summaryrefslogtreecommitdiffstats
path: root/lib/xlat_tables_v2
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 17:43:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 17:43:51 +0000
commitbe58c81aff4cd4c0ccf43dbd7998da4a6a08c03b (patch)
tree779c248fb61c83f65d1f0dc867f2053d76b4e03a /lib/xlat_tables_v2
parentInitial commit. (diff)
downloadarm-trusted-firmware-be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b.tar.xz
arm-trusted-firmware-be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b.zip
Adding upstream version 2.10.0+dfsg.upstream/2.10.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/xlat_tables_v2')
-rw-r--r--lib/xlat_tables_v2/aarch32/enable_mmu.S120
-rw-r--r--lib/xlat_tables_v2/aarch32/xlat_tables_arch.c260
-rw-r--r--lib/xlat_tables_v2/aarch64/enable_mmu.S97
-rw-r--r--lib/xlat_tables_v2/aarch64/xlat_tables_arch.c323
-rw-r--r--lib/xlat_tables_v2/ro_xlat_tables.mk41
-rw-r--r--lib/xlat_tables_v2/xlat_tables.mk19
-rw-r--r--lib/xlat_tables_v2/xlat_tables_context.c270
-rw-r--r--lib/xlat_tables_v2/xlat_tables_core.c1244
-rw-r--r--lib/xlat_tables_v2/xlat_tables_private.h110
-rw-r--r--lib/xlat_tables_v2/xlat_tables_utils.c592
10 files changed, 3076 insertions, 0 deletions
diff --git a/lib/xlat_tables_v2/aarch32/enable_mmu.S b/lib/xlat_tables_v2/aarch32/enable_mmu.S
new file mode 100644
index 0000000..22c2876
--- /dev/null
+++ b/lib/xlat_tables_v2/aarch32/enable_mmu.S
@@ -0,0 +1,120 @@
+/*
+ * Copyright (c) 2018, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <asm_macros.S>
+#include <assert_macros.S>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+ .global enable_mmu_direct_svc_mon
+ .global enable_mmu_direct_hyp
+
+ /* void enable_mmu_direct_svc_mon(unsigned int flags) */
+func enable_mmu_direct_svc_mon
+ /* Assert that MMU is turned off */
+#if ENABLE_ASSERTIONS
+ ldcopr r1, SCTLR
+ tst r1, #SCTLR_M_BIT
+ ASM_ASSERT(eq)
+#endif
+
+ /* Invalidate TLB entries */
+ TLB_INVALIDATE(r0, TLBIALL)
+
+ mov r3, r0
+ ldr r0, =mmu_cfg_params
+
+ /* MAIR0. Only the lower 32 bits are used. */
+ ldr r1, [r0, #(MMU_CFG_MAIR << 3)]
+ stcopr r1, MAIR0
+
+ /* TTBCR. Only the lower 32 bits are used. */
+ ldr r2, [r0, #(MMU_CFG_TCR << 3)]
+ stcopr r2, TTBCR
+
+ /* TTBR0 */
+ ldr r1, [r0, #(MMU_CFG_TTBR0 << 3)]
+ ldr r2, [r0, #((MMU_CFG_TTBR0 << 3) + 4)]
+ stcopr16 r1, r2, TTBR0_64
+
+ /* TTBR1 is unused right now; set it to 0. */
+ mov r1, #0
+ mov r2, #0
+ stcopr16 r1, r2, TTBR1_64
+
+ /*
+ * Ensure all translation table writes have drained into memory, the TLB
+ * invalidation is complete, and translation register writes are
+ * committed before enabling the MMU
+ */
+ dsb ish
+ isb
+
+ /* Enable enable MMU by honoring flags */
+ ldcopr r1, SCTLR
+ ldr r2, =(SCTLR_WXN_BIT | SCTLR_C_BIT | SCTLR_M_BIT)
+ orr r1, r1, r2
+
+ /* Clear C bit if requested */
+ tst r3, #DISABLE_DCACHE
+ bicne r1, r1, #SCTLR_C_BIT
+
+ stcopr r1, SCTLR
+ isb
+
+ bx lr
+endfunc enable_mmu_direct_svc_mon
+
+
+ /* void enable_mmu_direct_hyp(unsigned int flags) */
+func enable_mmu_direct_hyp
+ /* Assert that MMU is turned off */
+#if ENABLE_ASSERTIONS
+ ldcopr r1, HSCTLR
+ tst r1, #HSCTLR_M_BIT
+ ASM_ASSERT(eq)
+#endif
+
+ /* Invalidate TLB entries */
+ TLB_INVALIDATE(r0, TLBIALL)
+
+ mov r3, r0
+ ldr r0, =mmu_cfg_params
+
+ /* HMAIR0 */
+ ldr r1, [r0, #(MMU_CFG_MAIR << 3)]
+ stcopr r1, HMAIR0
+
+ /* HTCR */
+ ldr r2, [r0, #(MMU_CFG_TCR << 3)]
+ stcopr r2, HTCR
+
+ /* HTTBR */
+ ldr r1, [r0, #(MMU_CFG_TTBR0 << 3)]
+ ldr r2, [r0, #((MMU_CFG_TTBR0 << 3) + 4)]
+ stcopr16 r1, r2, HTTBR_64
+
+ /*
+ * Ensure all translation table writes have drained into memory, the TLB
+ * invalidation is complete, and translation register writes are
+ * committed before enabling the MMU
+ */
+ dsb ish
+ isb
+
+ /* Enable enable MMU by honoring flags */
+ ldcopr r1, HSCTLR
+ ldr r2, =(HSCTLR_WXN_BIT | HSCTLR_C_BIT | HSCTLR_M_BIT)
+ orr r1, r1, r2
+
+ /* Clear C bit if requested */
+ tst r3, #DISABLE_DCACHE
+ bicne r1, r1, #HSCTLR_C_BIT
+
+ stcopr r1, HSCTLR
+ isb
+
+ bx lr
+endfunc enable_mmu_direct_hyp
diff --git a/lib/xlat_tables_v2/aarch32/xlat_tables_arch.c b/lib/xlat_tables_v2/aarch32/xlat_tables_arch.c
new file mode 100644
index 0000000..920754b
--- /dev/null
+++ b/lib/xlat_tables_v2/aarch32/xlat_tables_arch.c
@@ -0,0 +1,260 @@
+/*
+ * Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+
+#include <platform_def.h>
+
+#include <arch.h>
+#include <arch_features.h>
+#include <arch_helpers.h>
+#include <lib/cassert.h>
+#include <lib/utils_def.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+#include "../xlat_tables_private.h"
+
+#if (ARM_ARCH_MAJOR == 7) && !defined(ARMV7_SUPPORTS_LARGE_PAGE_ADDRESSING)
+#error ARMv7 target does not support LPAE MMU descriptors
+#endif
+
+/*
+ * Returns true if the provided granule size is supported, false otherwise.
+ */
+bool xlat_arch_is_granule_size_supported(size_t size)
+{
+ /*
+ * The library uses the long descriptor translation table format, which
+ * supports 4 KiB pages only.
+ */
+ return size == PAGE_SIZE_4KB;
+}
+
+size_t xlat_arch_get_max_supported_granule_size(void)
+{
+ return PAGE_SIZE_4KB;
+}
+
+/*
+ * Determine the physical address space encoded in the 'attr' parameter.
+ *
+ * The physical address will fall into one of two spaces; secure or
+ * nonsecure.
+ */
+uint32_t xlat_arch_get_pas(uint32_t attr)
+{
+ uint32_t pas = MT_PAS(attr);
+
+ if (pas == MT_NS) {
+ return LOWER_ATTRS(NS);
+ } else { /* MT_SECURE */
+ return 0U;
+ }
+}
+
+#if ENABLE_ASSERTIONS
+unsigned long long xlat_arch_get_max_supported_pa(void)
+{
+ /* Physical address space size for long descriptor format. */
+ return (1ULL << 40) - 1ULL;
+}
+
+/*
+ * Return minimum virtual address space size supported by the architecture
+ */
+uintptr_t xlat_get_min_virt_addr_space_size(void)
+{
+ return MIN_VIRT_ADDR_SPACE_SIZE;
+}
+#endif /* ENABLE_ASSERTIONS*/
+
+bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
+{
+ if (ctx->xlat_regime == EL1_EL0_REGIME) {
+ assert(xlat_arch_current_el() == 1U);
+ return (read_sctlr() & SCTLR_M_BIT) != 0U;
+ } else {
+ assert(ctx->xlat_regime == EL2_REGIME);
+ assert(xlat_arch_current_el() == 2U);
+ return (read_hsctlr() & HSCTLR_M_BIT) != 0U;
+ }
+}
+
+bool is_dcache_enabled(void)
+{
+ if (IS_IN_EL2()) {
+ return (read_hsctlr() & HSCTLR_C_BIT) != 0U;
+ } else {
+ return (read_sctlr() & SCTLR_C_BIT) != 0U;
+ }
+}
+
+uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
+{
+ if (xlat_regime == EL1_EL0_REGIME) {
+ return UPPER_ATTRS(XN) | UPPER_ATTRS(PXN);
+ } else {
+ assert(xlat_regime == EL2_REGIME);
+ return UPPER_ATTRS(XN);
+ }
+}
+
+void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
+{
+ /*
+ * Ensure the translation table write has drained into memory before
+ * invalidating the TLB entry.
+ */
+ dsbishst();
+
+ if (xlat_regime == EL1_EL0_REGIME) {
+ tlbimvaais(TLBI_ADDR(va));
+ } else {
+ assert(xlat_regime == EL2_REGIME);
+ tlbimvahis(TLBI_ADDR(va));
+ }
+}
+
+void xlat_arch_tlbi_va_sync(void)
+{
+ /* Invalidate all entries from branch predictors. */
+ bpiallis();
+
+ /*
+ * A TLB maintenance instruction can complete at any time after
+ * it is issued, but is only guaranteed to be complete after the
+ * execution of DSB by the PE that executed the TLB maintenance
+ * instruction. After the TLB invalidate instruction is
+ * complete, no new memory accesses using the invalidated TLB
+ * entries will be observed by any observer of the system
+ * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
+ * "Ordering and completion of TLB maintenance instructions".
+ */
+ dsbish();
+
+ /*
+ * The effects of a completed TLB maintenance instruction are
+ * only guaranteed to be visible on the PE that executed the
+ * instruction after the execution of an ISB instruction by the
+ * PE that executed the TLB maintenance instruction.
+ */
+ isb();
+}
+
+unsigned int xlat_arch_current_el(void)
+{
+ if (IS_IN_HYP()) {
+ return 2U;
+ } else {
+ assert(IS_IN_SVC() || IS_IN_MON());
+ /*
+ * If EL3 is in AArch32 mode, all secure PL1 modes (Monitor,
+ * System, SVC, Abort, UND, IRQ and FIQ modes) execute at EL3.
+ *
+ * The PL1&0 translation regime in AArch32 behaves like the
+ * EL1&0 regime in AArch64 except for the XN bits, but we set
+ * and unset them at the same time, so there's no difference in
+ * practice.
+ */
+ return 1U;
+ }
+}
+
+/*******************************************************************************
+ * Function for enabling the MMU in PL1 or PL2, assuming that the page tables
+ * have already been created.
+ ******************************************************************************/
+void setup_mmu_cfg(uint64_t *params, unsigned int flags,
+ const uint64_t *base_table, unsigned long long max_pa,
+ uintptr_t max_va, __unused int xlat_regime)
+{
+ uint64_t mair, ttbr0;
+ uint32_t ttbcr;
+
+ /* Set attributes in the right indices of the MAIR */
+ mair = MAIR0_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
+ mair |= MAIR0_ATTR_SET(ATTR_IWBWA_OWBWA_NTR,
+ ATTR_IWBWA_OWBWA_NTR_INDEX);
+ mair |= MAIR0_ATTR_SET(ATTR_NON_CACHEABLE,
+ ATTR_NON_CACHEABLE_INDEX);
+
+ /*
+ * Configure the control register for stage 1 of the PL1&0 or EL2
+ * translation regimes.
+ */
+
+ /* Use the Long-descriptor translation table format. */
+ ttbcr = TTBCR_EAE_BIT;
+
+ if (xlat_regime == EL1_EL0_REGIME) {
+ assert(IS_IN_SVC() || IS_IN_MON());
+ /*
+ * Disable translation table walk for addresses that are
+ * translated using TTBR1. Therefore, only TTBR0 is used.
+ */
+ ttbcr |= TTBCR_EPD1_BIT;
+ } else {
+ assert(xlat_regime == EL2_REGIME);
+ assert(IS_IN_HYP());
+
+ /*
+ * Set HTCR bits as well. Set HTTBR table properties
+ * as Inner & outer WBWA & shareable.
+ */
+ ttbcr |= HTCR_RES1 |
+ HTCR_SH0_INNER_SHAREABLE | HTCR_RGN0_OUTER_WBA |
+ HTCR_RGN0_INNER_WBA;
+ }
+
+ /*
+ * Limit the input address ranges and memory region sizes translated
+ * using TTBR0 to the given virtual address space size, if smaller than
+ * 32 bits.
