diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/st/crypto/stm32_hash.c | 364 | ||||
-rw-r--r-- | drivers/st/crypto/stm32_pka.c | 702 | ||||
-rw-r--r-- | drivers/st/crypto/stm32_rng.c | 273 | ||||
-rw-r--r-- | drivers/st/crypto/stm32_saes.c | 903 |
4 files changed, 2242 insertions, 0 deletions
diff --git a/drivers/st/crypto/stm32_hash.c b/drivers/st/crypto/stm32_hash.c new file mode 100644 index 0000000..e92f980 --- /dev/null +++ b/drivers/st/crypto/stm32_hash.c @@ -0,0 +1,364 @@ +/* + * Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdint.h> + +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_hash.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils.h> +#include <libfdt.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +#if STM32_HASH_VER == 2 +#define DT_HASH_COMPAT "st,stm32f756-hash" +#endif +#if STM32_HASH_VER == 4 +#define DT_HASH_COMPAT "st,stm32mp13-hash" +#endif + +#define HASH_CR 0x00U +#define HASH_DIN 0x04U +#define HASH_STR 0x08U +#define HASH_SR 0x24U +#define HASH_HREG(x) (0x310U + ((x) * 0x04U)) + +/* Control Register */ +#define HASH_CR_INIT BIT(2) +#define HASH_CR_DATATYPE_SHIFT U(4) +#if STM32_HASH_VER == 2 +#define HASH_CR_ALGO_SHA1 0x0U +#define HASH_CR_ALGO_MD5 BIT(7) +#define HASH_CR_ALGO_SHA224 BIT(18) +#define HASH_CR_ALGO_SHA256 (BIT(18) | BIT(7)) +#endif +#if STM32_HASH_VER == 4 +#define HASH_CR_ALGO_SHIFT U(17) +#define HASH_CR_ALGO_SHA1 (0x0U << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA224 (0x2U << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA256 (0x3U << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA384 (0xCU << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA512_224 (0xDU << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA512_256 (0xEU << HASH_CR_ALGO_SHIFT) +#define HASH_CR_ALGO_SHA512 (0xFU << HASH_CR_ALGO_SHIFT) +#endif + +/* Status Flags */ +#define HASH_SR_DCIS BIT(1) +#define HASH_SR_BUSY BIT(3) + +/* STR Register */ +#define HASH_STR_NBLW_MASK GENMASK(4, 0) +#define HASH_STR_DCAL BIT(8) + +#define MD5_DIGEST_SIZE 16U +#define SHA1_DIGEST_SIZE 20U +#define SHA224_DIGEST_SIZE 28U +#define SHA256_DIGEST_SIZE 32U +#define SHA384_DIGEST_SIZE 48U +#define SHA512_224_DIGEST_SIZE 28U +#define SHA512_256_DIGEST_SIZE 32U +#define SHA512_DIGEST_SIZE 64U + +#define RESET_TIMEOUT_US_1MS 1000U +#define HASH_TIMEOUT_US 10000U + +enum stm32_hash_data_format { + HASH_DATA_32_BITS, + HASH_DATA_16_BITS, + HASH_DATA_8_BITS, + HASH_DATA_1_BIT +}; + +struct stm32_hash_instance { + uintptr_t base; + unsigned int clock; + size_t digest_size; +}; + +struct stm32_hash_remain { + uint32_t buffer; + size_t length; +}; + +/* Expect a single HASH peripheral */ +static struct stm32_hash_instance stm32_hash; +static struct stm32_hash_remain stm32_remain; + +static uintptr_t hash_base(void) +{ + return stm32_hash.base; +} + +static int hash_wait_busy(void) +{ + uint64_t timeout = timeout_init_us(HASH_TIMEOUT_US); + + while ((mmio_read_32(hash_base() + HASH_SR) & HASH_SR_BUSY) != 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%s: busy timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int hash_wait_computation(void) +{ + uint64_t timeout = timeout_init_us(HASH_TIMEOUT_US); + + while ((mmio_read_32(hash_base() + HASH_SR) & HASH_SR_DCIS) == 0U) { + if (timeout_elapsed(timeout)) { + ERROR("%s: busy timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static int