diff options
Diffstat (limited to 'drivers/arm/gic/common/gic_common.c')
-rw-r--r-- | drivers/arm/gic/common/gic_common.c | 342 |
1 files changed, 342 insertions, 0 deletions
diff --git a/drivers/arm/gic/common/gic_common.c b/drivers/arm/gic/common/gic_common.c new file mode 100644 index 0000000..bf6405f --- /dev/null +++ b/drivers/arm/gic/common/gic_common.c @@ -0,0 +1,342 @@ +/* + * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#pragma message __FILE__ " is deprecated, use gicv2.mk instead" + +#include <assert.h> + +#include <drivers/arm/gic_common.h> +#include <lib/mmio.h> + +#include "gic_common_private.h" + +/******************************************************************************* + * GIC Distributor interface accessors for reading entire registers + ******************************************************************************/ +/* + * Accessor to read the GIC Distributor IGROUPR corresponding to the interrupt + * `id`, 32 interrupt ids at a time. + */ +unsigned int gicd_read_igroupr(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> IGROUPR_SHIFT; + + return mmio_read_32(base + GICD_IGROUPR + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor ISENABLER corresponding to the + * interrupt `id`, 32 interrupt ids at a time. + */ +unsigned int gicd_read_isenabler(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> ISENABLER_SHIFT; + + return mmio_read_32(base + GICD_ISENABLER + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor ICENABLER corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +unsigned int gicd_read_icenabler(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> ICENABLER_SHIFT; + + return mmio_read_32(base + GICD_ICENABLER + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor ISPENDR corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +unsigned int gicd_read_ispendr(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> ISPENDR_SHIFT; + + return mmio_read_32(base + GICD_ISPENDR + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor ICPENDR corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +unsigned int gicd_read_icpendr(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> ICPENDR_SHIFT; + + return mmio_read_32(base + GICD_ICPENDR + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor ISACTIVER corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +unsigned int gicd_read_isactiver(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> ISACTIVER_SHIFT; + + return mmio_read_32(base + GICD_ISACTIVER + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor ICACTIVER corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +unsigned int gicd_read_icactiver(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> ICACTIVER_SHIFT; + + return mmio_read_32(base + GICD_ICACTIVER + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor IPRIORITYR corresponding to the + * interrupt `id`, 4 interrupt IDs at a time. + */ +unsigned int gicd_read_ipriorityr(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> IPRIORITYR_SHIFT; + + return mmio_read_32(base + GICD_IPRIORITYR + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor ICGFR corresponding to the + * interrupt `id`, 16 interrupt IDs at a time. + */ +unsigned int gicd_read_icfgr(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> ICFGR_SHIFT; + + return mmio_read_32(base + GICD_ICFGR + (n << 2)); +} + +/* + * Accessor to read the GIC Distributor NSACR corresponding to the + * interrupt `id`, 16 interrupt IDs at a time. + */ +unsigned int gicd_read_nsacr(uintptr_t base, unsigned int id) +{ + unsigned int n = id >> NSACR_SHIFT; + + return mmio_read_32(base + GICD_NSACR + (n << 2)); +} + +/******************************************************************************* + * GIC Distributor interface accessors for writing entire registers + ******************************************************************************/ +/* + * Accessor to write the GIC Distributor IGROUPR corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +void gicd_write_igroupr(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> IGROUPR_SHIFT; + + mmio_write_32(base + GICD_IGROUPR + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor ISENABLER corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +void gicd_write_isenabler(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> ISENABLER_SHIFT; + + mmio_write_32(base + GICD_ISENABLER + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor ICENABLER corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +void gicd_write_icenabler(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> ICENABLER_SHIFT; + + mmio_write_32(base + GICD_ICENABLER + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor ISPENDR corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +void gicd_write_ispendr(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> ISPENDR_SHIFT; + + mmio_write_32(base + GICD_ISPENDR + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor ICPENDR corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +void gicd_write_icpendr(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> ICPENDR_SHIFT; + + mmio_write_32(base + GICD_ICPENDR + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor ISACTIVER corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +void gicd_write_isactiver(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> ISACTIVER_SHIFT; + + mmio_write_32(base + GICD_ISACTIVER + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor ICACTIVER corresponding to the + * interrupt `id`, 32 interrupt IDs at a time. + */ +void gicd_write_icactiver(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> ICACTIVER_SHIFT; + + mmio_write_32(base + GICD_ICACTIVER + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor IPRIORITYR corresponding to the + * interrupt `id`, 4 interrupt IDs at a time. + */ +void gicd_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> IPRIORITYR_SHIFT; + + mmio_write_32(base + GICD_IPRIORITYR + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor ICFGR corresponding to the + * interrupt `id`, 16 interrupt IDs at a time. + */ +void gicd_write_icfgr(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> ICFGR_SHIFT; + + mmio_write_32(base + GICD_ICFGR + (n << 2), val); +} + +/* + * Accessor to write the GIC Distributor NSACR corresponding to the + * interrupt `id`, 16 interrupt IDs at a time. + */ +void gicd_write_nsacr(uintptr_t base, unsigned int id, unsigned int val) +{ + unsigned int n = id >> NSACR_SHIFT; + + mmio_write_32(base + GICD_NSACR + (n << 2), val); +} + +/******************************************************************************* + * GIC Distributor functions for accessing the GIC registers + * corresponding to a single interrupt ID. These functions use bitwise + * operations or appropriate register accesses to modify or return + * the bit-field corresponding the single interrupt ID. + ******************************************************************************/ +unsigned int gicd_get_igroupr(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U); + unsigned int reg_val = gicd_read_igroupr(base, id); + + return (reg_val >> bit_num) & 0x1U; +} + +void gicd_set_igroupr(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U); + unsigned int reg_val = gicd_read_igroupr(base, id); + + gicd_write_igroupr(base, id, reg_val | (1U << bit_num)); +} + +void gicd_clr_igroupr(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U); + unsigned int reg_val = gicd_read_igroupr(base, id); + + gicd_write_igroupr(base, id, reg_val & ~(1U << bit_num)); +} + +void gicd_set_isenabler(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << ISENABLER_SHIFT) - 1U); + + gicd_write_isenabler(base, id, (1U << bit_num)); +} + +void gicd_set_icenabler(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << ICENABLER_SHIFT) - 1U); + + gicd_write_icenabler(base, id, (1U << bit_num)); +} + +void gicd_set_ispendr(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << ISPENDR_SHIFT) - 1U); + + gicd_write_ispendr(base, id, (1U << bit_num)); +} + +void gicd_set_icpendr(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << ICPENDR_SHIFT) - 1U); + + gicd_write_icpendr(base, id, (1U << bit_num)); +} + +unsigned int gicd_get_isactiver(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << ISACTIVER_SHIFT) - 1U); + unsigned int reg_val = gicd_read_isactiver(base, id); + + return (reg_val >> bit_num) & 0x1U; +} + +void gicd_set_isactiver(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << ISACTIVER_SHIFT) - 1U); + + gicd_write_isactiver(base, id, (1U << bit_num)); +} + +void gicd_set_icactiver(uintptr_t base, unsigned int id) +{ + unsigned int bit_num = id & ((1U << ICACTIVER_SHIFT) - 1U); + + gicd_write_icactiver(base, id, (1U << bit_num)); +} + +void gicd_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri) +{ + uint8_t val = pri & GIC_PRI_MASK; + + mmio_write_8(base + GICD_IPRIORITYR + id, val); +} + +void gicd_set_icfgr(uintptr_t base, unsigned int id, unsigned int cfg) +{ + /* Interrupt configuration is a 2-bit field */ + unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U); + unsigned int bit_shift = bit_num << 1; + + uint32_t reg_val = gicd_read_icfgr(base, id); + + /* Clear the field, and insert required configuration */ + reg_val &= ~(GIC_CFG_MASK << bit_shift); + reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift); + + gicd_write_icfgr(base, id, reg_val); +} |