+ */
+ if (max_va != UINT32_MAX) {
+ uintptr_t virtual_addr_space_size = max_va + 1U;
+
+ assert(virtual_addr_space_size >=
+ xlat_get_min_virt_addr_space_size());
+ assert(IS_POWER_OF_TWO(virtual_addr_space_size));
+
+ /*
+ * __builtin_ctzll(0) is undefined but here we are guaranteed
+ * that virtual_addr_space_size is in the range [1, UINT32_MAX].
+ */
+ int t0sz = 32 - __builtin_ctzll(virtual_addr_space_size);
+
+ ttbcr |= (uint32_t) t0sz;
+ }
+
+ /*
+ * Set the cacheability and shareability attributes for memory
+ * associated with translation table walks using TTBR0.
+ */
+ if ((flags & XLAT_TABLE_NC) != 0U) {
+ /* Inner & outer non-cacheable non-shareable. */
+ ttbcr |= TTBCR_SH0_NON_SHAREABLE | TTBCR_RGN0_OUTER_NC |
+ TTBCR_RGN0_INNER_NC;
+ } else {
+ /* Inner & outer WBWA & shareable. */
+ ttbcr |= TTBCR_SH0_INNER_SHAREABLE | TTBCR_RGN0_OUTER_WBA |
+ TTBCR_RGN0_INNER_WBA;
+ }
+
+ /* Set TTBR0 bits as well */
+ ttbr0 = (uint64_t)(uintptr_t) base_table;
+
+ if (is_armv8_2_ttcnp_present()) {
+ /* Enable CnP bit so as to share page tables with all PEs. */
+ ttbr0 |= TTBR_CNP_BIT;
+ }
+
+ /* Now populate MMU configuration */
+ params[MMU_CFG_MAIR] = mair;
+ params[MMU_CFG_TCR] = (uint64_t) ttbcr;
+ params[MMU_CFG_TTBR0] = ttbr0;
+}
diff --git a/lib/xlat_tables_v2/aarch64/enable_mmu.S b/lib/xlat_tables_v2/aarch64/enable_mmu.S
new file mode 100644
index 0000000..247a796
--- /dev/null
+++ b/lib/xlat_tables_v2/aarch64/enable_mmu.S
@@ -0,0 +1,97 @@
+/*
+ * Copyright (c) 2018, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <asm_macros.S>
+#include <assert_macros.S>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+ .global enable_mmu_direct_el1
+ .global enable_mmu_direct_el2
+ .global enable_mmu_direct_el3
+
+ /* Macros to read and write to system register for a given EL. */
+ .macro _msr reg_name, el, gp_reg
+ msr \reg_name\()_el\()\el, \gp_reg
+ .endm
+
+ .macro _mrs gp_reg, reg_name, el
+ mrs \gp_reg, \reg_name\()_el\()\el
+ .endm
+
+ .macro tlbi_invalidate_all el
+ .if \el == 1
+ TLB_INVALIDATE(vmalle1)
+ .elseif \el == 2
+ TLB_INVALIDATE(alle2)
+ .elseif \el == 3
+ TLB_INVALIDATE(alle3)
+ .else
+ .error "EL must be 1, 2 or 3"
+ .endif
+ .endm
+
+ /* void enable_mmu_direct_el<x>(unsigned int flags) */
+ .macro define_mmu_enable_func el
+ func enable_mmu_direct_\()el\el
+#if ENABLE_ASSERTIONS
+ _mrs x1, sctlr, \el
+ tst x1, #SCTLR_M_BIT
+ ASM_ASSERT(eq)
+#endif
+ /* Invalidate all TLB entries */
+ tlbi_invalidate_all \el
+
+ mov x7, x0
+ adrp x0, mmu_cfg_params
+ add x0, x0, :lo12:mmu_cfg_params
+
+ /* MAIR */
+ ldr x1, [x0, #(MMU_CFG_MAIR << 3)]
+ _msr mair, \el, x1
+
+ /* TCR */
+ ldr x2, [x0, #(MMU_CFG_TCR << 3)]
+ _msr tcr, \el, x2
+
+ /* TTBR */
+ ldr x3, [x0, #(MMU_CFG_TTBR0 << 3)]
+ _msr ttbr0, \el, x3
+
+ /*
+ * Ensure all translation table writes have drained into memory, the TLB
+ * invalidation is complete, and translation register writes are
+ * committed before enabling the MMU
+ */
+ dsb ish
+ isb
+
+ /* Set and clear required fields of SCTLR */
+ _mrs x4, sctlr, \el
+ mov_imm x5, SCTLR_WXN_BIT | SCTLR_C_BIT | SCTLR_M_BIT
+ orr x4, x4, x5
+
+ /* Additionally, amend SCTLR fields based on flags */
+ bic x5, x4, #SCTLR_C_BIT
+ tst x7, #DISABLE_DCACHE
+ csel x4, x5, x4, ne
+
+ _msr sctlr, \el, x4
+ isb
+
+ ret
+ endfunc enable_mmu_direct_\()el\el
+ .endm
+
+ /*
+ * Define MMU-enabling functions for EL1, EL2 and EL3:
+ *
+ * enable_mmu_direct_el1
+ * enable_mmu_direct_el2
+ * enable_mmu_direct_el3
+ */
+ define_mmu_enable_func 1
+ define_mmu_enable_func 2
+ define_mmu_enable_func 3
diff --git a/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c b/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c
new file mode 100644
index 0000000..bb6a35c
--- /dev/null
+++ b/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c
@@ -0,0 +1,323 @@
+/*
+ * Copyright (c) 2017-2023, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+
+#include <arch.h>
+#include <arch_features.h>
+#include <arch_helpers.h>
+#include <lib/cassert.h>
+#include <lib/utils_def.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+#include "../xlat_tables_private.h"
+
+/*
+ * Returns true if the provided granule size is supported, false otherwise.
+ */
+bool xlat_arch_is_granule_size_supported(size_t size)
+{
+ unsigned int tgranx;
+
+ if (size == PAGE_SIZE_4KB) {
+ tgranx = read_id_aa64mmfr0_el0_tgran4_field();
+ /* MSB of TGRAN4 field will be '1' for unsupported feature */
+ return (tgranx < 8U);
+ } else if (size == PAGE_SIZE_16KB) {
+ tgranx = read_id_aa64mmfr0_el0_tgran16_field();
+ return (tgranx >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED);
+ } else if (size == PAGE_SIZE_64KB) {
+ tgranx = read_id_aa64mmfr0_el0_tgran64_field();
+ /* MSB of TGRAN64 field will be '1' for unsupported feature */
+ return (tgranx < 8U);
+ } else {
+ return false;
+ }
+}
+
+size_t xlat_arch_get_max_supported_granule_size(void)
+{
+ if (xlat_arch_is_granule_size_supported(PAGE_SIZE_64KB)) {
+ return PAGE_SIZE_64KB;
+ } else if (xlat_arch_is_granule_size_supported(PAGE_SIZE_16KB)) {
+ return PAGE_SIZE_16KB;
+ } else {
+ assert(xlat_arch_is_granule_size_supported(PAGE_SIZE_4KB));
+ return PAGE_SIZE_4KB;
+ }
+}
+
+/*
+ * Determine the physical address space encoded in the 'attr' parameter.
+ *
+ * The physical address will fall into one of four spaces; secure,
+ * nonsecure, root, or realm if RME is enabled, or one of two spaces;
+ * secure and nonsecure otherwise.
+ */
+uint32_t xlat_arch_get_pas(uint32_t attr)
+{
+ uint32_t pas = MT_PAS(attr);
+
+ switch (pas) {
+#if ENABLE_RME
+ /* TTD.NSE = 1 and TTD.NS = 1 for Realm PAS */
+ case MT_REALM:
+ return LOWER_ATTRS(EL3_S1_NSE | NS);
+ /* TTD.NSE = 1 and TTD.NS = 0 for Root PAS */
+ case MT_ROOT:
+ return LOWER_ATTRS(EL3_S1_NSE);
+#endif
+ case MT_NS:
+ return LOWER_ATTRS(NS);
+ default: /* MT_SECURE */
+ return 0U;
+ }
+}
+
+unsigned long long tcr_physical_addr_size_bits(unsigned long long max_addr)
+{
+ /* Physical address can't exceed 48 bits */
+ assert((max_addr & ADDR_MASK_48_TO_63) == 0U);
+
+ /* 48 bits address */
+ if ((max_addr & ADDR_MASK_44_TO_47) != 0U)
+ return TCR_PS_BITS_256TB;
+
+ /* 44 bits address */
+ if ((max_addr & ADDR_MASK_42_TO_43) != 0U)
+ return TCR_PS_BITS_16TB;
+
+ /* 42 bits address */
+ if ((max_addr & ADDR_MASK_40_TO_41) != 0U)
+ return TCR_PS_BITS_4TB;
+
+ /* 40 bits address */
+ if ((max_addr & ADDR_MASK_36_TO_39) != 0U)
+ return TCR_PS_BITS_1TB;
+
+ /* 36 bits address */
+ if ((max_addr & ADDR_MASK_32_TO_35) != 0U)
+ return TCR_PS_BITS_64GB;
+
+ return TCR_PS_BITS_4GB;
+}
+
+#if ENABLE_ASSERTIONS
+/*
+ * Physical Address ranges supported in the AArch64 Memory Model. Value 0b110 is
+ * supported in ARMv8.2 onwards.
+ */
+static const unsigned int pa_range_bits_arr[] = {
+ PARANGE_0000, PARANGE_0001, PARANGE_0010, PARANGE_0011, PARANGE_0100,
+ PARANGE_0101, PARANGE_0110
+};
+
+unsigned long long xlat_arch_get_max_supported_pa(void)
+{
+ u_register_t pa_range = read_id_aa64mmfr0_el1() &
+ ID_AA64MMFR0_EL1_PARANGE_MASK;
+
+ /* All other values are reserved */
+ assert(pa_range < ARRAY_SIZE(pa_range_bits_arr));
+
+ return (1ULL << pa_range_bits_arr[pa_range]) - 1ULL;
+}
+
+/*
+ * Return minimum virtual address space size supported by the architecture
+ */
+uintptr_t xlat_get_min_virt_addr_space_size(void)
+{
+ uintptr_t ret;
+
+ if (is_armv8_4_ttst_present())
+ ret = MIN_VIRT_ADDR_SPACE_SIZE_TTST;
+ else
+ ret = MIN_VIRT_ADDR_SPACE_SIZE;
+
+ return ret;
+}
+#endif /* ENABLE_ASSERTIONS*/
+
+bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx)
+{
+ if (ctx->xlat_regime == EL1_EL0_REGIME) {
+ assert(xlat_arch_current_el() >= 1U);
+ return (read_sctlr_el1() & SCTLR_M_BIT) != 0U;
+ } else if (ctx->xlat_regime == EL2_REGIME) {
+ assert(xlat_arch_current_el() >= 2U);
+ return (read_sctlr_el2() & SCTLR_M_BIT) != 0U;
+ } else {
+ assert(ctx->xlat_regime == EL3_REGIME);
+ assert(xlat_arch_current_el() >= 3U);
+ return (read_sctlr_el3() & SCTLR_M_BIT) != 0U;
+ }
+}
+
+bool is_dcache_enabled(void)
+{
+ unsigned int el = get_current_el_maybe_constant();
+
+ if (el == 1U) {
+ return (read_sctlr_el1() & SCTLR_C_BIT) != 0U;
+ } else if (el == 2U) {
+ return (read_sctlr_el2() & SCTLR_C_BIT) != 0U;
+ } else {
+ return (read_sctlr_el3() & SCTLR_C_BIT) != 0U;
+ }
+}
+
+uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime)
+{
+ if (xlat_regime == EL1_EL0_REGIME) {
+ return UPPER_ATTRS(UXN) | UPPER_ATTRS(PXN);
+ } else {
+ assert((xlat_regime == EL2_REGIME) ||
+ (xlat_regime == EL3_REGIME));
+ return UPPER_ATTRS(XN);
+ }
+}
+
+void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime)
+{
+ /*
+ * Ensure the translation table write has drained into memory before
+ * invalidating the TLB entry.
+ */
+ dsbishst();
+
+ /*
+ * This function only supports invalidation of TLB entries for the EL3
+ * and EL1&0 translation regimes.
+ *
+ * Also, it is architecturally UNDEFINED to invalidate TLBs of a higher
+ * exception level (see section D4.9.2 of the ARM ARM rev B.a).
+ */
+ if (xlat_regime == EL1_EL0_REGIME) {
+ assert(xlat_arch_current_el() >= 1U);
+ tlbivaae1is(TLBI_ADDR(va));
+ } else if (xlat_regime == EL2_REGIME) {
+ assert(xlat_arch_current_el() >= 2U);
+ tlbivae2is(TLBI_ADDR(va));
+ } else {
+ assert(xlat_regime == EL3_REGIME);
+ assert(xlat_arch_current_el() >= 3U);
+ tlbivae3is(TLBI_ADDR(va));
+ }
+}
+
+void xlat_arch_tlbi_va_sync(void)
+{
+ /*
+ * A TLB maintenance instruction can complete at any time after
+ * it is issued, but is only guaranteed to be complete after the
+ * execution of DSB by the PE that executed the TLB maintenance
+ * instruction. After the TLB invalidate instruction is
+ * complete, no new memory accesses using the invalidated TLB
+ * entries will be observed by any observer of the system
+ * domain. See section D4.8.2 of the ARMv8 (issue k), paragraph
+ * "Ordering and completion of TLB maintenance instructions".