hash_write_data(uint32_t data) +{ + int ret; + + ret = hash_wait_busy(); + if (ret != 0) { + return ret; + } + + mmio_write_32(hash_base() + HASH_DIN, data); + + return 0; +} + +static void hash_hw_init(enum stm32_hash_algo_mode mode) +{ + uint32_t reg; + + reg = HASH_CR_INIT | (HASH_DATA_8_BITS << HASH_CR_DATATYPE_SHIFT); + + switch (mode) { +#if STM32_HASH_VER == 2 + case HASH_MD5SUM: + reg |= HASH_CR_ALGO_MD5; + stm32_hash.digest_size = MD5_DIGEST_SIZE; + break; +#endif + case HASH_SHA1: + reg |= HASH_CR_ALGO_SHA1; + stm32_hash.digest_size = SHA1_DIGEST_SIZE; + break; + case HASH_SHA224: + reg |= HASH_CR_ALGO_SHA224; + stm32_hash.digest_size = SHA224_DIGEST_SIZE; + break; +#if STM32_HASH_VER == 4 + case HASH_SHA384: + reg |= HASH_CR_ALGO_SHA384; + stm32_hash.digest_size = SHA384_DIGEST_SIZE; + break; + case HASH_SHA512: + reg |= HASH_CR_ALGO_SHA512; + stm32_hash.digest_size = SHA512_DIGEST_SIZE; + break; +#endif + /* Default selected algo is SHA256 */ + case HASH_SHA256: + default: + reg |= HASH_CR_ALGO_SHA256; + stm32_hash.digest_size = SHA256_DIGEST_SIZE; + break; + } + + mmio_write_32(hash_base() + HASH_CR, reg); +} + +static int hash_get_digest(uint8_t *digest) +{ + int ret; + uint32_t i; + uint32_t dsg; + + ret = hash_wait_computation(); + if (ret != 0) { + return ret; + } + + for (i = 0U; i < (stm32_hash.digest_size / sizeof(uint32_t)); i++) { + dsg = __builtin_bswap32(mmio_read_32(hash_base() + + HASH_HREG(i))); + memcpy(digest + (i * sizeof(uint32_t)), &dsg, sizeof(uint32_t)); + } + + /* + * Clean hardware context as HASH could be used later + * by non-secure software + */ + hash_hw_init(HASH_SHA256); + + return 0; +} + +int stm32_hash_update(const uint8_t *buffer, size_t length) +{ + size_t remain_length = length; + int ret = 0; + + if ((length == 0U) || (buffer == NULL)) { + return 0; + } + + clk_enable(stm32_hash.clock); + + if (stm32_remain.length != 0U) { + uint32_t copysize; + + copysize = MIN((sizeof(uint32_t) - stm32_remain.length), + length); + memcpy(((uint8_t *)&stm32_remain.buffer) + stm32_remain.length, + buffer, copysize); + remain_length -= copysize; + buffer += copysize; + if (stm32_remain.length == sizeof(uint32_t)) { + ret = hash_write_data(stm32_remain.buffer); + if (ret != 0) { + goto exit; + } + + zeromem(&stm32_remain, sizeof(stm32_remain)); + } + } + + while (remain_length / sizeof(uint32_t) != 0U) { + uint32_t tmp_buf; + + memcpy(&tmp_buf, buffer, sizeof(uint32_t)); + ret = hash_write_data(tmp_buf); + if (ret != 0) { + goto exit; + } + + buffer += sizeof(uint32_t); + remain_length -= sizeof(uint32_t); + } + + if (remain_length != 0U) { + assert(stm32_remain.length == 0U); + + memcpy((uint8_t *)&stm32_remain.buffer, buffer, remain_length); + stm32_remain.length = remain_length; + } + +exit: + clk_disable(stm32_hash.clock); + + return ret; +} + +int stm32_hash_final(uint8_t *digest) +{ + int ret; + + clk_enable(stm32_hash.clock); + + if (stm32_remain.length != 0U) { + ret = hash_write_data(stm32_remain.buffer); + if (ret != 0) { + clk_disable(stm32_hash.clock); + return ret; + } + + mmio_clrsetbits_32(hash_base() + HASH_STR, HASH_STR_NBLW_MASK, + 8U * stm32_remain.length); + zeromem(&stm32_remain, sizeof(stm32_remain)); + } else { + mmio_clrbits_32(hash_base() + HASH_STR, HASH_STR_NBLW_MASK); + } + + mmio_setbits_32(hash_base() + HASH_STR, HASH_STR_DCAL); + + ret = hash_get_digest(digest); + + clk_disable(stm32_hash.clock); + + return