturally-defined reset value. + * + * HDCR.HLP: Set to one so that event counter + * overflow, that is recorded in PMOVSCLR[0-30], + * occurs on the increment that changes + * PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU is + * implemented. This bit is RES0 in versions of the + * architecture earlier than ARMv8.5, setting it to 1 + * doesn't have any effect on them. + * This bit is Reserved, UNK/SBZP in ARMv7. + * + * HDCR.HPME: Set to zero to disable EL2 Event + * counters. + */ +#if (ARM_ARCH_MAJOR > 7) + write_hdcr((HDCR_RESET_VAL | HDCR_HLP_BIT | + ((read_pmcr() & PMCR_N_BITS) >> + PMCR_N_SHIFT)) & ~HDCR_HPME_BIT); +#else + write_hdcr((HDCR_RESET_VAL | + ((read_pmcr() & PMCR_N_BITS) >> + PMCR_N_SHIFT)) & ~HDCR_HPME_BIT); +#endif + /* + * Set HSTR to its architectural reset value so that + * access to system registers in the cproc=1111 + * encoding space do not trap to Hyp mode. + */ + write_hstr(HSTR_RESET_VAL); + /* + * Set CNTHP_CTL to its architectural reset value to + * disable the EL2 physical timer and prevent timer + * interrupts. Some fields are architecturally UNKNOWN + * on reset and are set to zero. + */ + write_cnthp_ctl(CNTHP_CTL_RESET_VAL); + isb(); + + write_scr(read_scr() & ~SCR_NS_BIT); + isb(); + } + enable_extensions_nonsecure(el2_unused); + } +} + +/******************************************************************************* + * This function is used to exit to Non-secure world. It simply calls the + * cm_prepare_el3_exit function for AArch32. + ******************************************************************************/ +void cm_prepare_el3_exit_ns(void) +{ + cm_prepare_el3_exit(NON_SECURE); +} diff --git a/lib/el3_runtime/aarch32/cpu_data.S b/lib/el3_runtime/aarch32/cpu_data.S new file mode 100644 index 0000000..e59b7fd --- /dev/null +++ b/lib/el3_runtime/aarch32/cpu_data.S @@ -0,0 +1,42 @@ +/* + * Copyright (c) 2016, Arm Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <asm_macros.S> +#include <lib/el3_runtime/cpu_data.h> + + .globl _cpu_data + .globl _cpu_data_by_index + +/* ----------------------------------------------------------------- + * cpu_data_t *_cpu_data(void) + * + * Return the cpu_data structure for the current CPU. + * ----------------------------------------------------------------- + */ +func _cpu_data + /* r12 is pushed to meet the 8 byte stack alignment requirement */ + push {r12, lr} + bl plat_my_core_pos + pop {r12, lr} + b _cpu_data_by_index +endfunc _cpu_data + +/* ----------------------------------------------------------------- + * cpu_data_t *_cpu_data_by_index(uint32_t cpu_index) + * + * Return the cpu_data structure for the CPU with given linear index + * + * This can be called without a valid stack. + * clobbers: r0, r1 + * ----------------------------------------------------------------- + */ +func _cpu_data_by_index + mov_imm r1, CPU_DATA_SIZE + mul r0, r0, r1 + ldr r1, =percpu_data + add r0, r0, r1 + bx lr +endfunc _cpu_data_by_index diff --git a/lib/el3_runtime/aarch64/context.S b/lib/el3_runtime/aarch64/context.S new file mode 100644 index 0000000..631094f --- /dev/null +++ b/lib/el3_runtime/aarch64/context.S @@ -0,0 +1,684 @@ +/* + * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <arch.h> +#include <asm_macros.S> +#include <assert_macros.S> +#include <context.h> +#include <el3_common_macros.S> + + .global el1_sysregs_context_save + .global el1_sysregs_context_restore +#if CTX_INCLUDE_FPREGS + .global fpregs_context_save + .global fpregs_context_restore +#endif /* CTX_INCLUDE_FPREGS */ + .global prepare_el3_entry + .global restore_gp_pmcr_pauth_regs + .global save_and_update_ptw_el1_sys_regs + .global el3_exit + + +/* ------------------------------------------------------------------ + * The following function strictly follows the AArch64 PCS to use + * x9-x17 (temporary caller-saved registers) to save EL1 system + * register context. It assumes that 'x0' is pointing to a + * 'el1_sys_regs' structure where the register context will be saved. + * ------------------------------------------------------------------ + */ +func el1_sysregs_context_save + + mrs x9, spsr_el1 + mrs x10, elr_el1 + stp x9, x10, [x0, #CTX_SPSR_EL1] + +#if !ERRATA_SPECULATIVE_AT + mrs x15, sctlr_el1 + mrs x16, tcr_el1 + stp x15, x16, [x0, #CTX_SCTLR_EL1] +#endif /* ERRATA_SPECULATIVE_AT */ + + mrs x17, cpacr_el1 + mrs x9, csselr_el1 + stp x17, x9, [x0, #CTX_CPACR_EL1] + + mrs x10, sp_el1 + mrs x11, esr_el1 + stp x10, x11, [x0, #CTX_SP_EL1] + + mrs x12, ttbr0_el1 + mrs x13, ttbr1_el1 + stp x12, x13, [x0, #CTX_TTBR0_EL1] + + mrs x14, mair_el1 + mrs x15, amair_el1 + stp x14, x15, [x0, #CTX_MAIR_EL1] + + mrs x16, actlr_el1 + mrs x17, tpidr_el1 + stp x16, x17, [x0, #CTX_ACTLR_EL1] + + mrs x9, tpidr_el0 + mrs x10, tpidrro_el0 + stp x9, x10, [x0, #CTX_TPIDR_EL0] + + mrs x13, par_el1 + mrs x14, far_el1 + stp x13, x14, [x0, #CTX_PAR_EL1] + + mrs x15, afsr0_el1 + mrs x16, afsr1_el1 + stp x15, x16, [x0, #CTX_AFSR0_EL1] + + mrs x17, contextidr_el1 + mrs x9, vbar_el1 + stp x17, x9, [x0, #CTX_CONTEXTIDR_EL1] + + /* Save AArch32 system registers if the build has instructed so */ +#if CTX_INCLUDE_AARCH32_REGS + mrs x11, spsr_abt + mrs x12, spsr_und + stp x11, x12, [x0, #CTX_SPSR_ABT] + + mrs x13, spsr_irq + mrs x14, spsr_fiq + stp x13, x14, [x0, #CTX_SPSR_IRQ] + + mrs x15, dacr32_el2 + mrs x16, ifsr32_el2 + stp x15, x16, [x0, #CTX_DACR32_EL2] +#endif /* CTX_INCLUDE_AARCH32_REGS */ + + /* Save NS timer registers if the build has instructed so */ +#if NS_TIMER_SWITCH + mrs x10, cntp_ctl_el0 + mrs x11, cntp_cval_el0 + stp x10, x11, [x0, #CTX_CNTP_CTL_EL0] + + mrs x12, cntv_ctl_el0 + mrs x13, cntv_cval_el0 + stp x12, x13, [x0, #CTX_CNTV_CTL_EL0] + + mrs x14, cntkctl_el1 + str x14, [x0, #CTX_CNTKCTL_EL1] +#endif /* NS_TIMER_SWITCH */ + + /* Save MTE system registers if the build has instructed so */ +#if CTX_INCLUDE_MTE_REGS + mrs x15, TFSRE0_EL1 + mrs x16, TFSR_EL1 + stp x15, x16, [x0, #CTX_TFSRE0_EL1] + + mrs x9, RGSR_EL1 + mrs x10, GCR_EL1 + stp x9, x10, [x0, #CTX_RGSR_EL1] +#endif /* CTX_INCLUDE_MTE_REGS */ + + ret +endfunc el1_sysregs_context_save + +/* ------------------------------------------------------------------ + * The following function strictly follows the AArch64 PCS to use + * x9-x17 (temporary caller-saved registers) to restore EL1 system + * register context. It assumes that 'x0' is pointing to a + * 'el1_sys_regs' structure from where the register context will be + * restored + * ------------------------------------------------------------------ + */ +func el1_sysregs_context_restore + + ldp x9, x10, [x0, #CTX_SPSR_EL1] + msr spsr_el1, x9 + msr elr_el1, x10 + +#if !ERRATA_SPECULATIVE_AT + ldp x15, x16, [x0, #CTX_SCTLR_EL1] + msr sctlr_el1, x15 + msr tcr_el1, x16 +#endif /* ERRATA_SPECULATIVE_AT */ + + ldp x17, x9, [x0, #CTX_CPACR_EL1] + msr cpacr_el1, x17 + msr csselr_el1, x9 + + ldp x10, x11, [x0, #CTX_SP_EL1] + msr sp_el1, x10 + msr esr_el1, x11 + + ldp x12, x13, [x0, #CTX_TTBR0_EL1] + msr ttbr0_el1, x12 + msr ttbr1_el1, x13 + + ldp x14, x15, [x0, #CTX_MAIR_EL1] + msr mair_el1, x14 + msr amair_el1, x15 + + ldp x16, x17, [x0, #CTX_ACTLR_EL1] + msr actlr_el1, x16 + msr tpidr_el1, x17 + + ldp x9, x10, [x0, #CTX_TPIDR_EL0] + msr tpidr_el0, x9 + msr tpidrro_el0, x10 + + ldp x13, x14, [x0, #CTX_PAR_EL1] + msr par_el1, x13 + msr far_el1, x14 + + ldp x15, x16, [x0, #CTX_AFSR0_EL1] + msr afsr0_el1, x15 + msr afsr1_el1, x16 + + ldp x17, x9, [x0, #CTX_CONTEXTIDR_EL1] + msr contextidr_el1, x17 + msr vbar_el1, x9 + + /* Restore AArch32 system registers if the build has instructed so */ +#if CTX_INCLUDE_AARCH32_REGS + ldp x11, x12, [x0, #CTX_SPSR_ABT] + msr spsr_abt, x11 + msr spsr_und, x12 + + ldp x13, x14, [x0, #CTX_SPSR_IRQ] + msr spsr_irq, x13 + msr spsr_fiq, x14 + + ldp x15, x16, [x0, #CTX_DACR32_EL2] + msr dacr32_el2, x15 + msr ifsr32_el2, x16 +#endif /* CTX_INCLUDE_AARCH32_REGS */ + + /* Restore NS timer registers if the build has instructed so */ +#if NS_TIMER_SWITCH + ldp x10, x11, [x0, #CTX_CNTP_CTL_EL0] + msr cntp_ctl_el0, x10 + msr cntp_cval_el0, x11 + + ldp x12, x13, [x0, #CTX_CNTV_CTL_EL0] + msr cntv_ctl_el0, x12 + msr cntv_cval_el0, x13 + + ldr x14, [x0, #CTX_CNTKCTL_EL1] + msr cntkctl_el1, x14 +#endif /* NS_TIMER_SWITCH */ + + /* Restore MTE system registers if the build has instructed so */ +#if CTX_INCLUDE_MTE_REGS + ldp x11, x12, [x0, #CTX_TFSRE0_EL1] + msr TFSRE0_EL1, x11 + msr TFSR_EL1, x12 + + ldp x13, x14, [x0, #CTX_RGSR_EL1] + msr RGSR_EL1, x13 + msr GCR_EL1, x14 +#endif /* CTX_INCLUDE_MTE_REGS */ + + /* No explict ISB required here as ERET covers it */ + ret +endfunc el1_sysregs_context_restore + +/* ------------------------------------------------------------------ + * The following function follows the aapcs_64 strictly to use + * x9-x17 (temporary caller-saved registers according to AArch64 PCS) + * to save floating point register context. It assumes that 'x0' is + * pointing to a 'fp_regs' structure where the register context will + * be saved. + * + * Access to VFP registers will trap if CPTR_EL3.TFP is set. + * However currently we don't use VFP registers nor set traps in + * Trusted Firmware, and assume it's cleared. + * + * TODO: Revisit when VFP is used in secure world + * ------------------------------------------------------------------ + */ +#if CTX_INCLUDE_FPREGS +func fpregs_context_save + stp q0, q1, [x0, #CTX_FP_Q0] + stp q2, q3, [x0, #CTX_FP_Q2] + stp q4, q5, [x0, #CTX_FP_Q4] + stp q6, q7, [x0, #CTX_FP_Q6] + stp q8, q9, [x0, #CTX_FP_Q8] + stp q10, q11, [x0, #CTX_FP_Q10] + stp q12, q13, [x0, #CTX_FP_Q12] + stp q14, q15, [x0, #CTX_FP_Q14] + stp q16, q17, [x0, #CTX_FP_Q16] + stp q18, q19, [x0, #CTX_FP_Q18] + stp q20, q21, [x0, #CTX_FP_Q20] + stp q22, q23, [x0, #CTX_FP_Q22] + stp q24, q25, [x0, #CTX_FP_Q24] + stp q26, q27, [x0, #CTX_FP_Q26] + stp q28, q29, [x0, #CTX_FP_Q28] + stp q30, q31, [x0, #CTX_FP_Q30] + + mrs x9, fpsr + str x9, [x0, #CTX_FP_FPSR] + + mrs x10, fpcr + str x10, [x0, #CTX_FP_FPCR] + +#if CTX_INCLUDE_AARCH32_REGS + mrs x11, fpexc32_el2 + str x11, [x0, #CTX_FP_FPEXC32_EL2] +#endif /* CTX_INCLUDE_AARCH32_REGS */ + ret +endfunc fpregs_context_save + +/* ------------------------------------------------------------------ + * The following function follows the aapcs_64 strictly to use x9-x17 + * (temporary caller-saved registers according to AArch64 PCS) to + * restore floating point register context. It assumes that 'x0' is + * pointing to a 'fp_regs' structure from where the register context + * will be restored. + * + * Access to VFP registers will trap if CPTR_EL3.TFP is set. + * However currently we don't use VFP registers nor set traps in + * Trusted Firmware, and assume it's cleared. + * + * TODO: Revisit when VFP is used in secure world + * ------------------------------------------------------------------ + */ +func fpregs_context_restore + ldp q0, q1, [x0, #CTX_FP_Q0] + ldp q2, q3, [x0, #CTX_FP_Q2] + ldp q4, q5, [x0, #CTX_FP_Q4] + ldp q6, q7, [x0, #CTX_FP_Q6] + ldp q8, q9, [x0, #CTX_FP_Q8] + ldp q10, q11, [x0, #CTX_FP_Q10] + ldp q12, q13, [x0, #CTX_FP_Q12] + ldp q14, q15, [x0, #CTX_FP_Q14] + ldp q16, q17, [x0, #CTX_FP_Q16] + ldp q18, q19, [x0, #CTX_FP_Q18] + ldp q20, q21, [x0, #CTX_FP_Q20] + ldp q22, q23, [x0, #CTX_FP_Q22] + ldp q24, q25, [x0, #CTX_FP_Q24] + ldp q26, q27, [x0, #CTX_FP_Q26] + ldp q28, q29, [x0, #CTX_FP_Q28] + ldp q30, q31, [x0, #CTX_FP_Q30] + + ldr x9, [x0, #CTX_FP_FPSR] + msr fpsr, x9 + + ldr x10, [x0, #CTX_FP_FPCR] + msr fpcr, x10 + +#if CTX_INCLUDE_AARCH32_REGS + ldr x11, [x0, #CTX_FP_FPEXC32_EL2] + msr fpexc32_el2, x11 +#endif /* CTX_INCLUDE_AARCH32_REGS */ + + /* + * No explict ISB required here as ERET to + * switch to secure EL1 or non-secure world + * covers it + */ + + ret +endfunc fpregs_context_restore +#endif /* CTX_INCLUDE_FPREGS */ + + /* + * Set SCR_EL3.EA bit to enable SErrors at EL3 + */ + .macro enable_serror_at_el3 + mrs x8, scr_el3 + orr x8, x8, #SCR_EA_BIT + msr scr_el3, x8 + .endm + + /* + * Set the PSTATE bits not set when the exception was taken as + * described in the AArch64.TakeException() pseudocode function + * in ARM DDI 0487F.c page J1-7635 to a default value. + */ + .macro set_unset_pstate_bits + /* + * If Data Independent Timing (DIT) functionality is implemented, + * always enable DIT in EL3 + */ +#if ENABLE_FEAT_DIT +#if ENABLE_FEAT_DIT == 2 + mrs x8, id_aa64pfr0_el1 + and x8, x8, #(ID_AA64PFR0_DIT_MASK << ID_AA64PFR0_DIT_SHIFT) + cbz x8, 1f +#endif + mov x8, #DIT_BIT + msr DIT, x8 +1: +#endif /* ENABLE_FEAT_DIT */ + .endm /* set_unset_pstate_bits */ + +/*------------------------------------------------------------------------- + * This macro checks the ENABLE_FEAT_MPAM state, performs ID register + * check to see if the platform supports MPAM extension and restores MPAM3 + * register value if it is FEAT_STATE_ENABLED/FEAT_STATE_CHECKED. + * + * This is particularly more complicated because we can't check + * if the platform supports MPAM by looking for status of a particular bit + * in the MDCR_EL3 or CPTR_EL3 register like other extensions. + * ------------------------------------------------------------------------ + */ + + .macro restore_mpam3_el3 +#if ENABLE_FEAT_MPAM +#if ENABLE_FEAT_MPAM == 2 + + mrs x8, id_aa64pfr0_el1 + lsr x8, x8, #(ID_AA64PFR0_MPAM_SHIFT) + and x8, x8, #(ID_AA64PFR0_MPAM_MASK) + mrs x7, id_aa64pfr1_el1 + lsr x7, x7, #(ID_AA64PFR1_MPAM_FRAC_SHIFT) + and x7, x7, #(ID_AA64PFR1_MPAM_FRAC_MASK) + orr x7, x7, x8 + cbz x7, no_mpam +#endif + /* ----------------------------------------------------------- + * Restore MPAM3_EL3 register as per context state + * Currently we only enable MPAM for NS world and trap to EL3 + * for MPAM access in lower ELs of Secure and Realm world + * ----------------------------------------------------------- + */ + ldr x17, [sp, #CTX_EL3STATE_OFFSET + CTX_MPAM3_EL3] + msr S3_6_C10_C5_0, x17 /* mpam3_el3 */ + +no_mpam: +#endif + .endm /* restore_mpam3_el3 */ + +/* ------------------------------------------------------------------ + * The following macro is used to save and restore all the general + * purpose and ARMv8.3-PAuth (if enabled) registers. + * It also checks if the Secure Cycle Counter (PMCCNTR_EL0) + * is disabled in EL3/Secure (ARMv8.5-PMU), wherein PMCCNTR_EL0 + * needs not to be saved/restored during world switch. + * + * Ideally we would only save and restore the callee saved registers + * when a world switch occurs but that type of implementation is more + * complex. So currently we will always save and restore these + * registers on entry and exit of EL3. + * clobbers: x18 + * ------------------------------------------------------------------ + */ + .macro save_gp_pmcr_pauth_regs + stp x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0] + stp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2] + stp x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4] + stp x6, x7, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X6] + stp x8, x9, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X8] + stp x10, x11, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X10] + stp x12, x13, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X12] + stp x14, x15, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X14] + stp x16, x17, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X16] + stp x18, x19, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X18] + stp x20, x21, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X20] + stp x22, x23, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X22] + stp x24, x25, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X24] + stp x26, x27, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X26] + stp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28] + mrs x18, sp_el0 + str x18, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_SP_EL0] + + /* PMUv3 is presumed to be always present */ + mrs x9, pmcr_el0 + str x9, [sp, #CTX_EL3STATE_OFFSET + CTX_PMCR_EL0] + /* Disable cycle counter when event counting is prohibited */ + orr x9, x9, #PMCR_EL0_DP_BIT + msr pmcr_el0, x9 + isb +#if CTX_INCLUDE_PAUTH_REGS + /* ---------------------------------------------------------- + * Save the ARMv8.3-PAuth keys as they are not banked + * by exception level + * ---------------------------------------------------------- + */ + add x19, sp, #CTX_PAUTH_REGS_OFFSET + + mrs x20, APIAKeyLo_EL1 /* x21:x20 = APIAKey */ + mrs x21, APIAKeyHi_EL1 + mrs x22, APIBKeyLo_EL1 /* x23:x22 = APIBKey */ + mrs x23, APIBKeyHi_EL1 + mrs x24, APDAKeyLo_EL1 /* x25:x24 = APDAKey */ + mrs x25, APDAKeyHi_EL1 + mrs x26, APDBKeyLo_EL1 /* x27:x26 = APDBKey */ + mrs x27, APDBKeyHi_EL1 + mrs x28, APGAKeyLo_EL1 /* x29:x28 = APGAKey */ + mrs x29, APGAKeyHi_EL1 + + stp x20, x21, [x19, #CTX_PACIAKEY_LO] + stp x22, x23, [x19, #CTX_PACIBKEY_LO] + stp x24, x25, [x19, #CTX_PACDAKEY_LO] + stp x26, x27, [x19, #CTX_PACDBKEY_LO] + stp x28, x29, [x19, #CTX_PACGAKEY_LO] +#endif /* CTX_INCLUDE_PAUTH_REGS */ + .endm /* save_gp_pmcr_pauth_regs */ + +/* ----------------------------------------------------------------- + * This function saves the context and sets the PSTATE to a known + * state, preparing entry to el3. + * Save all the general purpose and ARMv8.3-PAuth (if enabled) + * registers. + * Then set any of the PSTATE bits that are not set by hardware + * according to the Aarch64.TakeException pseudocode in the Arm + * Architecture Reference Manual to a default value for EL3. + * clobbers: x17 + * ----------------------------------------------------------------- + */ +func prepare_el3_entry + save_gp_pmcr_pauth_regs + enable_serror_at_el3 + /* + * Set the PSTATE bits not described in the Aarch64.TakeException + * pseudocode to their default values. + */ + set_unset_pstate_bits + ret +endfunc prepare_el3_entry + +/* ------------------------------------------------------------------ + * This function restores ARMv8.3-PAuth (if enabled) and all general + * purpose registers except x30 from the CPU context. + * x30 register must be explicitly restored by the caller. + * ------------------------------------------------------------------ + */ +func restore_gp_pmcr_pauth_regs +#if CTX_INCLUDE_PAUTH_REGS + /* Restore the ARMv8.3 PAuth keys */ + add x10, sp, #CTX_PAUTH_REGS_OFFSET + + ldp x0, x1, [x10, #CTX_PACIAKEY_LO] /* x1:x0 = APIAKey */ + ldp x2, x3, [x10, #CTX_PACIBKEY_LO] /* x3:x2 = APIBKey */ + ldp x4, x5, [x10, #CTX_PACDAKEY_LO] /* x5:x4 = APDAKey */ + ldp x6, x7, [x10, #CTX_PACDBKEY_LO] /* x7:x6 = APDBKey */ + ldp x8, x9, [x10, #CTX_PACGAKEY_LO] /* x9:x8 = APGAKey */ + + msr APIAKeyLo_EL1, x0 + msr APIAKeyHi_EL1, x1 + msr APIBKeyLo_EL1, x2 + msr APIBKeyHi_EL1, x3 + msr APDAKeyLo_EL1, x4 + msr APDAKeyHi_EL1, x5 + msr APDBKeyLo_EL1, x6 + msr APDBKeyHi_EL1, x7 + msr APGAKeyLo_EL1, x8 + msr APGAKeyHi_EL1, x9 +#endif /* CTX_INCLUDE_PAUTH_REGS */ + + /* PMUv3 is presumed to be always present */ + ldr x0, [sp, #CTX_EL3STATE_OFFSET + CTX_PMCR_EL0] + msr pmcr_el0, x0 + ldp x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0] + ldp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2] + ldp x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4] + ldp x6, x7, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X6] + ldp x8, x9, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X8] + ldp x10, x11, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X10] + ldp x12, x13, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X12] + ldp x14, x15, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X14] + ldp x16, x17, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X16] + ldp x18, x19, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X18] + ldp x20, x21, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X20] + ldp x22, x23, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X22] + ldp x24, x25, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X24] + ldp x26, x27, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X26] + ldr x28, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_SP_EL0] + msr sp_el0, x28 + ldp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28] + ret +endfunc restore_gp_pmcr_pauth_regs + +/* + * In case of ERRATA_SPECULATIVE_AT, save SCTLR_EL1 and TCR_EL1 + * registers and update EL1 registers to disable stage1 and stage2 + * page table walk + */ +func save_and_update_ptw_el1_sys_regs + /* ---------------------------------------------------------- + * Save only sctlr_el1 and tcr_el1 registers + * ---------------------------------------------------------- + */ + mrs x29, sctlr_el1 + str x29, [sp, #(CTX_EL1_SYSREGS_OFFSET + CTX_SCTLR_EL1)] + mrs x29, tcr_el1 + str x29, [sp, #(CTX_EL1_SYSREGS_OFFSET + CTX_TCR_EL1)] + + /* ------------------------------------------------------------ + * Must follow below order in order to disable page table + * walk for lower ELs (EL1 and EL0). First step ensures that + * page table walk is disabled for stage1 and second step + * ensures that page table walker should use TCR_EL1.EPDx + * bits to perform address translation. ISB ensures that CPU + * does these 2 steps in order. + * + * 1. Update TCR_EL1.EPDx bits to disable page table walk by + * stage1. + * 2. Enable MMU bit to avoid identity mapping via stage2 + * and force TCR_EL1.EPDx to be used by the page table + * walker. + * ------------------------------------------------------------ + */ + orr x29, x29, #(TCR_EPD0_BIT) + orr x29, x29, #(TCR_EPD1_BIT) + msr tcr_el1, x29 + isb + mrs x29, sctlr_el1 + orr x29, x29, #SCTLR_M_BIT + msr sctlr_el1, x29 + isb + + ret +endfunc save_and_update_ptw_el1_sys_regs + +/* ----------------------------------------------------------------- +* The below macro returns the address of the per_world context for +* the security state, retrieved through "get_security_state" macro. +* The per_world context address is returned in the register argument. +* Clobbers: x9, x10 +* ------------------------------------------------------------------ +*/ + +.macro get_per_world_context _reg:req + ldr x10, [sp, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3] + get_security_state x9, x10 + mov_imm x10, (CTX_GLOBAL_EL3STATE_END - CTX_CPTR_EL3) + mul x9, x9, x10 + adrp x10, per_world_context + add x10, x10, :lo12:per_world_context + add x9, x9, x10 + mov \_reg, x9 +.endm + +/* ------------------------------------------------------------------ + * This routine assumes that the SP_EL3 is pointing to a valid + * context structure from where the gp regs and other special + * registers can be retrieved. + * ------------------------------------------------------------------ + */ +func el3_exit +#if ENABLE_ASSERTIONS + /* el3_exit assumes SP_EL0 on entry */ + mrs x17, spsel + cmp x17, #MODE_SP_EL0 + ASM_ASSERT(eq) +#endif /* ENABLE_ASSERTIONS */ + + /* ---------------------------------------------------------- + * Save the current SP_EL0 i.e. the EL3 runtime stack which + * will be used for handling the next SMC. + * Then switch to SP_EL3. + * ---------------------------------------------------------- + */ + mov x17, sp + msr spsel, #MODE_SP_ELX + str x17, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP] + + /* ---------------------------------------------------------- + * Restore CPTR_EL3. + * ZCR is only restored if SVE is supported and enabled. + * Synchronization is required before zcr_el3 is addressed. + * ---------------------------------------------------------- + */ + + /* The address of the per_world context is stored in x9 */ + get_per_world_context x9 + + ldp x19, x20, [x9, #CTX_CPTR_EL3] + msr cptr_el3, x19 + +#if IMAGE_BL31 + ands x19, x19, #CPTR_EZ_BIT + beq sve_not_enabled + + isb + msr S3_6_C1_C2_0, x20 /* zcr_el3 */ +sve_not_enabled: + + restore_mpam3_el3 + +#endif /* IMAGE_BL31 */ + +#if IMAGE_BL31 && DYNAMIC_WORKAROUND_CVE_2018_3639 + /* ---------------------------------------------------------- + * Restore mitigation state as it was on entry to EL3 + * ---------------------------------------------------------- + */ + ldr x17, [sp, #CTX_CVE_2018_3639_OFFSET + CTX_CVE_2018_3639_DISABLE] + cbz x17, 1f + blr x17 +1: +#endif /* IMAGE_BL31 && DYNAMIC_WORKAROUND_CVE_2018_3639 */ + +#if IMAGE_BL31 + synchronize_errors +#endif /* IMAGE_BL31 */ + + /* ---------------------------------------------------------- + * Restore SPSR_EL3, ELR_EL3 and SCR_EL3 prior to ERET + * ---------------------------------------------------------- + */ + ldr x18, [sp, #CTX_EL3STATE_OFFSET + CTX_SCR_EL3] + ldp x16, x17, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3] + msr scr_el3, x18 + msr spsr_el3, x16 + msr elr_el3, x17 + + restore_ptw_el1_sys_regs + + /* ---------------------------------------------------------- + * Restore general purpose (including x30), PMCR_EL0 and + * ARMv8.3-PAuth registers. + * Exit EL3 via ERET to a lower exception level. + * ---------------------------------------------------------- + */ + bl restore_gp_pmcr_pauth_regs + ldr x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR] + +#ifdef IMAGE_BL31 + /* Clear the EL3 flag as we are exiting el3 */ + str xzr, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG] +#endif /* IMAGE_BL31 */ + + exception_return + +endfunc el3_exit diff --git a/lib/el3_runtime/aarch64/context_mgmt.c b/lib/el3_runtime/aarch64/context_mgmt.c new file mode 100644 index 0000000..fdd1388 --- /dev/null +++ b/lib/el3_runtime/aarch64/context_mgmt.c @@ -0,0 +1,1531 @@ +/* + * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved. + * Copyright (c) 2022, NVIDIA Corporation. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <stdbool.h> +#include <string.h> + +#include <platform_def.h> + +#include <arch.h> +#include <arch_helpers.h> +#include <arch_features.h> +#include <bl31/interrupt_mgmt.h> +#include <common/bl_common.h> +#include <common/debug.h> +#include <context.h> +#include <drivers/arm/gicv3.h> +#include <lib/el3_runtime/context_mgmt.h> +#include <lib/el3_runtime/cpu_data.h> +#include <lib/el3_runtime/pubsub_events.h> +#include <lib/extensions/amu.h> +#include <lib/extensions/brbe.h> +#include <lib/extensions/mpam.h> +#include <lib/extensions/pmuv3.h> +#include <lib/extensions/sme.h> +#include <lib/extensions/spe.h> +#include <lib/extensions/sve.h> +#include <lib/extensions/sys_reg_trace.h> +#include <lib/extensions/trbe.h> +#include <lib/extensions/trf.h> +#include <lib/utils.h> + +#if ENABLE_FEAT_TWED +/* Make sure delay value fits within the range(0-15) */ +CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); +#endif /* ENABLE_FEAT_TWED */ + +per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM]; +static bool has_secure_perworld_init; + +static void manage_extensions_nonsecure(cpu_context_t *ctx); +static void manage_extensions_secure(cpu_context_t *ctx); +static void manage_extensions_secure_per_world(void); + +static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t sctlr_elx, actlr_elx; + + /* + * Initialise SCTLR_EL1 to the reset value corresponding to the target + * execution state setting all fields rather than relying on the hw. + * Some fields have architecturally UNKNOWN reset values and these are + * set to zero. + * + * SCTLR.EE: Endianness is taken from the entrypoint attributes. + * + * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as + * required by PSCI specification) + */ + sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; + if (GET_RW(ep->spsr) == MODE_RW_64) { + sctlr_elx |= SCTLR_EL1_RES1; + } else { + /* + * If the target execution state is AArch32 then the following + * fields need to be set. + * + * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE + * instructions are not trapped to EL1. + * + * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI + * instructions are not trapped to EL1. + * + * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the + * CP15DMB, CP15DSB, and CP15ISB instructions. + */ + sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT + | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; + } + +#if ERRATA_A75_764081 + /* + * If workaround of errata 764081 for Cortex-A75 is used then set + * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. + */ + sctlr_elx |= SCTLR_IESB_BIT; +#endif + /* Store the initialised SCTLR_EL1 value in the cpu_context */ + write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); + + /* + * Base the context ACTLR_EL1 on the current value, as it is + * implementation defined. The context restore process will write + * the value from the context to the actual register and can cause + * problems for processor cores that don't expect certain bits to + * be zero. + */ + actlr_elx = read_actlr_el1(); + write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); +} + +/****************************************************************************** + * This function performs initializations that are specific to SECURE state + * and updates the cpu context specified by 'ctx'. + *****************************************************************************/ +static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + +#if defined(IMAGE_BL31) && !defined(SPD_spmd) + /* + * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as + * indicated by the interrupt routing model for BL31. + */ + scr_el3 |= get_scr_el3_from_routing_model(SECURE); +#endif + +#if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS + /* Get Memory Tagging Extension support level */ + unsigned int mte = get_armv8_5_mte_support(); +#endif + /* + * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS + * is set, or when MTE is only implemented at EL0. + */ +#if CTX_INCLUDE_MTE_REGS + assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); + scr_el3 |= SCR_ATA_BIT; +#else + if (mte == MTE_IMPLEMENTED_EL0) { + scr_el3 |= SCR_ATA_BIT; + } +#endif /* CTX_INCLUDE_MTE_REGS */ + + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + + /* + * Initialize EL1 context registers unless SPMC is running + * at S-EL2. + */ +#if !SPMD_SPM_AT_SEL2 + setup_el1_context(ctx, ep); +#endif + + manage_extensions_secure(ctx); + + /** + * manage_extensions_secure_per_world api has to be executed once, + * as the registers getting initialised, maintain constant value across + * all the cpus for the secure world. + * Henceforth, this check ensures that the registers are initialised once + * and avoids re-initialization from multiple cores. + */ + if (!has_secure_perworld_init) { + manage_extensions_secure_per_world(); + } + +} + +#if ENABLE_RME +/****************************************************************************** + * This function performs initializations that are specific to REALM state + * and updates the cpu context specified by 'ctx'. + *****************************************************************************/ +static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + + scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT; + + if (is_feat_csv2_2_supported()) { + /* Enable access to the SCXTNUM_ELx registers. */ + scr_el3 |= SCR_EnSCXT_BIT; + } + + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); +} +#endif /* ENABLE_RME */ + +/****************************************************************************** + * This function performs initializations that are specific to NON-SECURE state + * and updates the cpu context specified by 'ctx'. + *****************************************************************************/ +static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + + /* SCR_NS: Set the NS bit */ + scr_el3 |= SCR_NS_BIT; + + /* Allow access to Allocation Tags when MTE is implemented. */ + scr_el3 |= SCR_ATA_BIT; + +#if !CTX_INCLUDE_PAUTH_REGS + /* + * Pointer Authentication feature, if present, is always enabled by default + * for Non secure lower exception levels. We do not have an explicit + * flag to set it. + * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower + * exception levels of secure and realm worlds. + * + * To prevent the leakage between the worlds during world switch, + * we enable it only for the non-secure world. + * + * If the Secure/realm world wants to use pointer authentication, + * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case + * it will be enabled globally for all the contexts. + * + * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs + * other than EL3 + * + * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other + * than EL3 + */ + scr_el3 |= SCR_API_BIT | SCR_APK_BIT; + +#endif /* CTX_INCLUDE_PAUTH_REGS */ + +#if HANDLE_EA_EL3_FIRST_NS + /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */ + scr_el3 |= SCR_EA_BIT; +#endif + +#if RAS_TRAP_NS_ERR_REC_ACCESS + /* + * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR + * and RAS ERX registers from EL1 and EL2(from any security state) + * are trapped to EL3. + * Set here to trap only for NS EL1/EL2 + * + */ + scr_el3 |= SCR_TERR_BIT; +#endif + + if (is_feat_csv2_2_supported()) { + /* Enable access to the SCXTNUM_ELx registers. */ + scr_el3 |= SCR_EnSCXT_BIT; + } + +#ifdef IMAGE_BL31 + /* + * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as + * indicated by the interrupt routing model for BL31. + */ + scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); +#endif + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + + /* Initialize EL1 context registers */ + setup_el1_context(ctx, ep); + + /* Initialize EL2 context registers */ +#if CTX_INCLUDE_EL2_REGS + + /* + * Initialize SCTLR_EL2 context register using Endianness value + * taken from the entrypoint attribute. + */ + u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; + sctlr_el2 |= SCTLR_EL2_RES1; + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2, + sctlr_el2); + + if (is_feat_hcx_supported()) { + /* + * Initialize register HCRX_EL2 with its init value. + * As the value of HCRX_EL2 is UNKNOWN on reset, there is a + * chance that this can lead to unexpected behavior in lower + * ELs that have not been updated since the introduction of + * this feature if not properly initialized, especially when + * it comes to those bits that enable/disable traps. + */ + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2, + HCRX_EL2_INIT_VAL); + } + + if (is_feat_fgt_supported()) { + /* + * Initialize HFG*_EL2 registers with a default value so legacy + * systems unaware of FEAT_FGT do not get trapped due to their lack + * of initialization for this feature. + */ + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2, + HFGITR_EL2_INIT_VAL); + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2, + HFGRTR_EL2_INIT_VAL); + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2, + HFGWTR_EL2_INIT_VAL); + } +#endif /* CTX_INCLUDE_EL2_REGS */ + + manage_extensions_nonsecure(ctx); +} + +/******************************************************************************* + * The following function performs initialization of the cpu_context 'ctx' + * for first use that is common to all security states, and sets the + * initial entrypoint state as specified by the entry_point_info structure. + * + * The EE and ST attributes are used to configure the endianness and secure + * timer availability for the new execution context. + ******************************************************************************/ +static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + gp_regs_t *gp_regs; + + state = get_el3state_ctx(ctx); + + /* Clear any residual register values from the context */ + zeromem(ctx, sizeof(*ctx)); + + /* + * The lower-EL context is zeroed so that no stale values leak to a world. + * It is assumed that an all-zero lower-EL context is good enough for it + * to boot correctly. However, there are very few registers where this + * is not true and some values need to be recreated. + */ +#if CTX_INCLUDE_EL2_REGS + el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx); + + /* + * These bits are set in the gicv3 driver. Losing them (especially the + * SRE bit) is problematic for all worlds. Henceforth recreate them. + */ + u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT | + ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT; + write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2); +#endif /* CTX_INCLUDE_EL2_REGS */ + + /* Start with a clean SCR_EL3 copy as all relevant values are set */ + scr_el3 = SCR_RESET_VAL; + + /* + * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at + * EL2, EL1 and EL0 are not trapped to EL3. + * + * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at + * EL2, EL1 and EL0 are not trapped to EL3. + * + * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from + * both Security states and both Execution states. + * + * SCR_EL3.SIF: Set to one to disable secure instruction execution from + * Non-secure memory. + */ + scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT); + + scr_el3 |= SCR_SIF_BIT; + + /* + * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next + * Exception level as specified by SPSR. + */ + if (GET_RW(ep->spsr) == MODE_RW_64) { + scr_el3 |= SCR_RW_BIT; + } + + /* + * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical + * Secure timer registers to EL3, from AArch64 state only, if specified + * by the entrypoint attributes. If SEL2 is present and enabled, the ST + * bit always behaves as 1 (i.e. secure physical timer register access + * is not trapped) + */ + if (EP_GET_ST(ep->h.attr) != 0U) { + scr_el3 |= SCR_ST_BIT; + } + + /* + * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting + * SCR_EL3.HXEn. + */ + if (is_feat_hcx_supported()) { + scr_el3 |= SCR_HXEn_BIT; + } + + /* + * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS + * registers are trapped to EL3. + */ +#if ENABLE_FEAT_RNG_TRAP + scr_el3 |= SCR_TRNDR_BIT; +#endif + +#if FAULT_INJECTION_SUPPORT + /* Enable fault injection from lower ELs */ + scr_el3 |= SCR_FIEN_BIT; +#endif + +#if CTX_INCLUDE_PAUTH_REGS + /* + * Enable Pointer Authentication globally for all the worlds. + * + * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs + * other than EL3 + * + * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other + * than EL3 + */ + scr_el3 |= SCR_API_BIT | SCR_APK_BIT; +#endif /* CTX_INCLUDE_PAUTH_REGS */ + + /* + * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present. + */ + if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) { + scr_el3 |= SCR_TCR2EN_BIT; + } + + /* + * SCR_EL3.PIEN: Enable permission indirection and overlay + * registers for AArch64 if present. + */ + if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) { + scr_el3 |= SCR_PIEN_BIT; + } + + /* + * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present. + */ + if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) { + scr_el3 |= SCR_GCSEn_BIT; + } + + /* + * SCR_EL3.HCE: Enable HVC instructions if next execution state is + * AArch64 and next EL is EL2, or if next execution state is AArch32 and + * next mode is Hyp. + * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the + * same conditions as HVC instructions and when the processor supports + * ARMv8.6-FGT. + * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) + * CNTPOFF_EL2 register under the same conditions as HVC instructions + * and when the processor supports ECV. + */ + if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) + || ((GET_RW(ep->spsr) != MODE_RW_64) + && (GET_M32(ep->spsr) == MODE32_hyp))) { + scr_el3 |= SCR_HCE_BIT; + + if (is_feat_fgt_supported()) { + scr_el3 |= SCR_FGTEN_BIT; + } + + if (is_feat_ecv_supported()) { + scr_el3 |= SCR_ECVEN_BIT; + } + } + + /* Enable WFE trap delay in SCR_EL3 if supported and configured */ + if (is_feat_twed_supported()) { + /* Set delay in SCR_EL3 */ + scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); + scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) + << SCR_TWEDEL_SHIFT); + + /* Enable WFE delay */ + scr_el3 |= SCR_TWEDEn_BIT; + } + +#if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2 + /* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */ + if (is_feat_sel2_supported()) { + scr_el3 |= SCR_EEL2_BIT; + } +#endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */ + + if (is_feat_mpam_supported()) { + write_ctx_reg(get_el3state_ctx(ctx), CTX_MPAM3_EL3, \ + MPAM3_EL3_RESET_VAL); + } + + /* + * Populate EL3 state so that we've the right context + * before doing ERET + */ + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + write_ctx_reg(state, CTX_ELR_EL3, ep->pc); + write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); + + /* + * Store the X0-X7 value from the entrypoint into the context + * Use memcpy as we are in control of the layout of the structures + */ + gp_regs = get_gpregs_ctx(ctx); + memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); +} + +/******************************************************************************* + * Context management library initialization routine. This library is used by + * runtime services to share pointers to 'cpu_context' structures for secure + * non-secure and realm states. Management of the structures and their associated + * memory is not done by the context management library e.g. the PSCI service + * manages the cpu context used for entry from and exit to the non-secure state. + * The Secure payload dispatcher service manages the context(s) corresponding to + * the secure state. It also uses this library to get access to the non-secure + * state cpu context pointers. + * Lastly, this library provides the API to make SP_EL3 point to the cpu context + * which will be used for programming an entry into a lower EL. The same context + * will be used to save state upon exception entry from that EL. + ******************************************************************************/ +void __init cm_init(void) +{ + /* + * The context management library has only global data to initialize, but + * that will be done when the BSS is zeroed out. + */ +} + +/******************************************************************************* + * This is the high-level function used to initialize the cpu_context 'ctx' for + * first use. It performs initializations that are common to all security states + * and initializations specific to the security state specified in 'ep' + ******************************************************************************/ +void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) +{ + unsigned int security_state; + + assert(ctx != NULL); + + /* + * Perform initializations that are common + * to all security states + */ + setup_context_common(ctx, ep); + + security_state = GET_SECURITY_STATE(ep->h.attr); + + /* Perform security state specific initializations */ + switch (security_state) { + case SECURE: + setup_secure_context(ctx, ep); + break; +#if ENABLE_RME + case REALM: + setup_realm_context(ctx, ep); + break; +#endif + case NON_SECURE: + setup_ns_context(ctx, ep); + break; + default: + ERROR("Invalid security state\n"); + panic(); + break; + } +} + +/******************************************************************************* + * Enable architecture extensions for EL3 execution. This function only updates + * registers in-place which are expected to either never change or be + * overwritten by el3_exit. + ******************************************************************************/ +#if IMAGE_BL31 +void cm_manage_extensions_el3(void) +{ + if (is_feat_spe_supported()) { + spe_init_el3(); + } + + if (is_feat_amu_supported()) { + amu_init_el3(); + } + + if (is_feat_sme_supported()) { + sme_init_el3(); + } + + if (is_feat_trbe_supported()) { + trbe_init_el3(); + } + + if (is_feat_brbe_supported()) { + brbe_init_el3(); + } + + if (is_feat_trf_supported()) { + trf_init_el3(); + } + + pmuv3_init_el3(); +} +#endif /* IMAGE_BL31 */ + +/******************************************************************************* + * Initialise per_world_context for Non-Secure world. + * This function enables the architecture extensions, which have same value + * across the cores for the non-secure world. + ******************************************************************************/ +#if IMAGE_BL31 +void manage_extensions_nonsecure_per_world(void) +{ + if (is_feat_sme_supported()) { + sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } + + if (is_feat_sve_supported()) { + sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } + + if (is_feat_amu_supported()) { + amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } + + if (is_feat_sys_reg_trace_supported()) { + sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } +} +#endif /* IMAGE_BL31 */ + +/******************************************************************************* + * Initialise per_world_context for Secure world. + * This function enables the architecture extensions, which have same value + * across the cores for the secure world. + ******************************************************************************/ + +static void manage_extensions_secure_per_world(void) +{ +#if IMAGE_BL31 + if (is_feat_sme_supported()) { + + if (ENABLE_SME_FOR_SWD) { + /* + * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure + * SME, SVE, and FPU/SIMD context properly managed. + */ + sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } else { + /* + * Disable SME, SVE, FPU/SIMD in secure context so non-secure + * world can safely use the associated registers. + */ + sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } + } + if (is_feat_sve_supported()) { + if (ENABLE_SVE_FOR_SWD) { + /* + * Enable SVE and FPU in secure context, SPM must ensure + * that the SVE and FPU register contexts are properly managed. + */ + sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } else { + /* + * Disable SVE and FPU in secure context so non-secure world + * can safely use them. + */ + sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } + } + + /* NS can access this but Secure shouldn't */ + if (is_feat_sys_reg_trace_supported()) { + sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } + + has_secure_perworld_init = true; +#endif /* IMAGE_BL31 */ +} + +/******************************************************************************* + * Enable architecture extensions on first entry to Non-secure world. + ******************************************************************************/ +static void manage_extensions_nonsecure(cpu_context_t *ctx) +{ +#if IMAGE_BL31 + if (is_feat_amu_supported()) { + amu_enable(ctx); + } + + if (is_feat_sme_supported()) { + sme_enable(ctx); + } + + if (is_feat_mpam_supported()) { + mpam_enable(ctx); + } + pmuv3_enable(ctx); +#endif /* IMAGE_BL31 */ +} + +/* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */ +static __unused void enable_pauth_el2(void) +{ + u_register_t hcr_el2 = read_hcr_el2(); + /* + * For Armv8.3 pointer authentication feature, disable traps to EL2 when + * accessing key registers or using pointer authentication instructions + * from lower ELs. + */ + hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); + + write_hcr_el2(hcr_el2); +} + +#if INIT_UNUSED_NS_EL2 +/******************************************************************************* + * Enable architecture extensions in-place at EL2 on first entry to Non-secure + * world when EL2 is empty and unused. + ******************************************************************************/ +static void manage_extensions_nonsecure_el2_unused(void) +{ +#if IMAGE_BL31 + if (is_feat_spe_supported()) { + spe_init_el2_unused(); + } + + if (is_feat_amu_supported()) { + amu_init_el2_unused(); + } + + if (is_feat_mpam_supported()) { + mpam_init_el2_unused(); + } + + if (is_feat_trbe_supported()) { + trbe_init_el2_unused(); + } + + if (is_feat_sys_reg_trace_supported()) { + sys_reg_trace_init_el2_unused(); + } + + if (is_feat_trf_supported()) { + trf_init_el2_unused(); + } + + pmuv3_init_el2_unused(); + + if (is_feat_sve_supported()) { + sve_init_el2_unused(); + } + + if (is_feat_sme_supported()) { + sme_init_el2_unused(); + } + +#if ENABLE_PAUTH + enable_pauth_el2(); +#endif /* ENABLE_PAUTH */ +#endif /* IMAGE_BL31 */ +} +#endif /* INIT_UNUSED_NS_EL2 */ + +/******************************************************************************* + * Enable architecture extensions on first entry to Secure world. + ******************************************************************************/ +static void manage_extensions_secure(cpu_context_t *ctx) +{ +#if IMAGE_BL31 + if (is_feat_sme_supported()) { + if (ENABLE_SME_FOR_SWD) { + /* + * Enable SME, SVE, FPU/SIMD in secure context, secure manager + * must ensure SME, SVE, and FPU/SIMD context properly managed. + */ + sme_init_el3(); + sme_enable(ctx); + } else { + /* + * Disable SME, SVE, FPU/SIMD in secure context so non-secure + * world can safely use the associated registers. + */ + sme_disable(ctx); + } + } +#endif /* IMAGE_BL31 */ +} + +/******************************************************************************* + * The following function initializes the cpu_context for a CPU specified by + * its `cpu_idx` for first use, and sets the initial entrypoint state as + * specified by the entry_point_info structure. + ******************************************************************************/ +void cm_init_context_by_index(unsigned int cpu_idx, + const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); + cm_setup_context(ctx, ep); +} + +/******************************************************************************* + * The following function initializes the cpu_context for the current CPU + * for first use, and sets the initial entrypoint state as specified by the + * entry_point_info structure. + ******************************************************************************/ +void cm_init_my_context(const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); + cm_setup_context(ctx, ep); +} + +/* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */ +static void init_nonsecure_el2_unused(cpu_context_t *ctx) +{ +#if INIT_UNUSED_NS_EL2 + u_register_t hcr_el2 = HCR_RESET_VAL; + u_register_t mdcr_el2; + u_register_t scr_el3; + + scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); + + /* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */ + if ((scr_el3 & SCR_RW_BIT) != 0U) { + hcr_el2 |= HCR_RW_BIT; + } + + write_hcr_el2(hcr_el2); + + /* + * Initialise CPTR_EL2 setting all fields rather than relying on the hw. + * All fields have architecturally UNKNOWN reset values. + */ + write_cptr_el2(CPTR_EL2_RESET_VAL); + + /* + * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on + * reset and are set to zero except for field(s) listed below. + * + * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of + * Non-secure EL0 and EL1 accesses to the physical timer registers. + * + * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of + * Non-secure EL0 and EL1 accesses to the physical counter registers. + */ + write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT); + + /* + * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally + * UNKNOWN value. + */ + write_cntvoff_el2(0); + + /* + * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1 + * respectively. + */ + write_vpidr_el2(read_midr_el1()); + write_vmpidr_el2(read_mpidr_el1()); + + /* + * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset. + * + * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address + * translation is disabled, cache maintenance operations depend on the + * VMID. + * + * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is + * disabled. + */ + write_vttbr_el2(VTTBR_RESET_VAL & + ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) | + (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); + + /* + * Initialise MDCR_EL2, setting all fields rather than relying on hw. + * Some fields are architecturally UNKNOWN on reset. + * + * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System + * register accesses to the Debug ROM registers are not trapped to EL2. + * + * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register + * accesses to the powerdown debug registers are not trapped to EL2. + * + * MDCR_EL2.TDA: Set to zero so that System register accesses to the + * debug registers do not trap to EL2. + * + * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to + * EL2. + */ + mdcr_el2 = MDCR_EL2_RESET_VAL & + ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT | + MDCR_EL2_TDE_BIT); + + write_mdcr_el2(mdcr_el2); + + /* + * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset. + * + * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or + * EL1 accesses to System registers do not trap to EL2. + */ + write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); + + /* + * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on + * reset. + * + * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer + * and prevent timer interrupts. + */ + write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT)); + + manage_extensions_nonsecure_el2_unused(); +#endif /* INIT_UNUSED_NS_EL2 */ +} + +/******************************************************************************* + * Prepare the CPU system registers for first entry into realm, secure, or + * normal world. + * + * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized + * If execution is requested to non-secure EL1 or svc mode, and the CPU supports + * EL2 then EL2 is disabled by configuring all necessary EL2 registers. + * For all entries, the EL1 registers are initialized from the cpu_context + ******************************************************************************/ +void cm_prepare_el3_exit(uint32_t security_state) +{ + u_register_t sctlr_elx, scr_el3; + cpu_context_t *ctx = cm_get_context(security_state); + + assert(ctx != NULL); + + if (security_state == NON_SECURE) { + uint64_t el2_implemented = el_implemented(2); + + scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), + CTX_SCR_EL3); + + if (((scr_el3 & SCR_HCE_BIT) != 0U) + || (el2_implemented != EL_IMPL_NONE)) { + /* + * If context is not being used for EL2, initialize + * HCRX_EL2 with its init value here. + */ + if (is_feat_hcx_supported()) { + write_hcrx_el2(HCRX_EL2_INIT_VAL); + } + + /* + * Initialize Fine-grained trap registers introduced + * by FEAT_FGT so all traps are initially disabled when + * switching to EL2 or a lower EL, preventing undesired + * behavior. + */ + if (is_feat_fgt_supported()) { + /* + * Initialize HFG*_EL2 registers with a default + * value so legacy systems unaware of FEAT_FGT + * do not get trapped due to their lack of + * initialization for this feature. + */ + write_hfgitr_el2(HFGITR_EL2_INIT_VAL); + write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL); + write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL); + } + } + + + if ((scr_el3 & SCR_HCE_BIT) != 0U) { + /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ + sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), + CTX_SCTLR_EL1); + sctlr_elx &= SCTLR_EE_BIT; + sctlr_elx |= SCTLR_EL2_RES1; +#if ERRATA_A75_764081 + /* + * If workaround of errata 764081 for Cortex-A75 is used + * then set SCTLR_EL2.IESB to enable Implicit Error + * Synchronization Barrier. + */ + sctlr_elx |= SCTLR_IESB_BIT; +#endif + write_sctlr_el2(sctlr_elx); + } else if (el2_implemented != EL_IMPL_NONE) { + init_nonsecure_el2_unused(ctx); + } + } + + cm_el1_sysregs_context_restore(security_state); + cm_set_next_eret_context(security_state); +} + +#if CTX_INCLUDE_EL2_REGS + +static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx) +{ + write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2()); + if (is_feat_amu_supported()) { + write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2()); + } + write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2()); + write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2()); + write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2()); + write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2()); +} + +static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx) +{ + write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2)); + if (is_feat_amu_supported()) { + write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2)); + } + write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2)); + write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2)); + write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2)); + write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2)); +} + +static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx) +{ + u_register_t mpam_idr = read_mpamidr_el1(); + + write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2()); + + /* + * The context registers that we intend to save would be part of the + * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1. + */ + if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { + return; + } + + /* + * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if + * MPAMIDR_HAS_HCR_BIT == 1. + */ + write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2()); + write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2()); + write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2()); + + /* + * The number of MPAMVPM registers is implementation defined, their + * number is stored in the MPAMIDR_EL1 register. + */ + switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { + case 7: + write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2()); + __fallthrough; + case 6: + write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2()); + __fallthrough; + case 5: + write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2()); + __fallthrough; + case 4: + write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2()); + __fallthrough; + case 3: + write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2()); + __fallthrough; + case 2: + write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2()); + __fallthrough; + case 1: + write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2()); + break; + } +} + +static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx) +{ + u_register_t mpam_idr = read_mpamidr_el1(); + + write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2)); + + if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { + return; + } + + write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2)); + write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2)); + write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2)); + + switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { + case 7: + write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2)); + __fallthrough; + case 6: + write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2)); + __fallthrough; + case 5: + write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2)); + __fallthrough; + case 4: + write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2)); + __fallthrough; + case 3: + write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2)); + __fallthrough; + case 2: + write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2)); + __fallthrough; + case 1: + write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2)); + break; + } +} + +/* ----------------------------------------------------- + * The following registers are not added: + * AMEVCNTVOFF0<n>_EL2 + * AMEVCNTVOFF1<n>_EL2 + * ICH_AP0R<n>_EL2 + * ICH_AP1R<n>_EL2 + * ICH_LR<n>_EL2 + * ----------------------------------------------------- + */ +static void el2_sysregs_context_save_common(el2_sysregs_t *ctx) +{ + write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2()); + write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2()); + write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2()); + write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2()); + write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2()); + write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2()); + write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2()); + if (CTX_INCLUDE_AARCH32_REGS) { + write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2()); + } + write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2()); + write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2()); + write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2()); + write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2()); + write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2()); + write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2()); + write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2()); + + /* + * Set the NS bit to be able to access the ICC_SRE_EL2 register + * TODO: remove with root context + */ + u_register_t scr_el3 = read_scr_el3(); + + write_scr_el3(scr_el3 | SCR_NS_BIT); + isb(); + write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2()); + + write_scr_el3(scr_el3); + isb(); + + write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2()); + write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2()); + write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2()); + write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2()); + write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2()); + write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2()); + write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2()); + write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2()); + write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2()); + write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2()); + write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2()); + write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2()); + write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2()); + write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2()); + write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2()); +} + +static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx) +{ + write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2)); + write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2)); + write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2)); + write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2)); + write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2)); + write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2)); + write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2)); + if (CTX_INCLUDE_AARCH32_REGS) { + write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2)); + } + write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2)); + write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2)); + write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2)); + write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2)); + write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2)); + write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2)); + write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2)); + + /* + * Set the NS bit to be able to access the ICC_SRE_EL2 register + * TODO: remove with root context + */ + u_register_t scr_el3 = read_scr_el3(); + + write_scr_el3(scr_el3 | SCR_NS_BIT); + isb(); + write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2)); + + write_scr_el3(scr_el3); + isb(); + + write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2)); + write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2)); + write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2)); + write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2)); + write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2)); + write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2)); + write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2)); + write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2)); + write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2)); + write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2)); + write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2)); + write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2)); + write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2)); + write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2)); + write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2)); +} + +/******************************************************************************* + * Save EL2 sysreg context + ******************************************************************************/ +void cm_el2_sysregs_context_save(uint32_t security_state) +{ + cpu_context_t *ctx; + el2_sysregs_t *el2_sysregs_ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); + + el2_sysregs_context_save_common(el2_sysregs_ctx); +#if CTX_INCLUDE_MTE_REGS + write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2()); +#endif + if (is_feat_mpam_supported()) { + el2_sysregs_context_save_mpam(el2_sysregs_ctx); + } + + if (is_feat_fgt_supported()) { + el2_sysregs_context_save_fgt(el2_sysregs_ctx); + } + + if (is_feat_ecv_v2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2()); + } + + if (is_feat_vhe_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2()); + } + + if (is_feat_ras_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2()); + } + + if (is_feat_nv2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2()); + } + + if (is_feat_trf_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2()); + } + + if (is_feat_csv2_2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2()); + } + + if (is_feat_hcx_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2()); + } + if (is_feat_tcr2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2()); + } + if (is_feat_sxpie_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2()); + } + if (is_feat_s2pie_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2()); + } + if (is_feat_sxpoe_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2()); + } + if (is_feat_gcs_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2()); + } +} + +/******************************************************************************* + * Restore EL2 sysreg context + ******************************************************************************/ +void cm_el2_sysregs_context_restore(uint32_t security_state) +{ + cpu_context_t *ctx; + el2_sysregs_t *el2_sysregs_ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); + + el2_sysregs_context_restore_common(el2_sysregs_ctx); +#if CTX_INCLUDE_MTE_REGS + write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2)); +#endif + if (is_feat_mpam_supported()) { + el2_sysregs_context_restore_mpam(el2_sysregs_ctx); + } + + if (is_feat_fgt_supported()) { + el2_sysregs_context_restore_fgt(el2_sysregs_ctx); + } + + if (is_feat_ecv_v2_supported()) { + write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2)); + } + + if (is_feat_vhe_supported()) { + write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2)); + write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2)); + } + + if (is_feat_ras_supported()) { + write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2)); + write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2)); + } + + if (is_feat_nv2_supported()) { + write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2)); + } + if (is_feat_trf_supported()) { + write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2)); + } + + if (is_feat_csv2_2_supported()) { + write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2)); + } + + if (is_feat_hcx_supported()) { + write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2)); + } + if (is_feat_tcr2_supported()) { + write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2)); + } + if (is_feat_sxpie_supported()) { + write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2)); + write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2)); + } + if (is_feat_s2pie_supported()) { + write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2)); + } + if (is_feat_sxpoe_supported()) { + write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2)); + } + if (is_feat_gcs_supported()) { + write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2)); + write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2)); + } +} +#endif /* CTX_INCLUDE_EL2_REGS */ + +/******************************************************************************* + * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS + * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly + * updating EL1 and EL2 registers. Otherwise, it calls the generic + * cm_prepare_el3_exit function. + ******************************************************************************/ +void cm_prepare_el3_exit_ns(void) +{ +#if CTX_INCLUDE_EL2_REGS +#if ENABLE_ASSERTIONS + cpu_context_t *ctx = cm_get_context(NON_SECURE); + assert(ctx != NULL); + + /* Assert that EL2 is used. */ + u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); + assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && + (el_implemented(2U) != EL_IMPL_NONE)); +#endif /* ENABLE_ASSERTIONS */ + + /* Restore EL2 and EL1 sysreg contexts */ + cm_el2_sysregs_context_restore(NON_SECURE); + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); +#else + cm_prepare_el3_exit(NON_SECURE); +#endif /* CTX_INCLUDE_EL2_REGS */ +} + +/******************************************************************************* + * The next four functions are used by runtime services to save and restore + * EL1 context on the 'cpu_context' structure for the specified security + * state. + ******************************************************************************/ +void cm_el1_sysregs_context_save(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); + +#if IMAGE_BL31 + if (security_state == SECURE) + PUBLISH_EVENT(cm_exited_secure_world); + else + PUBLISH_EVENT(cm_exited_normal_world); +#endif +} + +void cm_el1_sysregs_context_restore(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); + +#if IMAGE_BL31 + if (security_state == SECURE) + PUBLISH_EVENT(cm_entering_secure_world); + else + PUBLISH_EVENT(cm_entering_normal_world); +#endif +} + +/******************************************************************************* + * This function populates ELR_EL3 member of 'cpu_context' pertaining to the + * given security state with the given entrypoint + ******************************************************************************/ +void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_ELR_EL3, entrypoint); +} + +/******************************************************************************* + * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' + * pertaining to the given security state + ******************************************************************************/ +void cm_set_elr_spsr_el3(uint32_t security_state, + uintptr_t entrypoint, uint32_t spsr) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_ELR_EL3, entrypoint); + write_ctx_reg(state, CTX_SPSR_EL3, spsr); +} + +/******************************************************************************* + * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' + * pertaining to the given security state using the value and bit position + * specified in the parameters. It preserves all other bits. + ******************************************************************************/ +void cm_write_scr_el3_bit(uint32_t security_state, + uint32_t bit_pos, + uint32_t value) +{ + cpu_context_t *ctx; + el3_state_t *state; + u_register_t scr_el3; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Ensure that the bit position is a valid one */ + assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); + + /* Ensure that the 'value' is only a bit wide */ + assert(value <= 1U); + + /* + * Get the SCR_EL3 value from the cpu context, clear the desired bit + * and set it to its new value. + */ + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + scr_el3 &= ~(1UL << bit_pos); + scr_el3 |= (u_register_t)value << bit_pos; + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); +} + +/******************************************************************************* + * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the + * given security state. + ******************************************************************************/ +u_register_t cm_get_scr_el3(uint32_t security_state) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + return read_ctx_reg(state, CTX_SCR_EL3); +} + +/******************************************************************************* + * This function is used to program the context that's used for exception + * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for + * the required security state + ******************************************************************************/ +void cm_set_next_eret_context(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + cm_set_next_context(ctx); +} diff --git a/lib/el3_runtime/aarch64/cpu_data.S b/lib/el3_runtime/aarch64/cpu_data.S new file mode 100644 index 0000000..313f882 --- /dev/null +++ b/lib/el3_runtime/aarch64/cpu_data.S @@ -0,0 +1,48 @@ +/* + * Copyright (c) 2014-2020, Arm Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <asm_macros.S> +#include <lib/el3_runtime/cpu_data.h> + +.globl init_cpu_data_ptr +.globl _cpu_data_by_index + +/* ----------------------------------------------------------------- + * void init_cpu_data_ptr(void) + * + * Initialise the TPIDR_EL3 register to refer to the cpu_data_t + * for the calling CPU. This must be called before cm_get_cpu_data() + * + * This can be called without a valid stack. It assumes that + * plat_my_core_pos() does not clobber register x10. + * clobbers: x0, x1, x10 + * ----------------------------------------------------------------- + */ +func init_cpu_data_ptr + mov x10, x30 + bl plat_my_core_pos + bl _cpu_data_by_index + msr tpidr_el3, x0 + ret x10 +endfunc init_cpu_data_ptr + +/* ----------------------------------------------------------------- + * cpu_data_t *_cpu_data_by_index(uint32_t cpu_index) + * + * Return the cpu_data structure for the CPU with given linear index + * + * This can be called without a valid stack. + * clobbers: x0, x1 + * ----------------------------------------------------------------- + */ +func _cpu_data_by_index + mov_imm x1, CPU_DATA_SIZE + mul x0, x0, x1 + adrp x1, percpu_data + add x1, x1, :lo12:percpu_data + add x0, x0, x1 + ret +endfunc _cpu_data_by_index diff --git a/lib/el3_runtime/cpu_data_array.c b/lib/el3_runtime/cpu_data_array.c new file mode 100644 index 0000000..2056182 --- /dev/null +++ b/lib/el3_runtime/cpu_data_array.c @@ -0,0 +1,13 @@ +/* + * Copyright (c) 2014-2016, Arm Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <platform_def.h> + +#include <lib/cassert.h> +#include <lib/el3_runtime/cpu_data.h> + +/* The per_cpu_ptr_cache_t space allocation */ +cpu_data_t percpu_data[PLATFORM_CORE_COUNT]; |