+ */
+ dsbish();
+
+ /*
+ * The effects of a completed TLB maintenance instruction are
+ * only guaranteed to be visible on the PE that executed the
+ * instruction after the execution of an ISB instruction by the
+ * PE that executed the TLB maintenance instruction.
+ */
+ isb();
+}
+
+unsigned int xlat_arch_current_el(void)
+{
+ unsigned int el = (unsigned int)GET_EL(read_CurrentEl());
+
+ assert(el > 0U);
+
+ return el;
+}
+
+void setup_mmu_cfg(uint64_t *params, unsigned int flags,
+ const uint64_t *base_table, unsigned long long max_pa,
+ uintptr_t max_va, int xlat_regime)
+{
+ uint64_t mair, ttbr0, tcr;
+ uintptr_t virtual_addr_space_size;
+
+ /* Set attributes in the right indices of the MAIR. */
+ mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);
+ mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);
+ mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
+
+ /*
+ * Limit the input address ranges and memory region sizes translated
+ * using TTBR0 to the given virtual address space size.
+ */
+ assert(max_va < ((uint64_t)UINTPTR_MAX));
+
+ virtual_addr_space_size = (uintptr_t)max_va + 1U;
+
+ assert(virtual_addr_space_size >=
+ xlat_get_min_virt_addr_space_size());
+ assert(virtual_addr_space_size <= MAX_VIRT_ADDR_SPACE_SIZE);
+ assert(IS_POWER_OF_TWO(virtual_addr_space_size));
+
+ /*
+ * __builtin_ctzll(0) is undefined but here we are guaranteed that
+ * virtual_addr_space_size is in the range [1,UINTPTR_MAX].
+ */
+ int t0sz = 64 - __builtin_ctzll(virtual_addr_space_size);
+
+ tcr = (uint64_t)t0sz << TCR_T0SZ_SHIFT;
+
+ /*
+ * Set the cacheability and shareability attributes for memory
+ * associated with translation table walks.
+ */
+ if ((flags & XLAT_TABLE_NC) != 0U) {
+ /* Inner & outer non-cacheable non-shareable. */
+ tcr |= TCR_SH_NON_SHAREABLE |
+ TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;
+ } else {
+ /* Inner & outer WBWA & shareable. */
+ tcr |= TCR_SH_INNER_SHAREABLE |
+ TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;
+ }
+
+ /*
+ * It is safer to restrict the max physical address accessible by the
+ * hardware as much as possible.
+ */
+ unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);
+
+ if (xlat_regime == EL1_EL0_REGIME) {
+ /*
+ * TCR_EL1.EPD1: Disable translation table walk for addresses
+ * that are translated using TTBR1_EL1.
+ */
+ tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);
+ } else if (xlat_regime == EL2_REGIME) {
+ tcr |= TCR_EL2_RES1 | (tcr_ps_bits << TCR_EL2_PS_SHIFT);
+ } else {
+ assert(xlat_regime == EL3_REGIME);
+ tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);
+ }
+
+ /* Set TTBR bits as well */
+ ttbr0 = (uint64_t) base_table;
+
+ if (is_armv8_2_ttcnp_present()) {
+ /* Enable CnP bit so as to share page tables with all PEs. */
+ ttbr0 |= TTBR_CNP_BIT;
+ }
+
+ params[MMU_CFG_MAIR] = mair;
+ params[MMU_CFG_TCR] = tcr;
+ params[MMU_CFG_TTBR0] = ttbr0;
+}
diff --git a/lib/xlat_tables_v2/ro_xlat_tables.mk b/lib/xlat_tables_v2/ro_xlat_tables.mk
new file mode 100644
index 0000000..20bb015
--- /dev/null
+++ b/lib/xlat_tables_v2/ro_xlat_tables.mk
@@ -0,0 +1,41 @@
+#
+# Copyright (c) 2020-2022, Arm Limited. All rights reserved.
+#
+# SPDX-License-Identifier: BSD-3-Clause
+#
+
+ifeq (${USE_DEBUGFS}, 1)
+ $(error "Debugfs requires functionality from the dynamic translation \
+ library and is incompatible with ALLOW_RO_XLAT_TABLES.")
+endif
+
+ifeq (${ARCH},aarch32)
+ ifeq (${RESET_TO_SP_MIN},1)
+ $(error "RESET_TO_SP_MIN requires functionality from the dynamic \
+ translation library and is incompatible with \
+ ALLOW_RO_XLAT_TABLES.")
+ endif
+else # if AArch64
+ ifeq (${PLAT},tegra)
+ $(error "Tegra requires functionality from the dynamic translation \
+ library and is incompatible with ALLOW_RO_XLAT_TABLES.")
+ endif
+ ifeq (${RESET_TO_BL31},1)
+ $(error "RESET_TO_BL31 requires functionality from the dynamic \
+ translation library and is incompatible with \
+ ALLOW_RO_XLAT_TABLES.")
+ endif
+ ifeq (${SPD},trusty)
+ $(error "Trusty requires functionality from the dynamic translation \
+ library and is incompatible with ALLOW_RO_XLAT_TABLES.")
+ endif
+ ifeq (${SPM_MM},1)
+ $(error "SPM_MM requires functionality to change memory region \
+ attributes, which is not possible once the translation tables \
+ have been made read-only.")
+ endif
+ ifeq (${SPMC_AT_EL3},1)
+ $(error "EL3 SPMC requires functionality from the dynamic translation \
+ library and is incompatible with ALLOW_RO_XLAT_TABLES.")
+ endif
+endif
diff --git a/lib/xlat_tables_v2/xlat_tables.mk b/lib/xlat_tables_v2/xlat_tables.mk
new file mode 100644
index 0000000..b4ad34b
--- /dev/null
+++ b/lib/xlat_tables_v2/xlat_tables.mk
@@ -0,0 +1,19 @@
+#
+# Copyright (c) 2017-2020, Arm Limited and Contributors. All rights reserved.
+#
+# SPDX-License-Identifier: BSD-3-Clause
+#
+
+XLAT_TABLES_LIB_SRCS := $(addprefix lib/xlat_tables_v2/, \
+ ${ARCH}/enable_mmu.S \
+ ${ARCH}/xlat_tables_arch.c \
+ xlat_tables_context.c \
+ xlat_tables_core.c \
+ xlat_tables_utils.c)
+
+XLAT_TABLES_LIB_V2 := 1
+$(eval $(call add_define,XLAT_TABLES_LIB_V2))
+
+ifeq (${ALLOW_RO_XLAT_TABLES}, 1)
+ include lib/xlat_tables_v2/ro_xlat_tables.mk
+endif
diff --git a/lib/xlat_tables_v2/xlat_tables_context.c b/lib/xlat_tables_v2/xlat_tables_context.c
new file mode 100644
index 0000000..ae9244a
--- /dev/null
+++ b/lib/xlat_tables_v2/xlat_tables_context.c
@@ -0,0 +1,270 @@
+/*
+ * Copyright (c) 2017-2020, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <arch_helpers.h>
+#include <assert.h>
+
+#include <platform_def.h>
+
+#include <common/debug.h>
+#include <lib/xlat_tables/xlat_tables_defs.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+#include "xlat_tables_private.h"
+
+/*
+ * MMU configuration register values for the active translation context. Used
+ * from the MMU assembly helpers.
+ */
+uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
+
+/*
+ * Allocate and initialise the default translation context for the BL image
+ * currently executing.
+ */
+REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,
+ PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
+
+void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size,
+ unsigned int attr)
+{
+ mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
+
+ mmap_add_region_ctx(&tf_xlat_ctx, &mm);
+}
+
+void mmap_add(const mmap_region_t *mm)
+{
+ mmap_add_ctx(&tf_xlat_ctx, mm);
+}
+
+void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
+ size_t size, unsigned int attr)
+{
+ mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
+
+ mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
+
+ *base_va = mm.base_va;
+}
+
+void mmap_add_alloc_va(mmap_region_t *mm)
+{
+ while (mm->granularity != 0U) {
+ assert(mm->base_va == 0U);
+ mmap_add_region_alloc_va_ctx(&tf_xlat_ctx, mm);
+ mm++;
+ }
+}
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+
+int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
+ size_t size, unsigned int attr)
+{
+ mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);
+
+ return mmap_add_dynamic_region_ctx(&tf_xlat_ctx, &mm);
+}
+
+int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
+ uintptr_t *base_va, size_t size,
+ unsigned int attr)
+{
+ mmap_region_t mm = MAP_REGION_ALLOC_VA(base_pa, size, attr);
+
+ int rc = mmap_add_dynamic_region_alloc_va_ctx(&tf_xlat_ctx, &mm);
+
+ *base_va = mm.base_va;
+
+ return rc;
+}
+
+
+int mmap_remove_dynamic_region(uintptr_t base_va, size_t size)
+{
+ return mmap_remove_dynamic_region_ctx(&tf_xlat_ctx,
+ base_va, size);
+}
+
+#endif /* PLAT_XLAT_TABLES_DYNAMIC */
+
+void __init init_xlat_tables(void)
+{
+ assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID);
+
+ unsigned int current_el = xlat_arch_current_el();
+
+ if (current_el == 1U) {
+ tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME;
+ } else if (current_el == 2U) {
+ tf_xlat_ctx.xlat_regime = EL2_REGIME;
+ } else {
+ assert(current_el == 3U);
+ tf_xlat_ctx.xlat_regime = EL3_REGIME;
+ }
+
+ init_xlat_tables_ctx(&tf_xlat_ctx);
+}
+
+int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr)
+{
+ return xlat_get_mem_attributes_ctx(&tf_xlat_ctx, base_va, attr);
+}
+
+int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr)
+{
+ return xlat_change_mem_attributes_ctx(&tf_xlat_ctx, base_va, size, attr);
+}
+
+#if PLAT_RO_XLAT_TABLES
+/* Change the memory attributes of the descriptors which resolve the address
+ * range that belongs to the translation tables themselves, which are by default
+ * mapped as part of read-write data in the BL image's memory.
+ *
+ * Since the translation tables map themselves via these level 3 (page)
+ * descriptors, any change applied to them with the MMU on would introduce a
+ * chicken and egg problem because of the break-before-make sequence.
+ * Eventually, it would reach the descriptor that resolves the very table it
+ * belongs to and the invalidation (break step) would cause the subsequent write
+ * (make step) to it to generate an MMU fault. Therefore, the MMU is disabled
+ * before making the change.
+ *
+ * No assumption is made about what data this function needs, therefore all the
+ * caches are flushed in order to ensure coherency. A future optimization would
+ * be to only flush the required data to main memory.
+ */
+int xlat_make_tables_readonly(void)
+{
+ assert(tf_xlat_ctx.initialized == true);
+#ifdef __aarch64__
+ if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) {
+ disable_mmu_el1();
+ } else if (tf_xlat_ctx.xlat_regime == EL3_REGIME) {
+ disable_mmu_el3();
+ } else {
+ assert(tf_xlat_ctx.xlat_regime == EL2_REGIME);
+ return -1;
+ }
+
+ /* Flush all caches. */
+ dcsw_op_all(DCCISW);
+#else /* !__aarch64__ */
+ assert(tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME);
+ /* On AArch32, we flush the caches before disabling the MMU. The reason
+ * for this is that the dcsw_op_all AArch32 function pushes some
+ * registers onto the stack under the assumption that it is writing to
+ * cache, which is not true with the MMU off. This would result in the
+ * stack becoming corrupted and a wrong/junk value for the LR being
+ * restored at the end of the routine.
+ */
+ dcsw_op_all(DC_OP_CISW);
+ disable_mmu_secure();
+#endif
+
+ int rc = xlat_change_mem_attributes_ctx(&tf_xlat_ctx,
+ (uintptr_t)tf_xlat_ctx.tables,
+ tf_xlat_ctx.tables_num * XLAT_TABLE_SIZE,
+ MT_RO_DATA | MT_SECURE);
+
+#ifdef __aarch64__
+ if (tf_xlat_ctx.xlat_regime == EL1_EL0_REGIME) {
+ enable_mmu_el1(0U);
+ } else {
+ assert(tf_xlat_ctx.xlat_regime == EL3_REGIME);
+ enable_mmu_el3(0U);
+ }
+#else /* !__aarch64__ */
+ enable_mmu_svc_mon(0U);
+#endif
+
+ if (rc == 0) {
+ tf_xlat_ctx.readonly_tables = true;
+ }
+
+ return rc;
+}
+#endif /* PLAT_RO_XLAT_TABLES */
+
+/*
+ * If dynamic allocation of new regions is disabled then by the time we call the
+ * function enabling the MMU, we'll have registered all the memory regions to
+ * map for the system's lifetime. Therefore, at this point we know the maximum
+ * physical address that will ever be mapped.
+ *
+ * If dynamic allocation is enabled then we can't make any such assumption
+ * because the maximum physical address could get pushed while adding a new
+ * region. Therefore, in this case we have to assume that the whole address
+ * space size might be mapped.