ret; +} + +int stm32_hash_final_update(const uint8_t *buffer, uint32_t length, + uint8_t *digest) +{ + int ret; + + ret = stm32_hash_update(buffer, length); + if (ret != 0) { + return ret; + } + + return stm32_hash_final(digest); +} + +void stm32_hash_init(enum stm32_hash_algo_mode mode) +{ + clk_enable(stm32_hash.clock); + + hash_hw_init(mode); + + clk_disable(stm32_hash.clock); + + zeromem(&stm32_remain, sizeof(stm32_remain)); +} + +int stm32_hash_register(void) +{ + struct dt_node_info hash_info; + int node; + + for (node = dt_get_node(&hash_info, -1, DT_HASH_COMPAT); + node != -FDT_ERR_NOTFOUND; + node = dt_get_node(&hash_info, node, DT_HASH_COMPAT)) { + if (hash_info.status != DT_DISABLED) { + break; + } + } + + if (node == -FDT_ERR_NOTFOUND) { + return -ENODEV; + } + + if (hash_info.clock < 0) { + return -EINVAL; + } + + stm32_hash.base = hash_info.base; + stm32_hash.clock = hash_info.clock; + + clk_enable(stm32_hash.clock); + + if (hash_info.reset >= 0) { + uint32_t id = (uint32_t)hash_info.reset; + + if (stm32mp_reset_assert(id, RESET_TIMEOUT_US_1MS) != 0) { + panic(); + } + udelay(20); + if (stm32mp_reset_deassert(id, RESET_TIMEOUT_US_1MS) != 0) { + panic(); + } + } + + clk_disable(stm32_hash.clock); + + return 0; +} diff --git a/drivers/st/crypto/stm32_pka.c b/drivers/st/crypto/stm32_pka.c new file mode 100644 index 0000000..3054577 --- /dev/null +++ b/drivers/st/crypto/stm32_pka.c @@ -0,0 +1,702 @@ +/* + * Copyright (c) 2022-2023, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdint.h> + +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_pka.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils.h> +#include <libfdt.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +#if !PKA_USE_NIST_P256 && !PKA_USE_BRAINPOOL_P256R1 && !PKA_USE_BRAINPOOL_P256T1 && \ + !PKA_USE_NIST_P521 +#error "At least one ECDSA curve needs to be selected" +#endif + +/* + * For our comprehension in this file + * _len are in BITs + * _size are in BYTEs + * _nbw are in number of PKA_word (PKA_word = u64) + */ + +#define UINT8_LEN 8U +#define UINT64_LEN (UINT8_LEN * sizeof(uint64_t)) +#define PKA_WORD_SIZE (sizeof(uint64_t)) +#define OP_NBW_FROM_LEN(len) (DIV_ROUND_UP_2EVAL((len), UINT64_LEN) + 1) +#define OP_NBW_FROM_SIZE(s) OP_NBW_FROM_LEN((s) * UINT8_LEN) +#define OP_SIZE_FROM_SIZE(s) (OP_NBW_FROM_SIZE(s) * PKA_WORD_SIZE) + +#define DT_PKA_COMPAT "st,stm32-pka64" + +#define MAX_ECC_SIZE_LEN 640U +#define MAX_EO_NBW OP_NBW_FROM_LEN(MAX_ECC_SIZE_LEN) + +/* PKA registers */ +/* PKA control register */ +#define _PKA_CR 0x0U +/* PKA status register */ +#define _PKA_SR 0x4U +/* PKA clear flag register */ +#define _PKA_CLRFR 0x8U +/* PKA version register */ +#define _PKA_VERR 0x1FF4U +/* PKA identification register */ +#define _PKA_IPIDR 0x1FF8U + +/* PKA control register fields */ +#define _PKA_CR_MODE_MASK GENMASK_32(13, 8) +#define _PKA_CR_MODE_SHIFT 8U +#define _PKA_CR_MODE_ADD 0x9U +#define _PKA_CR_MODE_ECDSA_VERIF 0x26U +#define _PKA_CR_START BIT(1) +#define _PKA_CR_EN BIT(0) + +/* PKA status register fields */ +#define _PKA_SR_BUSY BIT(16) +#define _PKA_SR_LMF BIT(1) +#define _PKA_SR_INITOK BIT(0) + +/* PKA it flag fields (used in CR, SR and CLRFR) */ +#define _PKA_IT_MASK (GENMASK_32(21, 19) | BIT(17)) +#define _PKA_IT_SHIFT 17U +#define _PKA_IT_OPERR BIT(21) +#define _PKA_IT_ADDRERR BIT(20) +#define _PKA_IT_RAMERR BIT(19) +#define _PKA_IT_PROCEND BIT(17) + +/* PKA version register fields */ +#define _PKA_VERR_MAJREV_MASK GENMASK_32(7, 4) +#define _PKA_VERR_MAJREV_SHIFT 4U +#define _PKA_VERR_MINREV_MASK GENMASK_32(3, 0) +#define _PKA_VERR_MINREV_SHIFT 0U + +/* RAM magic offset */ +#define _PKA_RAM_START 0x400U +#define _PKA_RAM_SIZE 5336U + +/* ECDSA verification */ +#define _PKA_RAM_N_LEN 0x408U /* 64 */ +#define _PKA_RAM_P_LEN 0x4C8U /* 64 */ +#define _PKA_RAM_A_SIGN 0x468U /* 64 */ +#define _PKA_RAM_A 0x470U /* EOS */ +#define _PKA_RAM_P 0x4D0U /* EOS */ +#define _PKA_RAM_XG 0x678U /* EOS */ +#define _PKA_RAM_YG 0x6D0U /* EOS */ +#define _PKA_RAM_XQ 0x12F8U /* EOS */ +#define _PKA_RAM_YQ 0x1350U /* EOS */ +#define _PKA_RAM_SIGN_R 0x10E0U /* EOS */ +#define _PKA_RAM_SIGN_S 0xC68U /* EOS */ +#define _PKA_RAM_HASH_Z 0x13A8U /* EOS */ +#define _PKA_RAM_PRIME_N 0x1088U /* EOS */ +#define _PKA_RAM_ECDSA_VERIFY 0x5D0U /* 64 */ +#define _PKA_RAM_ECDSA_VERIFY_VALID 0xD60DULL +#define _PKA_RAM_ECDSA_VERIFY_INVALID 0xA3B7ULL + +#define PKA_TIMEOUT_US 1000000U +#define TIMEOUT_US_1MS 1000U +#define PKA_RESET_DELAY 20U + +struct curve_parameters { + uint32_t a_sign; /* 0 positive, 1 negative */ + uint8_t *a; /* Curve coefficient |a| */ + size_t a_size; + uint8_t *p; /* Curve modulus value */ + uint32_t p_len; + uint8_t *xg; /* Curve base point G coordinate x */ + size_t xg_size; + uint8_t *yg; /* Curve base point G coordinate y */ + size_t yg_size; + uint8_t *n; /* Curve prime order n */ + uint32_t n_len; +}; + +static const struct curve_parameters curve_def[] = { +#if PKA_USE_NIST_P256 + [PKA_NIST_P256] = { + .p_len = 256U, + .n_len = 256U, + .p = (uint8_t[]){0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, + .n = (uint8_t[]){0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, + 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51}, + .a_sign = 1U, + .a = (uint8_t[]){0x03}, + .a_size = 1U, + .xg = (uint8_t[]){0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, + 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, + 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, + 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96}, + .xg_size = 32U, + .yg = (uint8_t[]){0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, + 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, + 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, + 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5}, + .yg_size = 32U, + }, +#endif +#if PKA_USE_BRAINPOOL_P256R1 + [PKA_BRAINPOOL_P256R1] = { + .p_len = 256, + .n_len = 256, + .p = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, + 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, + 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x77}, + .n = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, + 0x8C, 0x39, 0x7A, 0xA3, 0xB5, 0x61, 0xA6, 0xF7, + 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, 0x56, 0xA7}, + .a = (uint8_t[]){0x7D, 0x5A, 0x09, 0x75, 0xFC, 0x2C, 0x30, 0x57, + 0xEE, 0xF6, 0x75, 0x30, 0x41, 0x7A, 0xFF, 0xE7, + 0xFB, 0x80, 0x55, 0xC1, 0x26, 0xDC, 0x5C, 0x6C, + 0xE9, 0x4A, 0x4B, 0x44, 0xF3, 0x30, 0xB5, 0xD9}, + .a_size = 32U, + .xg = (uint8_t[]){0x8B, 0xD2, 0xAE, 0xB9, 0xCB, 0x7E, 0x57, 0xCB, + 0x2C, 0x4B, 0x48, 0x2F, 0xFC, 0x81, 0xB7, 0xAF, + 0xB9, 0xDE, 0x27, 0xE1, 0xE3, 0xBD, 0x23, 0xC2, + 0x3A, 0x44, 0x53, 0xBD, 0x9A, 0xCE, 0x32, 0x62}, + .xg_size = 32U, + .yg = (uint8_t[]){0x54, 0x7E, 0xF8, 0x35, 0xC3, 0xDA, 0xC4, 0xFD, + 0x97, 0xF8, 0x46, 0x1A, 0x14, 0x61, 0x1D, 0xC9, + 0xC2, 0x77, 0x45, 0x13, 0x2D, 0xED, 0x8E, 0x54, + 0x5C, 0x1D, 0x54, 0xC7, 0x2F, 0x04, 0x69, 0x97}, + .yg_size = 32U, + }, +#endif +#if PKA_USE_BRAINPOOL_P256T1 + [PKA_BRAINPOOL_P256T1] = { + .p_len = 256, + .n_len = 256, + .p = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, + 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, + 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x77}, + .n = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, + 0x8C, 0x39, 0x7A, 0xA3, 0xB5, 0x61, 0xA6, 0xF7, + 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, 0x56, 0xA7}, + .a = (uint8_t[]){0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, + 0x3E, 0x66, 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, + 0x6E, 0x3B, 0xF6, 0x23, 0xD5, 0x26, 0x20, 0x28, + 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, 0x53, 0x74}, + .a_size = 32U, + .xg = (uint8_t[]){0xA3, 0xE8, 0xEB, 0x3C, 0xC1, 0xCF, 0xE7, 0xB7, + 0x73, 0x22, 0x13, 0xB2, 0x3A, 0x65, 0x61, 0x49, + 0xAF, 0xA1, 0x42, 0xC4, 0x7A, 0xAF, 0xBC, 0x2B, + 0x79, 0xA1, 0x91, 0x56, 0x2E, 0x13, 0x05, 0xF4}, + .xg_size = 32U, + .yg = (uint8_t[]){0x2D, 0x99, 0x6C, 0x82, 0x34, 0x39, 0xC5, 0x6D, + 0x7F, 0x7B, 0x22, 0xE1, 0x46, 0x44, 0x41, 0x7E, + 0x69, 0xBC, 0xB6, 0xDE, 0x39, 0xD0, 0x27, 0x00, + 0x1D, 0xAB, 0xE8, 0xF3, 0x5B, 0x25, 0xC9, 0xBE}, + .yg_size = 32U, + }, +#endif +#if PKA_USE_NIST_P521 + [PKA_NIST_P521] = { + .p_len = 521, + .n_len = 521, + .p = (uint8_t[]){ 0x01, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + .n = (uint8_t[]){ 0x01, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfa, + 0x51, 0x86, 0x87, 0x83, 0xbf, 0x2f, 0x96, 0x6b, + 0x7f, 0xcc, 0x01, 0x48, 0xf7, 0x09, 0xa5, 0xd0, + 0x3b, 0xb5, 0xc9, 0xb8, 0x89, 0x9c, 0x47, 0xae, + 0xbb, 0x6f, 0xb7, 0x1e, 0x91, 0x38, 0x64, 0x09}, + .a_sign = 1, + .a = (uint8_t[]){0x03}, + .a_size = 1U, + .xg = (uint8_t[]){ 0xc6, + 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, 0xe9, 0xcd, + 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, + 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, 0xb5, 0x21, + 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, + 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, + 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, 0xa8, 0xde, + 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, + 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66}, + .xg_size = 65U, + .yg = (uint8_t[]){ 0x01, 0x18, + 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, + 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, + 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, + 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, + 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, + 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, + 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, + 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50}, + .yg_size = 66U, + }, +#endif +}; + +static struct stm32_pka_platdata pka_pdata; + +static int stm32_pka_parse_fdt(void) +{ + int node; + struct dt_node_info info; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + node = dt_get_node(&info, -1, DT_PKA_COMPAT); + if (node < 0) { + ERROR("No PKA entry in DT\n"); + return -FDT_ERR_NOTFOUND; + } + + if (info.status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + if ((info.base == 0) || (info.clock < 0) || (info.reset < 0)) { + return -FDT_ERR_BADVALUE; + } + + pka_pdata.base = (uintptr_t)info.base; + pka_pdata.clock_id = (unsigned long)info.clock; + pka_pdata.reset_id = (unsigned int)info.reset; + + return 0; +} + +static int pka_wait_bit(uintptr_t base, uint32_t bit) +{ + uint64_t timeout = timeout_init_us(PKA_TIMEOUT_US); + + while ((mmio_read_32(base + _PKA_SR) & bit) != bit) { + if (timeout_elapsed(timeout)) { + WARN("timeout waiting %x\n", bit); + return -ETIMEDOUT; + } + } + + return 0; + +} + +static void pka_disable(uintptr_t base) +{ + mmio_clrbits_32(base + _PKA_CR, _PKA_CR_EN); +} + +static int pka_enable(uintptr_t base, uint32_t mode) +{ + /* Set mode and disable interrupts */ + mmio_clrsetbits_32(base + _PKA_CR, _PKA_IT_MASK | _PKA_CR_MODE_MASK, + _PKA_CR_MODE_MASK & (mode << _PKA_CR_MODE_SHIFT)); + + mmio_setbits_32(base + _PKA_CR, _PKA_CR_EN); + + return pka_wait_bit(base, _PKA_SR_INITOK); +} + +/* + * Data are already loaded in PKA internal RAM + * MODE is set + * We start process, and wait for its end. + */ +static int stm32_pka_process(uintptr_t base) +{ + mmio_setbits_32(base + _PKA_CR, _PKA_CR_START); + + return pka_wait_bit(base, _PKA_IT_PROCEND); +} + +/** + * @brief Write ECC operand to PKA RAM. + * @note PKA expect to write u64 word, each u64 are: the least significant bit is + * bit 0; the most significant bit is bit 63. + * We write eo_nbw (ECC operand Size) u64, value that depends of the chosen + * prime modulus length in bits. + * First less signicant u64 is written to low address + * Most significant u64 to higher address. + * And at last address we write a u64(0x0) + * @note This function doesn't only manage endianness (as bswap64 do), but also + * complete most significant incomplete u64 with 0 (if data is not a u64 + * multiple), and fill u64 last address with 0. + * @param addr: PKA_RAM address to write the buffer 'data' + * @param data: is a BYTE list with most significant bytes first + * @param data_size: nb of byte in data + * @param eo_nbw: is ECC Operand size in 64bits word (including the extra 0) + * (note it depends of the prime modulus length, not the data size) + * @retval 0 if OK. + * -EINVAL if data_size and eo_nbw are inconsistent, ie data doesn't + * fit in defined eo_nbw, or eo_nbw bigger than hardware limit. + */ +static int write_eo_data(uintptr_t addr, uint8_t *data, unsigned int data_size, + unsigned int eo_nbw) +{ + uint32_t word_index; + int data_index; + + if ((eo_nbw < OP_NBW_FROM_SIZE(data_size)) || (eo_nbw > MAX_EO_NBW)) { + return -EINVAL; + } + + /* Fill value */ + data_index = (int)data_size - 1; + for (word_index = 0U; word_index < eo_nbw; word_index++) { + uint64_t tmp = 0ULL; + unsigned int i = 0U; /* index in the tmp U64 word */ + + /* Stop if end of tmp or end of data */ + while ((i < sizeof(tmp)) && (data_index >= 0)) { + tmp |= (uint64_t)(data[data_index]) << (UINT8_LEN * i); + i++; /* Move byte index in current (u64)tmp */ + data_index--; /* Move to just next most significat byte */ + } + + mmio_write_64(addr + word_index * sizeof(tmp), tmp); + } + + return 0; +} + +static unsigned int get_ecc_op_nbword(enum stm32_pka_ecdsa_curve_id cid) +{ + if (cid >= ARRAY_SIZE(curve_def)) { + ERROR("CID %u is out of boundaries\n", cid); + panic(); + } + + return OP_NBW_FROM_LEN(curve_def[cid].n_len); +} + +static int