+ */
+#if PLAT_XLAT_TABLES_DYNAMIC
+#define MAX_PHYS_ADDR tf_xlat_ctx.pa_max_address
+#else
+#define MAX_PHYS_ADDR tf_xlat_ctx.max_pa
+#endif
+
+#ifdef __aarch64__
+
+void enable_mmu_el1(unsigned int flags)
+{
+ setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
+ tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
+ tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
+ enable_mmu_direct_el1(flags);
+}
+
+void enable_mmu_el2(unsigned int flags)
+{
+ setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
+ tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
+ tf_xlat_ctx.va_max_address, EL2_REGIME);
+ enable_mmu_direct_el2(flags);
+}
+
+void enable_mmu_el3(unsigned int flags)
+{
+ setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
+ tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
+ tf_xlat_ctx.va_max_address, EL3_REGIME);
+ enable_mmu_direct_el3(flags);
+}
+
+void enable_mmu(unsigned int flags)
+{
+ switch (get_current_el_maybe_constant()) {
+ case 1:
+ enable_mmu_el1(flags);
+ break;
+ case 2:
+ enable_mmu_el2(flags);
+ break;
+ case 3:
+ enable_mmu_el3(flags);
+ break;
+ default:
+ panic();
+ }
+}
+
+#else /* !__aarch64__ */
+
+void enable_mmu_svc_mon(unsigned int flags)
+{
+ setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
+ tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
+ tf_xlat_ctx.va_max_address, EL1_EL0_REGIME);
+ enable_mmu_direct_svc_mon(flags);
+}
+
+void enable_mmu_hyp(unsigned int flags)
+{
+ setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,
+ tf_xlat_ctx.base_table, MAX_PHYS_ADDR,
+ tf_xlat_ctx.va_max_address, EL2_REGIME);
+ enable_mmu_direct_hyp(flags);
+}
+
+#endif /* __aarch64__ */
diff --git a/lib/xlat_tables_v2/xlat_tables_core.c b/lib/xlat_tables_v2/xlat_tables_core.c
new file mode 100644
index 0000000..3a9c058
--- /dev/null
+++ b/lib/xlat_tables_v2/xlat_tables_core.c
@@ -0,0 +1,1244 @@
+/*
+ * Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <errno.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <string.h>
+
+#include <platform_def.h>
+
+#include <arch_features.h>
+#include <arch_helpers.h>
+#include <common/debug.h>
+#include <lib/utils_def.h>
+#include <lib/xlat_tables/xlat_tables_defs.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+#include "xlat_tables_private.h"
+
+/* Helper function that cleans the data cache only if it is enabled. */
+static inline __attribute__((unused)) void xlat_clean_dcache_range(uintptr_t addr, size_t size)
+{
+ if (is_dcache_enabled())
+ clean_dcache_range(addr, size);
+}
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+
+/*
+ * The following functions assume that they will be called using subtables only.
+ * The base table can't be unmapped, so it is not needed to do any special
+ * handling for it.
+ */
+
+/*
+ * Returns the index of the array corresponding to the specified translation
+ * table.
+ */
+static int xlat_table_get_index(const xlat_ctx_t *ctx, const uint64_t *table)
+{
+ for (int i = 0; i < ctx->tables_num; i++)
+ if (ctx->tables[i] == table)
+ return i;
+
+ /*
+ * Maybe we were asked to get the index of the base level table, which
+ * should never happen.
+ */
+ assert(false);
+
+ return -1;
+}
+
+/* Returns a pointer to an empty translation table. */
+static uint64_t *xlat_table_get_empty(const xlat_ctx_t *ctx)
+{
+ for (int i = 0; i < ctx->tables_num; i++)
+ if (ctx->tables_mapped_regions[i] == 0)
+ return ctx->tables[i];
+
+ return NULL;
+}
+
+/* Increments region count for a given table. */
+static void xlat_table_inc_regions_count(const xlat_ctx_t *ctx,
+ const uint64_t *table)
+{
+ int idx = xlat_table_get_index(ctx, table);
+
+ ctx->tables_mapped_regions[idx]++;
+}
+
+/* Decrements region count for a given table. */
+static void xlat_table_dec_regions_count(const xlat_ctx_t *ctx,
+ const uint64_t *table)
+{
+ int idx = xlat_table_get_index(ctx, table);
+
+ ctx->tables_mapped_regions[idx]--;
+}
+
+/* Returns 0 if the specified table isn't empty, otherwise 1. */
+static bool xlat_table_is_empty(const xlat_ctx_t *ctx, const uint64_t *table)
+{
+ return ctx->tables_mapped_regions[xlat_table_get_index(ctx, table)] == 0;
+}
+
+#else /* PLAT_XLAT_TABLES_DYNAMIC */
+
+/* Returns a pointer to the first empty translation table. */
+static uint64_t *xlat_table_get_empty(xlat_ctx_t *ctx)
+{
+ assert(ctx->next_table < ctx->tables_num);
+
+ return ctx->tables[ctx->next_table++];
+}
+
+#endif /* PLAT_XLAT_TABLES_DYNAMIC */
+
+/*
+ * Returns a block/page table descriptor for the given level and attributes.
+ */
+uint64_t xlat_desc(const xlat_ctx_t *ctx, uint32_t attr,
+ unsigned long long addr_pa, unsigned int level)
+{
+ uint64_t desc;
+ uint32_t mem_type;
+ uint32_t shareability_type;
+
+ /* Make sure that the granularity is fine enough to map this address. */
+ assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0U);
+
+ desc = addr_pa;
+ /*
+ * There are different translation table descriptors for level 3 and the
+ * rest.
+ */
+ desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
+ /*
+ * Always set the access flag, as this library assumes access flag
+ * faults aren't managed.
+ */
+ desc |= LOWER_ATTRS(ACCESS_FLAG);
+
+ /* Determine the physical address space this region belongs to. */
+ desc |= xlat_arch_get_pas(attr);
+
+ /*
+ * Deduce other fields of the descriptor based on the MT_RW memory
+ * region attributes.
+ */
+ desc |= ((attr & MT_RW) != 0U) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
+
+ /*
+ * Do not allow unprivileged access when the mapping is for a privileged
+ * EL. For translation regimes that do not have mappings for access for
+ * lower exception levels, set AP[2] to AP_NO_ACCESS_UNPRIVILEGED.
+ */
+ if (ctx->xlat_regime == EL1_EL0_REGIME) {
+ if ((attr & MT_USER) != 0U) {
+ /* EL0 mapping requested, so we give User access */
+ desc |= LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED);
+ } else {
+ /* EL1 mapping requested, no User access granted */
+ desc |= LOWER_ATTRS(AP_NO_ACCESS_UNPRIVILEGED);
+ }
+ } else {
+ assert((ctx->xlat_regime == EL2_REGIME) ||
+ (ctx->xlat_regime == EL3_REGIME));
+ desc |= LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
+ }
+
+ /*
+ * Deduce shareability domain and executability of the memory region
+ * from the memory type of the attributes (MT_TYPE).
+ *
+ * Data accesses to device memory and non-cacheable normal memory are
+ * coherent for all observers in the system, and correspondingly are
+ * always treated as being Outer Shareable. Therefore, for these 2 types
+ * of memory, it is not strictly needed to set the shareability field
+ * in the translation tables.
+ */
+ mem_type = MT_TYPE(attr);
+ if (mem_type == MT_DEVICE) {
+ desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
+ /*
+ * Always map device memory as execute-never.
+ * This is to avoid the possibility of a speculative instruction
+ * fetch, which could be an issue if this memory region
+ * corresponds to a read-sensitive peripheral.
+ */
+ desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
+
+ } else { /* Normal memory */
+ /*
+ * Always map read-write normal memory as execute-never.
+ * This library assumes that it is used by software that does
+ * not self-modify its code, therefore R/W memory is reserved
+ * for data storage, which must not be executable.
+ *
+ * Note that setting the XN bit here is for consistency only.
+ * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
+ * which makes any writable memory region to be treated as
+ * execute-never, regardless of the value of the XN bit in the
+ * translation table.
+ *
+ * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
+ * attribute to figure out the value of the XN bit. The actual
+ * XN bit(s) to set in the descriptor depends on the context's
+ * translation regime and the policy applied in
+ * xlat_arch_regime_get_xn_desc().
+ */
+ if (((attr & MT_RW) != 0U) || ((attr & MT_EXECUTE_NEVER) != 0U)) {
+ desc |= xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
+ }
+
+ shareability_type = MT_SHAREABILITY(attr);
+ if (mem_type == MT_MEMORY) {
+ desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX);
+ if (shareability_type == MT_SHAREABILITY_NSH) {
+ desc |= LOWER_ATTRS(NSH);
+ } else if (shareability_type == MT_SHAREABILITY_OSH) {
+ desc |= LOWER_ATTRS(OSH);
+ } else {
+ desc |= LOWER_ATTRS(ISH);
+ }
+
+ /* Check if Branch Target Identification is enabled */
+#if ENABLE_BTI
+ /* Set GP bit for block and page code entries
+ * if BTI mechanism is implemented.
+ */
+ if (is_armv8_5_bti_present() &&
+ ((attr & (MT_TYPE_MASK | MT_RW |
+ MT_EXECUTE_NEVER)) == MT_CODE)) {
+ desc |= GP;
+ }
+#endif
+ } else {
+ assert(mem_type == MT_NON_CACHEABLE);
+ desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
+ }
+ }
+
+ return desc;
+}
+
+/*
+ * Enumeration of actions that can be made when mapping table entries depending
+ * on the previous value in that entry and information about the region being
+ * mapped.
+ */
+typedef enum {
+
+ /* Do nothing */
+ ACTION_NONE,
+
+ /* Write a block (or page, if in level 3) entry. */
+ ACTION_WRITE_BLOCK_ENTRY,
+
+ /*
+ * Create a new table and write a table entry pointing to it. Recurse
+ * into it for further processing.
+ */
+ ACTION_CREATE_NEW_TABLE,
+
+ /*
+ * There is a table descriptor in this entry, read it and recurse into
+ * that table for further processing.
+ */
+ ACTION_RECURSE_INTO_TABLE,
+
+} action_t;
+
+/*
+ * Function that returns the first VA of the table affected by the specified
+ * mmap region.
+ */
+static uintptr_t xlat_tables_find_start_va(mmap_region_t *mm,
+ const uintptr_t table_base_va,
+ const unsigned int level)
+{
+ uintptr_t table_idx_va;
+
+ if (mm->base_va > table_base_va) {
+ /* Find the first index of the table affected by the region. */
+ table_idx_va = mm->base_va & ~XLAT_BLOCK_MASK(level);
+ } else {
+ /* Start from the beginning of the table. */
+ table_idx_va = table_base_va;
+ }
+
+ return table_idx_va;
+}
+
+/*
+ * Function that returns table index for the given VA and level arguments.
+ */
+static inline unsigned int xlat_tables_va_to_index(const uintptr_t table_base_va,
+ const uintptr_t va,
+ const unsigned int level)
+{
+ return (unsigned int)((va - table_base_va) >> XLAT_ADDR_SHIFT(level));
+}
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+
+/*
+ * From the given arguments, it decides which action to take when unmapping the
+ * specified region.
+ */
+static action_t xlat_tables_unmap_region_action(const mmap_region_t *mm,
+ const uintptr_t table_idx_va, const uintptr_t table_idx_end_va,
+ const unsigned int level, const uint64_t desc_type)
+{
+ action_t action;
+ uintptr_t region_end_va = mm->base_va + mm->size - 1U;
+
+ if ((mm->base_va <= table_idx_va) &&
+ (region_end_va >= table_idx_end_va)) {
+ /* Region covers all block */
+
+ if (level == 3U) {
+ /*
+ * Last level, only page descriptors allowed,
+ * erase it.
+ */
+ assert(desc_type == PAGE_DESC);
+
+ action = ACTION_WRITE_BLOCK_ENTRY;
+ } else {
+ /*
+ * Other levels can have table descriptors. If
+ * so, recurse into it and erase descriptors
+ * inside it as needed. If there is a block
+ * descriptor, just erase it. If an invalid
+ * descriptor is found, this table isn't
+ * actually mapped, which shouldn't happen.
+ */
+ if (desc_type == TABLE_DESC) {
+ action = ACTION_RECURSE_INTO_TABLE;
+ } else {
+ assert(desc_type == BLOCK_DESC);
+ action = ACTION_WRITE_BLOCK_ENTRY;
+ }
+ }
+
+ } else if ((mm->base_va <= table_idx_end_va) ||
+ (region_end_va >= table_idx_va)) {
+ /*
+ * Region partially covers block.
+ *
+ * It can't happen in level 3.
+ *
+ * There must be a table descriptor here, if not there
+ * was a problem when mapping the region.
+ */
+ assert(level < 3U);
+ assert(desc_type == TABLE_DESC);
+
+ action = ACTION_RECURSE_INTO_TABLE;
+ } else {
+ /* The region doesn't cover the block at all */
+ action = ACTION_NONE;
+ }
+
+ return action;
+}
+/*
+ * Recursive function that writes to the translation tables and unmaps the
+ * specified region.
+ */
+static void xlat_tables_unmap_region(xlat_ctx_t *ctx, mmap_region_t *mm,
+ const uintptr_t table_base_va,
+ uint64_t *const table_base,
+ const unsigned int table_entries,
+ const unsigned int level)
+{
+ assert((level >= ctx->base_level) && (level <= XLAT_TABLE_LEVEL_MAX));
+
+ uint64_t *subtable;
+ uint64_t desc;
+
+ uintptr_t table_idx_va;
+ uintptr_t table_idx_end_va; /* End VA of this entry */
+
+ uintptr_t region_end_va = mm->base_va + mm->size - 1U;
+
+ unsigned int table_idx;
+
+ table_idx_va = xlat_tables_find_start_va(mm, table_base_va, level);
+ table_idx = xlat_tables_va_to_index(table_base_va, table_idx_va, level);
+
+ while (table_idx < table_entries) {
+
+ table_idx_end_va = table_idx_va + XLAT_BLOCK_SIZE(level) - 1U;
+
+ desc = table_base[table_idx];
+ uint64_t desc_type = desc & DESC_MASK;
+
+ action_t action = xlat_tables_unmap_region_action(mm,
+ table_idx_va, table_idx_end_va, level,
+ desc_type);
+
+ if (action == ACTION_WRITE_BLOCK_ENTRY) {
+
+ table_base[table_idx] = INVALID_DESC;
+ xlat_arch_tlbi_va(table_idx_va, ctx->xlat_regime);
+
+ } else if (action == ACTION_RECURSE_INTO_TABLE) {
+
+ subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
+
+ /* Recurse to write into subtable */
+ xlat_tables_unmap_region(ctx, mm, table_idx_va,
+ subtable, XLAT_TABLE_ENTRIES,
+ level + 1U);
+#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
+ xlat_clean_dcache_range((uintptr_t)subtable,
+ XLAT_TABLE_ENTRIES * sizeof(uint64_t));
+#endif
+ /*
+ * If the subtable is now empty, remove its reference.
+ */
+ if (xlat_table_is_empty(ctx, subtable)) {
+ table_base[table_idx] = INVALID_DESC;
+ xlat_arch_tlbi_va(table_idx_va,
+ ctx->xlat_regime);
+ }
+
+ } else {
+ assert(action == ACTION_NONE);
+ }
+
+ table_idx++;
+ table_idx_va += XLAT_BLOCK_SIZE(level);
+
+ /* If reached the end of the region, exit */
+ if (region_end_va <= table_idx_va)
+ break;
+ }
+
+ if (level > ctx->base_level)
+ xlat_table_dec_regions_count(ctx, table_base);
+}
+
+#endif /* PLAT_XLAT_TABLES_DYNAMIC */
+
+/*
+ * From the given arguments, it decides which action to take when mapping the
+ * specified region.
+ */
+static action_t xlat_tables_map_region_action(const mmap_region_t *mm,
+ unsigned int desc_type, unsigned long long dest_pa,
+ uintptr_t table_entry_base_va, unsigned int level)
+{
+ uintptr_t mm_end_va = mm->base_va + mm->size - 1U;
+ uintptr_t table_entry_end_va =
+ table_entry_base_va + XLAT_BLOCK_SIZE(level) - 1U;
+
+ /*
+ * The descriptor types allowed depend on the current table level.
+ */
+
+ if ((mm->base_va <= table_entry_base_va) &&
+ (mm_end_va >= table_entry_end_va)) {
+
+ /*
+ * Table entry is covered by region
+ * --------------------------------
+ *
+ * This means that this table entry can describe the whole
+ * translation with this granularity in principle.
+ */
+
+ if (level == 3U) {
+ /*
+ * Last level, only page descriptors are allowed.
+ */
+ if (desc_type == PAGE_DESC) {
+ /*
+ * There's another region mapped here, don't
+ * overwrite.
+ */
+ return ACTION_NONE;
+ } else {
+ assert(desc_type == INVALID_DESC);
+ return ACTION_WRITE_BLOCK_ENTRY;
+ }
+
+ } else {
+
+ /*
+ * Other levels. Table descriptors are allowed. Block
+ * descriptors too, but they have some limitations.
+ */
+
+ if (desc_type == TABLE_DESC) {
+ /* There's already a table, recurse into it. */
+ return ACTION_RECURSE_INTO_TABLE;
+
+ } else if (desc_type == INVALID_DESC) {
+ /*
+ * There's nothing mapped here, create a new
+ * entry.
+ *
+ * Check if the destination granularity allows
+ * us to use a block descriptor or we need a
+ * finer table for it.
+ *
+ * Also, check if the current level allows block
+ * descriptors. If not, create a table instead.
+ */
+ if (((dest_pa & XLAT_BLOCK_MASK(level)) != 0U)
+ || (level < MIN_LVL_BLOCK_DESC) ||
+ (mm->granularity < XLAT_BLOCK_SIZE(level)))
+ return ACTION_CREATE_NEW_TABLE;
+ else
+ return ACTION_WRITE_BLOCK_ENTRY;
+
+ } else {
+ /*
+ * There's another region mapped here, don't
+ * overwrite.
+ */
+ assert(desc_type == BLOCK_DESC);
+
+ return ACTION_NONE;
+ }
+ }
+
+ } else if ((mm->base_va <= table_entry_end_va) ||
+ (mm_end_va >= table_entry_base_va)) {
+
+ /*
+ * Region partially covers table entry
+ * -----------------------------------
+ *
+ * This means that this table entry can't describe the whole
+ * translation, a finer table is needed.
+
+ * There cannot be partial block overlaps in level 3. If that
+ * happens, some of the preliminary checks when adding the
+ * mmap region failed to detect that PA and VA must at least be
+ * aligned to PAGE_SIZE.
+ */
+ assert(level < 3U);
+
+ if (desc_type == INVALID_DESC) {
+ /*
+ * The block is not fully covered by the region. Create
+ * a new table, recurse into it and try to map the
+ * region with finer granularity.
+ */
+ return ACTION_CREATE_NEW_TABLE;
+
+ } else {
+ assert(desc_type == TABLE_DESC);
+ /*
+ * The block is not fully covered by the region, but
+ * there is already a table here. Recurse into it and
+ * try to map with finer granularity.
+ *
+ * PAGE_DESC for level 3 has the same value as
+ * TABLE_DESC, but this code can't run on a level 3
+ * table because there can't be overlaps in level 3.
+ */
+ return ACTION_RECURSE_INTO_TABLE;
+ }
+ } else {
+
+ /*
+ * This table entry is outside of the region specified in the
+ * arguments, don't write anything to it.
+ */
+ return ACTION_NONE;
+ }
+}
+
+/*
+ * Recursive function that writes to the translation tables and maps the
+ * specified region. On success, it returns the VA of the last byte that was
+ * successfully mapped. On error, it returns the VA of the next entry that
+ * should have been mapped.
+ */
+static uintptr_t xlat_tables_map_region(xlat_ctx_t *ctx, mmap_region_t *mm,
+ uintptr_t table_base_va,
+ uint64_t *const table_base,
+ unsigned int table_entries,
+ unsigned int level)
+{
+ assert((level >= ctx->base_level) && (level <= XLAT_TABLE_LEVEL_MAX));
+
+ uintptr_t mm_end_va = mm->base_va + mm->size - 1U;
+
+ uintptr_t table_idx_va;
+ unsigned long long table_idx_pa;
+
+ uint64_t *subtable;
+ uint64_t desc;
+
+ unsigned int table_idx;
+
+ table_idx_va = xlat_tables_find_start_va(mm, table_base_va, level);
+ table_idx = xlat_tables_va_to_index(table_base_va, table_idx_va, level);
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+ if (level > ctx->base_level)
+ xlat_table_inc_regions_count(ctx, table_base);
+#endif
+
+ while (table_idx < table_entries) {
+
+ desc = table_base[table_idx];
+
+ table_idx_pa = mm->base_pa + table_idx_va - mm->base_va;
+
+ action_t action = xlat_tables_map_region_action(mm,
+ (uint32_t)(desc & DESC_MASK), table_idx_pa,
+ table_idx_va, level);
+
+ if (action == ACTION_WRITE_BLOCK_ENTRY) {
+
+ table_base[table_idx] =
+ xlat_desc(ctx, (uint32_t)mm->attr, table_idx_pa,
+ level);
+
+ } else if (action == ACTION_CREATE_NEW_TABLE) {
+ uintptr_t end_va;
+
+ subtable = xlat_table_get_empty(ctx);
+ if (subtable == NULL) {
+ /* Not enough free tables to map this region */
+ return table_idx_va;
+ }
+
+ /* Point to new subtable from this one. */
+ table_base[table_idx] =
+ TABLE_DESC | (uintptr_t)subtable;
+
+ /* Recurse to write into subtable */
+ end_va = xlat_tables_map_region(ctx, mm, table_idx_va,
+ subtable, XLAT_TABLE_ENTRIES,
+ level + 1U);
+#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
+ xlat_clean_dcache_range((uintptr_t)subtable,
+ XLAT_TABLE_ENTRIES * sizeof(uint64_t));
+#endif
+ if (end_va !=
+ (table_idx_va + XLAT_BLOCK_SIZE(level) - 1U))
+ return end_va;
+
+ } else if (action == ACTION_RECURSE_INTO_TABLE) {
+ uintptr_t end_va;
+
+ subtable = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
+ /* Recurse to write into subtable */
+ end_va = xlat_tables_map_region(ctx, mm, table_idx_va,
+ subtable, XLAT_TABLE_ENTRIES,
+ level + 1U);
+#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
+ xlat_clean_dcache_range((uintptr_t)subtable,
+ XLAT_TABLE_ENTRIES * sizeof(uint64_t));
+#endif
+ if (end_va !=
+ (table_idx_va + XLAT_BLOCK_SIZE(level) - 1U))
+ return end_va;
+
+ } else {
+
+ assert(action == ACTION_NONE);
+
+ }
+
+ table_idx++;
+ table_idx_va += XLAT_BLOCK_SIZE(level);
+
+ /* If reached the end of the region, exit */
+ if (mm_end_va <= table_idx_va)
+ break;
+ }
+
+ return table_idx_va - 1U;
+}
+
+/*
+ * Function that verifies that a region can be mapped.
+ * Returns:
+ * 0: Success, the mapping is allowed.
+ * EINVAL: Invalid values were used as arguments.
+ * ERANGE: The memory limits were surpassed.
+ * ENOMEM: There is not enough memory in the mmap array.
+ * EPERM: Region overlaps another one in an invalid way.
+ */
+static int mmap_add_region_check(const xlat_ctx_t *ctx, const mmap_region_t *mm)
+{
+ unsigned long long base_pa = mm->base_pa;
+ uintptr_t base_va = mm->base_va;
+ size_t size = mm->size;
+ size_t granularity = mm->granularity;
+
+ unsigned long long end_pa = base_pa + size - 1U;
+ uintptr_t end_va = base_va + size - 1U;
+
+ if (!IS_PAGE_ALIGNED(base_pa) || !IS_PAGE_ALIGNED(base_va) ||
+ !IS_PAGE_ALIGNED(size))
+ return -EINVAL;
+
+ if ((granularity != XLAT_BLOCK_SIZE(1U)) &&
+ (granularity != XLAT_BLOCK_SIZE(2U)) &&
+ (granularity != XLAT_BLOCK_SIZE(3U))) {
+ return -EINVAL;
+ }
+
+ /* Check for overflows */
+ if ((base_pa > end_pa) || (base_va > end_va))
+ return -ERANGE;
+
+ if (end_va > ctx->va_max_address)
+ return -ERANGE;
+
+ if (end_pa > ctx->pa_max_address)
+ return -ERANGE;
+
+ /* Check that there is space in the ctx->mmap array */
+ if (ctx->mmap[ctx->mmap_num - 1].size != 0U)
+ return -ENOMEM;
+
+ /* Check for PAs and VAs overlaps with all other regions */
+ for (const mmap_region_t *mm_cursor = ctx->mmap;
+ mm_cursor->size != 0U; ++mm_cursor) {
+
+ uintptr_t mm_cursor_end_va = mm_cursor->base_va
+ + mm_cursor->size - 1U;
+
+ /*
+ * Check if one of the regions is completely inside the other
+ * one.
+ */
+ bool fully_overlapped_va =
+ ((base_va >= mm_cursor->base_va) &&
+ (end_va <= mm_cursor_end_va)) ||
+ ((mm_cursor->base_va >= base_va) &&
+ (mm_cursor_end_va <= end_va));
+
+ /*
+ * Full VA overlaps are only allowed if both regions are
+ * identity mapped (zero offset) or have the same VA to PA
+ * offset. Also, make sure that it's not the exact same area.
+ * This can only be done with static regions.
+ */
+ if (fully_overlapped_va) {
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+ if (((mm->attr & MT_DYNAMIC) != 0U) ||
+ ((mm_cursor->attr & MT_DYNAMIC) != 0U))
+ return -EPERM;
+#endif /* PLAT_XLAT_TABLES_DYNAMIC */
+ if ((mm_cursor->base_va - mm_cursor->base_pa) !=
+ (base_va - base_pa))
+ return -EPERM;
+
+ if ((base_va == mm_cursor->base_va) &&
+ (size == mm_cursor->size))
+ return -EPERM;
+
+ } else {
+ /*
+ * If the regions do not have fully overlapping VAs,
+ * then they must have fully separated VAs and PAs.