stm32_pka_ecdsa_verif_configure_curve(uintptr_t base, enum stm32_pka_ecdsa_curve_id cid) +{ + int ret; + unsigned int eo_nbw = get_ecc_op_nbword(cid); + + mmio_write_64(base + _PKA_RAM_N_LEN, curve_def[cid].n_len); + mmio_write_64(base + _PKA_RAM_P_LEN, curve_def[cid].p_len); + mmio_write_64(base + _PKA_RAM_A_SIGN, curve_def[cid].a_sign); + + ret = write_eo_data(base + _PKA_RAM_A, curve_def[cid].a, curve_def[cid].a_size, eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_PRIME_N, + curve_def[cid].n, div_round_up(curve_def[cid].n_len, UINT8_LEN), + eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_P, curve_def[cid].p, + div_round_up(curve_def[cid].p_len, UINT8_LEN), eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_XG, curve_def[cid].xg, curve_def[cid].xg_size, eo_nbw); + if (ret < 0) { + return ret; + } + + ret = write_eo_data(base + _PKA_RAM_YG, curve_def[cid].yg, curve_def[cid].yg_size, eo_nbw); + if (ret < 0) { + return ret; + } + + return 0; +} + +static int stm32_pka_ecdsa_verif_check_return(uintptr_t base) +{ + uint64_t value; + uint32_t sr; + + sr = mmio_read_32(base + _PKA_SR); + if ((sr & (_PKA_IT_OPERR | _PKA_IT_ADDRERR | _PKA_IT_RAMERR)) != 0) { + WARN("Detected error(s): %s%s%s\n", + (sr & _PKA_IT_OPERR) ? "Operation " : "", + (sr & _PKA_IT_ADDRERR) ? "Address " : "", + (sr & _PKA_IT_RAMERR) ? "RAM" : ""); + return -EINVAL; + } + + value = mmio_read_64(base + _PKA_RAM_ECDSA_VERIFY); + if (value == _PKA_RAM_ECDSA_VERIFY_VALID) { + return 0; + } + + if (value == _PKA_RAM_ECDSA_VERIFY_INVALID) { + return -EAUTH; + } + + return -EINVAL; +} + +/** + * @brief Check if BigInt stored in data is 0 + * + * @param data: a BYTE array with most significant bytes first + * @param size: data size + * + * @retval: true: if data represents a 0 value (ie all bytes == 0) + * false: if data represents a non-zero value. + */ +static bool is_zero(uint8_t *data, unsigned int size) +{ + unsigned int i; + + for (i = 0U; i < size; i++) { + if (data[i] != 0U) { + return false; + } + } + + return true; +} + +/** + * @brief Compare two BigInt: + * @param xdata_a: a BYTE array with most significant bytes first + * @param size_a: nb of Byte of 'a' + * @param data_b: a BYTE array with most significant bytes first + * @param size_b: nb of Byte of 'b' + * + * @retval: true if data_a < data_b + * false if data_a >= data_b + */ +static bool is_smaller(uint8_t *data_a, unsigned int size_a, + uint8_t *data_b, unsigned int size_b) +{ + unsigned int i; + + i = MAX(size_a, size_b) + 1U; + do { + uint8_t a, b; + + i--; + if (size_a < i) { + a = 0U; + } else { + a = data_a[size_a - i]; + } + + if (size_b < i) { + b = 0U; + } else { + b = data_b[size_b - i]; + } + + if (a < b) { + return true; + } + + if (a > b) { + return false; + } + } while (i != 0U); + + return false; +} + +static int stm32_pka_ecdsa_check_param(void *sig_r_ptr, unsigned int sig_r_size, + void *sig_s_ptr, unsigned int sig_s_size, + void *pk_x_ptr, unsigned int pk_x_size, + void *pk_y_ptr, unsigned int pk_y_size, + enum stm32_pka_ecdsa_curve_id cid) +{ + /* Public Key check */ + /* Check Xq < p */ + if (!is_smaller(pk_x_ptr, pk_x_size, + curve_def[cid].p, div_round_up(curve_def[cid].p_len, UINT8_LEN))) { + WARN("%s Xq < p inval\n", __func__); + return -EINVAL; + } + + /* Check Yq < p */ + if (!is_smaller(pk_y_ptr, pk_y_size, + curve_def[cid].p, div_round_up(curve_def[cid].p_len, UINT8_LEN))) { + WARN("%s