+ * Partial overlaps are not allowed
+ */
+
+ unsigned long long mm_cursor_end_pa =
+ mm_cursor->base_pa + mm_cursor->size - 1U;
+
+ bool separated_pa = (end_pa < mm_cursor->base_pa) ||
+ (base_pa > mm_cursor_end_pa);
+ bool separated_va = (end_va < mm_cursor->base_va) ||
+ (base_va > mm_cursor_end_va);
+
+ if (!separated_va || !separated_pa)
+ return -EPERM;
+ }
+ }
+
+ return 0;
+}
+
+void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
+{
+ mmap_region_t *mm_cursor = ctx->mmap, *mm_destination;
+ const mmap_region_t *mm_end = ctx->mmap + ctx->mmap_num;
+ const mmap_region_t *mm_last;
+ unsigned long long end_pa = mm->base_pa + mm->size - 1U;
+ uintptr_t end_va = mm->base_va + mm->size - 1U;
+ int ret;
+
+ /* Ignore empty regions */
+ if (mm->size == 0U)
+ return;
+
+ /* Static regions must be added before initializing the xlat tables. */
+ assert(!ctx->initialized);
+
+ ret = mmap_add_region_check(ctx, mm);
+ if (ret != 0) {
+ ERROR("mmap_add_region_check() failed. error %d\n", ret);
+ assert(false);
+ return;
+ }
+
+ /*
+ * Find correct place in mmap to insert new region.
+ *
+ * 1 - Lower region VA end first.
+ * 2 - Smaller region size first.
+ *
+ * VA 0 0xFF
+ *
+ * 1st |------|
+ * 2nd |------------|
+ * 3rd |------|
+ * 4th |---|
+ * 5th |---|
+ * 6th |----------|
+ * 7th |-------------------------------------|
+ *
+ * This is required for overlapping regions only. It simplifies adding
+ * regions with the loop in xlat_tables_init_internal because the outer
+ * ones won't overwrite block or page descriptors of regions added
+ * previously.
+ *
+ * Overlapping is only allowed for static regions.
+ */
+
+ while (((mm_cursor->base_va + mm_cursor->size - 1U) < end_va)
+ && (mm_cursor->size != 0U)) {
+ ++mm_cursor;
+ }
+
+ while (((mm_cursor->base_va + mm_cursor->size - 1U) == end_va) &&
+ (mm_cursor->size != 0U) && (mm_cursor->size < mm->size)) {
+ ++mm_cursor;
+ }
+
+ /*
+ * Find the last entry marker in the mmap
+ */
+ mm_last = ctx->mmap;
+ while ((mm_last->size != 0U) && (mm_last < mm_end)) {
+ ++mm_last;
+ }
+
+ /*
+ * Check if we have enough space in the memory mapping table.
+ * This shouldn't happen as we have checked in mmap_add_region_check
+ * that there is free space.
+ */
+ assert(mm_last->size == 0U);
+
+ /* Make room for new region by moving other regions up by one place */
+ mm_destination = mm_cursor + 1;
+ (void)memmove(mm_destination, mm_cursor,
+ (uintptr_t)mm_last - (uintptr_t)mm_cursor);
+
+ /*
+ * Check we haven't lost the empty sentinel from the end of the array.
+ * This shouldn't happen as we have checked in mmap_add_region_check
+ * that there is free space.
+ */
+ assert(mm_end->size == 0U);
+
+ *mm_cursor = *mm;
+
+ if (end_pa > ctx->max_pa)
+ ctx->max_pa = end_pa;
+ if (end_va > ctx->max_va)
+ ctx->max_va = end_va;
+}
+
+/*
+ * Determine the table level closest to the initial lookup level that
+ * can describe this translation. Then, align base VA to the next block
+ * at the determined level.
+ */
+static void mmap_alloc_va_align_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
+{
+ /*
+ * By or'ing the size and base PA the alignment will be the one
+ * corresponding to the smallest boundary of the two of them.
+ *
+ * There are three different cases. For example (for 4 KiB page size):
+ *
+ * +--------------+------------------++--------------+
+ * | PA alignment | Size multiple of || VA alignment |
+ * +--------------+------------------++--------------+
+ * | 2 MiB | 2 MiB || 2 MiB | (1)
+ * | 2 MiB | 4 KiB || 4 KiB | (2)
+ * | 4 KiB | 2 MiB || 4 KiB | (3)
+ * +--------------+------------------++--------------+
+ *
+ * - In (1), it is possible to take advantage of the alignment of the PA
+ * and the size of the region to use a level 2 translation table
+ * instead of a level 3 one.
+ *
+ * - In (2), the size is smaller than a block entry of level 2, so it is
+ * needed to use a level 3 table to describe the region or the library
+ * will map more memory than the desired one.
+ *
+ * - In (3), even though the region has the size of one level 2 block
+ * entry, it isn't possible to describe the translation with a level 2
+ * block entry because of the alignment of the base PA.
+ *
+ * Only bits 47:21 of a level 2 block descriptor are used by the MMU,
+ * bits 20:0 of the resulting address are 0 in this case. Because of
+ * this, the PA generated as result of this translation is aligned to
+ * 2 MiB. The PA that was requested to be mapped is aligned to 4 KiB,
+ * though, which means that the resulting translation is incorrect.
+ * The only way to prevent this is by using a finer granularity.
+ */
+ unsigned long long align_check;
+
+ align_check = mm->base_pa | (unsigned long long)mm->size;
+
+ /*
+ * Assume it is always aligned to level 3. There's no need to check that
+ * level because its block size is PAGE_SIZE. The checks to verify that
+ * the addresses and size are aligned to PAGE_SIZE are inside
+ * mmap_add_region.
+ */
+ for (unsigned int level = ctx->base_level; level <= 2U; ++level) {
+
+ if ((align_check & XLAT_BLOCK_MASK(level)) != 0U)
+ continue;
+
+ mm->base_va = round_up(mm->base_va, XLAT_BLOCK_SIZE(level));
+ return;
+ }
+}
+
+void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
+{
+ mm->base_va = ctx->max_va + 1UL;
+
+ assert(mm->size > 0U);
+
+ mmap_alloc_va_align_ctx(ctx, mm);
+
+ /* Detect overflows. More checks are done in mmap_add_region_check(). */
+ assert(mm->base_va > ctx->max_va);
+
+ mmap_add_region_ctx(ctx, mm);
+}
+
+void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
+{
+ const mmap_region_t *mm_cursor = mm;
+
+ while (mm_cursor->granularity != 0U) {
+ mmap_add_region_ctx(ctx, mm_cursor);
+ mm_cursor++;
+ }
+}
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+
+int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
+{
+ mmap_region_t *mm_cursor = ctx->mmap;
+ const mmap_region_t *mm_last = mm_cursor + ctx->mmap_num;
+ unsigned long long end_pa = mm->base_pa + mm->size - 1U;
+ uintptr_t end_va = mm->base_va + mm->size - 1U;
+ int ret;
+
+ /* Nothing to do */
+ if (mm->size == 0U)
+ return 0;
+
+ /* Now this region is a dynamic one */
+ mm->attr |= MT_DYNAMIC;
+
+ ret = mmap_add_region_check(ctx, mm);
+ if (ret != 0)
+ return ret;
+
+ /*
+ * Find the adequate entry in the mmap array in the same way done for
+ * static regions in mmap_add_region_ctx().
+ */
+
+ while (((mm_cursor->base_va + mm_cursor->size - 1U) < end_va)
+ && (mm_cursor->size != 0U)) {
+ ++mm_cursor;
+ }
+
+ while (((mm_cursor->base_va + mm_cursor->size - 1U) == end_va) &&
+ (mm_cursor->size != 0U) && (mm_cursor->size < mm->size)) {
+ ++mm_cursor;
+ }
+
+ /* Make room for new region by moving other regions up by one place */
+ (void)memmove(mm_cursor + 1U, mm_cursor,
+ (uintptr_t)mm_last - (uintptr_t)mm_cursor);
+
+ /*
+ * Check we haven't lost the empty sentinel from the end of the array.
+ * This shouldn't happen as we have checked in mmap_add_region_check
+ * that there is free space.
+ */
+ assert(mm_last->size == 0U);
+
+ *mm_cursor = *mm;
+
+ /*
+ * Update the translation tables if the xlat tables are initialized. If
+ * not, this region will be mapped when they are initialized.
+ */
+ if (ctx->initialized) {
+ end_va = xlat_tables_map_region(ctx, mm_cursor,
+ 0U, ctx->base_table, ctx->base_table_entries,
+ ctx->base_level);
+#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
+ xlat_clean_dcache_range((uintptr_t)ctx->base_table,
+ ctx->base_table_entries * sizeof(uint64_t));
+#endif
+ /* Failed to map, remove mmap entry, unmap and return error. */
+ if (end_va != (mm_cursor->base_va + mm_cursor->size - 1U)) {
+ (void)memmove(mm_cursor, mm_cursor + 1U,
+ (uintptr_t)mm_last - (uintptr_t)mm_cursor);
+
+ /*
+ * Check if the mapping function actually managed to map
+ * anything. If not, just return now.
+ */
+ if (mm->base_va >= end_va)
+ return -ENOMEM;
+
+ /*
+ * Something went wrong after mapping some table
+ * entries, undo every change done up to this point.
+ */
+ mmap_region_t unmap_mm = {
+ .base_pa = 0U,
+ .base_va = mm->base_va,
+ .size = end_va - mm->base_va,
+ .attr = 0U
+ };
+ xlat_tables_unmap_region(ctx, &unmap_mm, 0U,
+ ctx->base_table, ctx->base_table_entries,
+ ctx->base_level);
+#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
+ xlat_clean_dcache_range((uintptr_t)ctx->base_table,
+ ctx->base_table_entries * sizeof(uint64_t));
+#endif
+ return -ENOMEM;
+ }
+
+ /*
+ * Make sure that all entries are written to the memory. There
+ * is no need to invalidate entries when mapping dynamic regions
+ * because new table/block/page descriptors only replace old
+ * invalid descriptors, that aren't TLB cached.
+ */
+ dsbishst();
+ }
+
+ if (end_pa > ctx->max_pa)
+ ctx->max_pa = end_pa;
+ if (end_va > ctx->max_va)
+ ctx->max_va = end_va;
+
+ return 0;
+}
+
+int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm)
+{
+ mm->base_va = ctx->max_va + 1UL;
+
+ if (mm->size == 0U)
+ return 0;
+
+ mmap_alloc_va_align_ctx(ctx, mm);
+
+ /* Detect overflows. More checks are done in mmap_add_region_check(). */
+ if (mm->base_va < ctx->max_va) {
+ return -ENOMEM;
+ }
+
+ return mmap_add_dynamic_region_ctx(ctx, mm);
+}
+
+/*
+ * Removes the region with given base Virtual Address and size from the given
+ * context.
+ *
+ * Returns:
+ * 0: Success.
+ * EINVAL: Invalid values were used as arguments (region not found).
+ * EPERM: Tried to remove a static region.
+ */
+int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, uintptr_t base_va,
+ size_t size)
+{
+ mmap_region_t *mm = ctx->mmap;
+ const mmap_region_t *mm_last = mm + ctx->mmap_num;
+ int update_max_va_needed = 0;
+ int update_max_pa_needed = 0;
+
+ /* Check sanity of mmap array. */
+ assert(mm[ctx->mmap_num].size == 0U);
+
+ while (mm->size != 0U) {
+ if ((mm->base_va == base_va) && (mm->size == size))
+ break;
+ ++mm;
+ }
+
+ /* Check that the region was found */
+ if (mm->size == 0U)
+ return -EINVAL;
+
+ /* If the region is static it can't be removed */
+ if ((mm->attr & MT_DYNAMIC) == 0U)
+ return -EPERM;
+
+ /* Check if this region is using the top VAs or PAs. */
+ if ((mm->base_va + mm->size - 1U) == ctx->max_va)
+ update_max_va_needed = 1;
+ if ((mm->base_pa + mm->size - 1U) == ctx->max_pa)
+ update_max_pa_needed = 1;
+
+ /* Update the translation tables if needed */
+ if (ctx->initialized) {
+ xlat_tables_unmap_region(ctx, mm, 0U, ctx->base_table,
+ ctx->base_table_entries,
+ ctx->base_level);
+#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
+ xlat_clean_dcache_range((uintptr_t)ctx->base_table,
+ ctx->base_table_entries * sizeof(uint64_t));
+#endif
+ xlat_arch_tlbi_va_sync();
+ }
+
+ /* Remove this region by moving the rest down by one place. */
+ (void)memmove(mm, mm + 1U, (uintptr_t)mm_last - (uintptr_t)mm);
+
+ /* Check if we need to update the max VAs and PAs */
+ if (update_max_va_needed == 1) {
+ ctx->max_va = 0U;
+ mm = ctx->mmap;
+ while (mm->size != 0U) {
+ if ((mm->base_va + mm->size - 1U) > ctx->max_va)
+ ctx->max_va = mm->base_va + mm->size - 1U;
+ ++mm;
+ }
+ }
+
+ if (update_max_pa_needed == 1) {
+ ctx->max_pa = 0U;
+ mm = ctx->mmap;
+ while (mm->size != 0U) {
+ if ((mm->base_pa + mm->size - 1U) > ctx->max_pa)
+ ctx->max_pa = mm->base_pa + mm->size - 1U;
+ ++mm;
+ }
+ }
+
+ return 0;
+}
+
+void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max,
+ uintptr_t va_max, struct mmap_region *mmap,
+ unsigned int mmap_num, uint64_t **tables,
+ unsigned int tables_num, uint64_t *base_table,
+ int xlat_regime, int *mapped_regions)
+{
+ ctx->xlat_regime = xlat_regime;
+
+ ctx->pa_max_address = pa_max;
+ ctx->va_max_address = va_max;
+
+ ctx->mmap = mmap;
+ ctx->mmap_num = mmap_num;
+ memset(ctx->mmap, 0, sizeof(struct mmap_region) * mmap_num);
+
+ ctx->tables = (void *) tables;
+ ctx->tables_num = tables_num;
+
+ uintptr_t va_space_size = va_max + 1;
+ ctx->base_level = GET_XLAT_TABLE_LEVEL_BASE(va_space_size);
+ ctx->base_table = base_table;
+ ctx->base_table_entries = GET_NUM_BASE_LEVEL_ENTRIES(va_space_size);
+
+ ctx->tables_mapped_regions = mapped_regions;
+
+ ctx->max_pa = 0;
+ ctx->max_va = 0;
+ ctx->initialized = 0;
+}
+
+#endif /* PLAT_XLAT_TABLES_DYNAMIC */
+
+void __init init_xlat_tables_ctx(xlat_ctx_t *ctx)
+{
+ assert(ctx != NULL);
+ assert(!ctx->initialized);
+ assert((ctx->xlat_regime == EL3_REGIME) ||
+ (ctx->xlat_regime == EL2_REGIME) ||
+ (ctx->xlat_regime == EL1_EL0_REGIME));
+ assert(!is_mmu_enabled_ctx(ctx));
+
+ mmap_region_t *mm = ctx->mmap;
+
+ assert(ctx->va_max_address >=
+ (xlat_get_min_virt_addr_space_size() - 1U));
+ assert(ctx->va_max_address <= (MAX_VIRT_ADDR_SPACE_SIZE - 1U));
+ assert(IS_POWER_OF_TWO(ctx->va_max_address + 1U));
+
+ xlat_mmap_print(mm);
+
+ /* All tables must be zeroed before mapping any region. */
+
+ for (unsigned int i = 0U; i < ctx->base_table_entries; i++)
+ ctx->base_table[i] = INVALID_DESC;
+
+ for (int j = 0; j < ctx->tables_num; j++) {
+#if PLAT_XLAT_TABLES_DYNAMIC
+ ctx->tables_mapped_regions[j] = 0;
+#endif
+ for (unsigned int i = 0U; i < XLAT_TABLE_ENTRIES; i++)
+ ctx->tables[j][i] = INVALID_DESC;
+ }
+
+ while (mm->size != 0U) {
+ uintptr_t end_va = xlat_tables_map_region(ctx, mm, 0U,
+ ctx->base_table, ctx->base_table_entries,
+ ctx->base_level);
+#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
+ xlat_clean_dcache_range((uintptr_t)ctx->base_table,
+ ctx->base_table_entries * sizeof(uint64_t));
+#endif
+ if (end_va != (mm->base_va + mm->size - 1U)) {
+ ERROR("Not enough memory to map region:\n"
+ " VA:0x%lx PA:0x%llx size:0x%zx attr:0x%x\n",
+ mm->base_va, mm->base_pa, mm->size, mm->attr);
+ panic();
+ }
+
+ mm++;
+ }
+
+ assert(ctx->pa_max_address <= xlat_arch_get_max_supported_pa());
+ assert(ctx->max_va <= ctx->va_max_address);
+ assert(ctx->max_pa <= ctx->pa_max_address);
+
+ ctx->initialized = true;
+
+ xlat_tables_print(ctx);
+}
diff --git a/lib/xlat_tables_v2/xlat_tables_private.h b/lib/xlat_tables_v2/xlat_tables_private.h
new file mode 100644
index 0000000..42c9a43
--- /dev/null
+++ b/lib/xlat_tables_v2/xlat_tables_private.h
@@ -0,0 +1,110 @@
+/*
+ * Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#ifndef XLAT_TABLES_PRIVATE_H
+#define XLAT_TABLES_PRIVATE_H
+
+#include <stdbool.h>
+
+#include <platform_def.h>
+
+#include <lib/xlat_tables/xlat_tables_defs.h>
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+/*
+ * Private shifts and masks to access fields of an mmap attribute
+ */
+/* Dynamic or static */
+#define MT_DYN_SHIFT U(31)
+
+/*
+ * Memory mapping private attributes
+ *
+ * Private attributes not exposed in the public header.
+ */
+
+/*
+ * Regions mapped before the MMU can't be unmapped dynamically (they are
+ * static) and regions mapped with MMU enabled can be unmapped. This
+ * behaviour can't be overridden.
+ *
+ * Static regions can overlap each other, dynamic regions can't.
+ */
+#define MT_STATIC (U(0) << MT_DYN_SHIFT)
+#define MT_DYNAMIC (U(1) << MT_DYN_SHIFT)
+
+#endif /* PLAT_XLAT_TABLES_DYNAMIC */
+
+extern uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
+
+/* Determine the physical address space encoded in the 'attr' parameter. */
+uint32_t xlat_arch_get_pas(uint32_t attr);
+
+/*
+ * Return the execute-never mask that will prevent instruction fetch at the
+ * given translation regime.
+ */
+uint64_t xlat_arch_regime_get_xn_desc(int xlat_regime);
+
+/*
+ * Invalidate all TLB entries that match the given virtual address. This
+ * operation applies to all PEs in the same Inner Shareable domain as the PE
+ * that executes this function. This functions must be called for every
+ * translation table entry that is modified. It only affects the specified
+ * translation regime.
+ *
+ * Note, however, that it is architecturally UNDEFINED to invalidate TLB entries
+ * pertaining to a higher exception level, e.g. invalidating EL3 entries from
+ * S-EL1.
+ */
+void xlat_arch_tlbi_va(uintptr_t va, int xlat_regime);
+
+/*
+ * This function has to be called at the end of any code that uses the function
+ * xlat_arch_tlbi_va().
+ */
+void xlat_arch_tlbi_va_sync(void);
+
+/* Print VA, PA, size and attributes of all regions in the mmap array. */
+void xlat_mmap_print(const mmap_region_t *mmap);
+
+/*
+ * Print the current state of the translation tables by reading them from
+ * memory.
+ */
+void xlat_tables_print(xlat_ctx_t *ctx);
+
+/*
+ * Returns a block/page table descriptor for the given level and attributes.
+ */
+uint64_t xlat_desc(const xlat_ctx_t *ctx, uint32_t attr,
+ unsigned long long addr_pa, unsigned int level);
+
+/*
+ * Architecture-specific initialization code.
+ */
+
+/* Returns the current Exception Level. The returned EL must be 1 or higher. */
+unsigned int xlat_arch_current_el(void);
+
+/*
+ * Return the maximum physical address supported by the hardware.
+ * This value depends on the execution state (AArch32/AArch64).
+ */
+unsigned long long xlat_arch_get_max_supported_pa(void);
+
+/*
+ * Returns true if the MMU of the translation regime managed by the given
+ * xlat_ctx_t is enabled, false otherwise.
+ */
+bool is_mmu_enabled_ctx(const xlat_ctx_t *ctx);
+
+/*
+ * Returns minimum virtual address space size supported by the architecture
+ */
+uintptr_t xlat_get_min_virt_addr_space_size(void);
+
+#endif /* XLAT_TABLES_PRIVATE_H */
diff --git a/lib/xlat_tables_v2/xlat_tables_utils.c b/lib/xlat_tables_v2/xlat_tables_utils.c
new file mode 100644
index 0000000..f3a53cc
--- /dev/null
+++ b/lib/xlat_tables_v2/xlat_tables_utils.c
@@ -0,0 +1,592 @@
+/*
+ * Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <errno.h>
+#include <inttypes.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+
+#include <platform_def.h>
+
+#include <arch_helpers.h>
+#include <common/debug.h>
+#include <lib/utils_def.h>
+#include <lib/xlat_tables/xlat_tables_defs.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+#include "xlat_tables_private.h"
+
+#if LOG_LEVEL < LOG_LEVEL_VERBOSE
+
+void xlat_mmap_print(__unused const mmap_region_t *mmap)
+{
+ /* Empty */
+}
+
+void xlat_tables_print(__unused xlat_ctx_t *ctx)
+{
+ /* Empty */
+}
+
+#else /* if LOG_LEVEL >= LOG_LEVEL_VERBOSE */
+
+void xlat_mmap_print(const mmap_region_t *mmap)
+{
+ printf("mmap:\n");
+ const mmap_region_t *mm = mmap;
+
+ while (mm->size != 0U) {
+ printf(" VA:0x%lx PA:0x%llx size:0x%zx attr:0x%x granularity:0x%zx\n",
+ mm->base_va, mm->base_pa, mm->size, mm->attr,
+ mm->granularity);
+ ++mm;
+ };
+ printf("\n");
+}
+
+/* Print the attributes of the specified block descriptor. */
+static void xlat_desc_print(const xlat_ctx_t *ctx, uint64_t desc)
+{
+ uint64_t mem_type_index = ATTR_INDEX_GET(desc);
+ int xlat_regime = ctx->xlat_regime;
+
+ if (mem_type_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
+ printf("MEM");
+ } else if (mem_type_index == ATTR_NON_CACHEABLE_INDEX) {
+ printf("NC");
+ } else {
+ assert(mem_type_index == ATTR_DEVICE_INDEX);
+ printf("DEV");
+ }
+
+ if ((xlat_regime == EL3_REGIME) || (xlat_regime == EL2_REGIME)) {
+ /* For EL3 and EL2 only check the AP[2] and XN bits. */
+ printf(((desc & LOWER_ATTRS(AP_RO)) != 0ULL) ? "-RO" : "-RW");
+ printf(((desc & UPPER_ATTRS(XN)) != 0ULL) ? "-XN" : "-EXEC");
+ } else {
+ assert(xlat_regime == EL1_EL0_REGIME);
+ /*
+ * For EL0 and EL1:
+ * - In AArch64 PXN and UXN can be set independently but in
+ * AArch32 there is no UXN (XN affects both privilege levels).
+ * For consistency, we set them simultaneously in both cases.
+ * - RO and RW permissions must be the same in EL1 and EL0. If
+ * EL0 can access that memory region, so can EL1, with the
+ * same permissions.
+ */
+#if ENABLE_ASSERTIONS
+ uint64_t xn_mask = xlat_arch_regime_get_xn_desc(EL1_EL0_REGIME);
+ uint64_t xn_perm = desc & xn_mask;
+
+ assert((xn_perm == xn_mask) || (xn_perm == 0ULL));
+#endif
+ printf(((desc & LOWER_ATTRS(AP_RO)) != 0ULL) ? "-RO" : "-RW");
+ /* Only check one of PXN and UXN, the other one is the same. */
+ printf(((desc & UPPER_ATTRS(PXN)) != 0ULL) ? "-XN" : "-EXEC");
+ /*
+ * Privileged regions can only be accessed from EL1, user
+ * regions can be accessed from EL1 and EL0.
+ */
+ printf(((desc & LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED)) != 0ULL)
+ ? "-USER" : "-PRIV");
+ }
+
+#if ENABLE_RME
+ switch (desc & LOWER_ATTRS(EL3_S1_NSE | NS)) {
+ case 0ULL:
+ printf("-S");
+ break;
+ case LOWER_ATTRS(NS):
+ printf("-NS");
+ break;
+ case LOWER_ATTRS(EL3_S1_NSE):
+ printf("-RT");
+ break;
+ default: /* LOWER_ATTRS(EL3_S1_NSE | NS) */
+ printf("-RL");
+ }
+#else
+ printf(((LOWER_ATTRS(NS) & desc) != 0ULL) ? "-NS" : "-S");
+#endif
+
+#ifdef __aarch64__
+ /* Check Guarded Page bit */
+ if ((desc & GP) != 0ULL) {
+ printf("-GP");
+ }
+#endif
+}
+
+static const char * const level_spacers[] = {
+ "[LV0] ",
+ " [LV1] ",
+ " [LV2] ",
+ " [LV3] "
+};
+
+static const char *invalid_descriptors_ommited =
+ "%s(%d invalid descriptors omitted)\n";
+
+/*
+ * Recursive function that reads the translation tables passed as an argument
+ * and prints their status.
+ */
+static void xlat_tables_print_internal(xlat_ctx_t *ctx, uintptr_t table_base_va,
+ const uint64_t *table_base, unsigned int table_entries,
+ unsigned int level)
+{
+ assert(level <= XLAT_TABLE_LEVEL_MAX);
+
+ uint64_t desc;
+ uintptr_t table_idx_va = table_base_va;
+ unsigned int table_idx = 0U;
+ size_t level_size = XLAT_BLOCK_SIZE(level);
+
+ /*
+ * Keep track of how many invalid descriptors are counted in a row.
+ * Whenever multiple invalid descriptors are found, only the first one
+ * is printed, and a line is added to inform about how many descriptors
+ * have been omitted.
+ */
+ int invalid_row_count = 0;
+
+ while (table_idx < table_entries) {
+
+ desc = table_base[table_idx];
+
+ if ((desc & DESC_MASK) == INVALID_DESC) {
+
+ if (invalid_row_count == 0) {
+ printf("%sVA:0x%lx size:0x%zx\n",
+ level_spacers[level],
+ table_idx_va, level_size);
+ }
+ invalid_row_count++;
+
+ } else {
+
+ if (invalid_row_count > 1) {
+ printf(invalid_descriptors_ommited,
+ level_spacers[level],
+ invalid_row_count - 1);
+ }
+ invalid_row_count = 0;
+
+ /*
+ * Check if this is a table or a block. Tables are only
+ * allowed in levels other than 3, but DESC_PAGE has the
+ * same value as DESC_TABLE, so we need to check.
+ */
+ if (((desc & DESC_MASK) == TABLE_DESC) &&
+ (level < XLAT_TABLE_LEVEL_MAX)) {
+ /*
+ * Do not print any PA for a table descriptor,
+ * as it doesn't directly map physical memory
+ * but instead points to the next translation
+ * table in the translation table walk.
+ */
+ printf("%sVA:0x%lx size:0x%zx\n",
+ level_spacers[level],
+ table_idx_va, level_size);
+
+ uintptr_t addr_inner = desc & TABLE_ADDR_MASK;
+
+ xlat_tables_print_internal(ctx, table_idx_va,
+ (uint64_t *)addr_inner,
+ XLAT_TABLE_ENTRIES, level + 1U);
+ } else {
+ printf("%sVA:0x%lx PA:0x%" PRIx64 " size:0x%zx ",
+ level_spacers[level], table_idx_va,
+ (uint64_t)(desc & TABLE_ADDR_MASK),
+ level_size);
+ xlat_desc_print(ctx, desc);
+ printf("\n");
+ }
+ }
+
+ table_idx++;
+ table_idx_va += level_size;
+ }
+
+ if (invalid_row_count > 1) {
+ printf(invalid_descriptors_ommited,
+ level_spacers[level], invalid_row_count - 1);
+ }
+}
+
+void xlat_tables_print(xlat_ctx_t *ctx)
+{
+ const char *xlat_regime_str;
+ int used_page_tables;
+
+ if (ctx->xlat_regime == EL1_EL0_REGIME) {
+ xlat_regime_str = "1&0";
+ } else if (ctx->xlat_regime == EL2_REGIME) {
+ xlat_regime_str = "2";
+ } else {
+ assert(ctx->xlat_regime == EL3_REGIME);
+ xlat_regime_str = "3";
+ }
+ VERBOSE("Translation tables state:\n");
+ VERBOSE(" Xlat regime: EL%s\n", xlat_regime_str);
+ VERBOSE(" Max allowed PA: 0x%llx\n", ctx->pa_max_address);
+ VERBOSE(" Max allowed VA: 0x%lx\n", ctx->va_max_address);
+ VERBOSE(" Max mapped PA: 0x%llx\n", ctx->max_pa);
+ VERBOSE(" Max mapped VA: 0x%lx\n", ctx->max_va);
+
+ VERBOSE(" Initial lookup level: %u\n", ctx->base_level);
+ VERBOSE(" Entries @initial lookup level: %u\n",
+ ctx->base_table_entries);
+
+#if PLAT_XLAT_TABLES_DYNAMIC
+ used_page_tables = 0;
+ for (int i = 0; i < ctx->tables_num; ++i) {
+ if (ctx->tables_mapped_regions[i] != 0)
+ ++used_page_tables;
+ }
+#else
+ used_page_tables = ctx->next_table;
+#endif
+ VERBOSE(" Used %d sub-tables out of %d (spare: %d)\n",
+ used_page_tables, ctx->tables_num,
+ ctx->tables_num - used_page_tables);
+
+ xlat_tables_print_internal(ctx, 0U, ctx->base_table,
+ ctx->base_table_entries, ctx->base_level);
+}
+
+#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
+
+/*
+ * Do a translation table walk to find the block or page descriptor that maps
+ * virtual_addr.
+ *
+ * On success, return the address of the descriptor within the translation
+ * table. Its lookup level is stored in '*out_level'.
+ * On error, return NULL.
+ *
+ * xlat_table_base
+ * Base address for the initial lookup level.
+ * xlat_table_base_entries
+ * Number of entries in the translation table for the initial lookup level.
+ * virt_addr_space_size
+ * Size in bytes of the virtual address space.
+ */
+static uint64_t *find_xlat_table_entry(uintptr_t virtual_addr,
+ void *xlat_table_base,
+ unsigned int xlat_table_base_entries,
+ unsigned long long virt_addr_space_size,
+ unsigned int *out_level)
+{
+ unsigned int start_level;
+ uint64_t *table;
+ unsigned int entries;
+
+ start_level = GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size);
+
+ table = xlat_table_base;
+ entries = xlat_table_base_entries;
+
+ for (unsigned int level = start_level;
+ level <= XLAT_TABLE_LEVEL_MAX;
+ ++level) {
+ uint64_t idx, desc, desc_type;
+
+ idx = XLAT_TABLE_IDX(virtual_addr, level);
+ if (idx >= entries) {
+ WARN("Missing xlat table entry at address 0x%lx\n",
+ virtual_addr);
+ return NULL;
+ }
+
+ desc = table[idx];
+ desc_type = desc & DESC_MASK;
+
+ if (desc_type == INVALID_DESC) {
+ VERBOSE("Invalid entry (memory not mapped)\n");
+ return NULL;
+ }
+
+ if (level == XLAT_TABLE_LEVEL_MAX) {
+ /*
+ * Only page descriptors allowed at the final lookup
+ * level.
+ */
+ assert(desc_type == PAGE_DESC);
+ *out_level = level;
+ return &table[idx];
+ }
+
+ if (desc_type == BLOCK_DESC) {
+ *out_level = level;
+ return &table[idx];
+ }
+
+ assert(desc_type == TABLE_DESC);
+ table = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
+ entries = XLAT_TABLE_ENTRIES;
+ }
+
+ /*
+ * This shouldn't be reached, the translation table walk should end at
+ * most at level XLAT_TABLE_LEVEL_MAX and return from inside the loop.
+ */
+ assert(false);
+
+ return NULL;
+}
+
+
+static int xlat_get_mem_attributes_internal(const xlat_ctx_t *ctx,
+ uintptr_t base_va, uint32_t *attributes, uint64_t **table_entry,
+ unsigned long long *addr_pa, unsigned int *table_level)
+{
+ uint64_t *entry;
+ uint64_t desc;
+ unsigned int level;
+ unsigned long long virt_addr_space_size;
+
+ /*
+ * Sanity-check arguments.
+ */
+ assert(ctx != NULL);
+ assert(ctx->initialized);
+ assert((ctx->xlat_regime == EL1_EL0_REGIME) ||
+ (ctx->xlat_regime == EL2_REGIME) ||
+ (ctx->xlat_regime == EL3_REGIME));
+
+ virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1ULL;
+ assert(virt_addr_space_size > 0U);
+
+ entry = find_xlat_table_entry(base_va,
+ ctx->base_table,
+ ctx->base_table_entries,
+ virt_addr_space_size,
+ &level);
+ if (entry == NULL) {
+ WARN("Address 0x%lx is not mapped.\n", base_va);
+ return -EINVAL;
+ }
+
+ if (addr_pa != NULL) {
+ *addr_pa = *entry & TABLE_ADDR_MASK;
+ }
+
+ if (table_entry != NULL) {
+ *table_entry = entry;
+ }
+
+ if (table_level != NULL) {
+ *table_level = level;
+ }
+
+ desc = *entry;
+
+#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
+ VERBOSE("Attributes: ");
+ xlat_desc_print(ctx, desc);
+ printf("\n");
+#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
+
+ assert(attributes != NULL);
+ *attributes = 0U;
+
+ uint64_t attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
+
+ if (attr_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
+ *attributes |= MT_MEMORY;
+ } else if (attr_index == ATTR_NON_CACHEABLE_INDEX) {
+ *attributes |= MT_NON_CACHEABLE;
+ } else {
+ assert(attr_index == ATTR_DEVICE_INDEX);
+ *attributes |= MT_DEVICE;
+ }
+
+ uint64_t ap2_bit = (desc >> AP2_SHIFT) & 1U;
+
+ if (ap2_bit == AP2_RW)
+ *attributes |= MT_RW;
+
+ if (ctx->xlat_regime == EL1_EL0_REGIME) {
+ uint64_t ap1_bit = (desc >> AP1_SHIFT) & 1U;
+
+ if (ap1_bit == AP1_ACCESS_UNPRIVILEGED)
+ *attributes |= MT_USER;
+ }
+
+ uint64_t ns_bit = (desc >> NS_SHIFT) & 1U;
+
+ if (ns_bit == 1U)
+ *attributes |= MT_NS;
+
+ uint64_t xn_mask = xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
+
+ if ((desc & xn_mask) == xn_mask) {
+ *attributes |= MT_EXECUTE_NEVER;
+ } else {
+ assert((desc & xn_mask) == 0U);
+ }
+
+ return 0;
+}
+
+
+int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
+ uint32_t *attr)
+{
+ return xlat_get_mem_attributes_internal(ctx, base_va, attr,
+ NULL, NULL, NULL);
+}
+
+
+int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
+ size_t size, uint32_t attr)
+{
+ /* Note: This implementation isn't optimized. */
+
+ assert(ctx != NULL);
+ assert(ctx->initialized);
+
+ unsigned long long virt_addr_space_size =
+ (unsigned long long)ctx->va_max_address + 1U;
+ assert(virt_addr_space_size > 0U);
+
+ if (!IS_PAGE_ALIGNED(base_va)) {
+ WARN("%s: Address 0x%lx is not aligned on a page boundary.\n",
+ __func__, base_va);
+ return -EINVAL;
+ }
+
+ if (size == 0U) {
+ WARN("%s: Size is 0.\n", __func__);
+ return -EINVAL;
+ }
+
+ if ((size % PAGE_SIZE) != 0U) {
+ WARN("%s: Size 0x%zx is not a multiple of a page size.\n",
+ __func__, size);
+ return -EINVAL;
+ }
+
+ if (((attr & MT_EXECUTE_NEVER) == 0U) && ((attr & MT_RW) != 0U)) {
+ WARN("%s: Mapping memory as read-write and executable not allowed.\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ size_t pages_count = size / PAGE_SIZE;
+
+ VERBOSE("Changing memory attributes of %zu pages starting from address 0x%lx...\n",
+ pages_count, base_va);
+
+ uintptr_t base_va_original = base_va;
+
+ /*
+ * Sanity checks.
+ */
+ for (unsigned int i = 0U; i < pages_count; ++i) {
+ const uint64_t *entry;
+ uint64_t desc, attr_index;
+ unsigned int level;
+
+ entry = find_xlat_table_entry(base_va,
+ ctx->base_table,
+ ctx->base_table_entries,
+ virt_addr_space_size,
+ &level);
+ if (entry == NULL) {
+ WARN("Address 0x%lx is not mapped.\n", base_va);
+ return -EINVAL;
+ }
+
+ desc = *entry;
+
+ /*
+ * Check that all the required pages are mapped at page
+ * granularity.
+ */
+ if (((desc & DESC_MASK) != PAGE_DESC) ||
+ (level != XLAT_TABLE_LEVEL_MAX)) {
+ WARN("Address 0x%lx is not mapped at the right granularity.\n",
+ base_va);
+ WARN("Granularity is 0x%lx, should be 0x%lx.\n",
+ XLAT_BLOCK_SIZE(level), PAGE_SIZE);
+ return -EINVAL;
+ }
+
+ /*
+ * If the region type is device, it shouldn't be executable.
+ */
+ attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
+ if (attr_index == ATTR_DEVICE_INDEX) {
+ if ((attr & MT_EXECUTE_NEVER) == 0U) {
+ WARN("Setting device memory as executable at address 0x%lx.",
+ base_va);
+ return -EINVAL;
+ }
+ }
+
+ base_va += PAGE_SIZE;
+ }
+
+ /* Restore original value. */
+ base_va = base_va_original;
+
+ for (unsigned int i = 0U; i < pages_count; ++i) {
+
+ uint32_t old_attr = 0U, new_attr;
+ uint64_t *entry = NULL;
+ unsigned int level = 0U;
+ unsigned long long addr_pa = 0ULL;
+
+ (void) xlat_get_mem_attributes_internal(ctx, base_va, &old_attr,
+ &entry, &addr_pa, &level);
+
+ /*
+ * From attr, only MT_RO/MT_RW, MT_EXECUTE/MT_EXECUTE_NEVER and
+ * MT_USER/MT_PRIVILEGED are taken into account. Any other
+ * information is ignored.
+ */
+
+ /* Clean the old attributes so that they can be rebuilt. */
+ new_attr = old_attr & ~(MT_RW | MT_EXECUTE_NEVER | MT_USER);
+
+ /*
+ * Update attributes, but filter out the ones this function
+ * isn't allowed to change.
+ */
+ new_attr |= attr & (MT_RW | MT_EXECUTE_NEVER | MT_USER);
+
+ /*
+ * The break-before-make sequence requires writing an invalid
+ * descriptor and making sure that the system sees the change
+ * before writing the new descriptor.
+ */
+ *entry = INVALID_DESC;
+#if !HW_ASSISTED_COHERENCY
+ dccvac((uintptr_t)entry);
+#endif
+ /* Invalidate any cached copy of this mapping in the TLBs. */
+ xlat_arch_tlbi_va(base_va, ctx->xlat_regime);
+
+ /* Ensure completion of the invalidation. */
+ xlat_arch_tlbi_va_sync();
+
+ /* Write new descriptor */
+ *entry = xlat_desc(ctx, new_attr, addr_pa, level);
+#if !HW_ASSISTED_COHERENCY
+ dccvac((uintptr_t)entry);
+#endif
+ base_va += PAGE_SIZE;
+ }
+
+ /* Ensure that the last descriptor written is seen by the system. */
+ dsbish();
+
+ return 0;
+}