Yq < p inval\n", __func__); + return -EINVAL; + } + + /* Signature check */ + /* Check 0 < r < n */ + if (!is_smaller(sig_r_ptr, sig_r_size, + curve_def[cid].n, div_round_up(curve_def[cid].n_len, UINT8_LEN)) && + !is_zero(sig_r_ptr, sig_r_size)) { + WARN("%s 0< r < n inval\n", __func__); + return -EINVAL; + } + + /* Check 0 < s < n */ + if (!is_smaller(sig_s_ptr, sig_s_size, + curve_def[cid].n, div_round_up(curve_def[cid].n_len, UINT8_LEN)) && + !is_zero(sig_s_ptr, sig_s_size)) { + WARN("%s 0< s < n inval\n", __func__); + return -EINVAL; + } + + return 0; +} + +/* + * @brief Initialize the PKA driver. + * @param None. + * @retval 0 if OK, negative value else. + */ +int stm32_pka_init(void) +{ + int err; +#if LOG_LEVEL >= LOG_LEVEL_VERBOSE + uint32_t ver; + uint32_t id; +#endif + + err = stm32_pka_parse_fdt(); + if (err != 0) { + return err; + } + + clk_enable(pka_pdata.clock_id); + + if (stm32mp_reset_assert((unsigned long)pka_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + + udelay(PKA_RESET_DELAY); + if (stm32mp_reset_deassert((unsigned long)pka_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + +#if LOG_LEVEL >= LOG_LEVEL_VERBOSE + id = mmio_read_32(pka_pdata.base + _PKA_IPIDR); + ver = mmio_read_32(pka_pdata.base + _PKA_VERR); + + VERBOSE("STM32 PKA[%x] V%u.%u\n", id, + (ver & _PKA_VERR_MAJREV_MASK) >> _PKA_VERR_MAJREV_SHIFT, + (ver & _PKA_VERR_MINREV_MASK) >> _PKA_VERR_MINREV_SHIFT); +#endif + return 0; +} + +int stm32_pka_ecdsa_verif(void *hash, unsigned int hash_size, + void *sig_r_ptr, unsigned int sig_r_size, + void *sig_s_ptr, unsigned int sig_s_size, + void *pk_x_ptr, unsigned int pk_x_size, + void *pk_y_ptr, unsigned int pk_y_size, + enum stm32_pka_ecdsa_curve_id cid) +{ + int ret; + uintptr_t base = pka_pdata.base; + unsigned int eo_nbw = get_ecc_op_nbword(cid); + + if ((hash == NULL) || (sig_r_ptr == NULL) || (sig_s_ptr == NULL) || + (pk_x_ptr == NULL) || (pk_y_ptr == NULL)) { + INFO("%s invalid input param\n", __func__); + return -EINVAL; + } + + ret = stm32_pka_ecdsa_check_param(sig_r_ptr, sig_r_size, + sig_s_ptr, sig_s_size, + pk_x_ptr, pk_x_size, + pk_y_ptr, pk_y_size, + cid); + if (ret < 0) { + INFO("%s check param error %d\n", __func__, ret); + goto out; + } + + if ((mmio_read_32(base + _PKA_SR) & _PKA_SR_BUSY) == _PKA_SR_BUSY) { + INFO("%s busy\n", __func__); + ret = -EBUSY; + goto out; + } + + /* Fill PKA RAM */ + /* With curve id values */ + ret = stm32_pka_ecdsa_verif_configure_curve(base, cid); + if (ret < 0) { + goto out; + } + + /* With pubkey */ + ret = write_eo_data(base + _PKA_RAM_XQ, pk_x_ptr, pk_x_size, eo_nbw); + if (ret < 0) { + goto out; + } + + ret = write_eo_data(base + _PKA_RAM_YQ, pk_y_ptr, pk_y_size, eo_nbw); + if (ret < 0) { + goto out; + } + + /* With hash */ + ret = write_eo_data(base + _PKA_RAM_HASH_Z, hash, hash_size, eo_nbw); + if (ret < 0) { + goto out; + } + + /* With signature */ + ret = write_eo_data(base + _PKA_RAM_SIGN_R, sig_r_ptr, sig_r_size, eo_nbw); + if (ret < 0) { + goto out; + } + + ret = write_eo_data(base + _PKA_RAM_SIGN_S, sig_s_ptr, sig_s_size, eo_nbw); + if (ret < 0) { + goto out; + } + + /* Set mode to ecdsa signature verification */ + ret = pka_enable(base, _PKA_CR_MODE_ECDSA_VERIF); + if (ret < 0) { + WARN("%s set mode pka error %d\n", __func__, ret); + goto out; + } + + /* Start processing and wait end */ + ret = stm32_pka_process(base); + if (ret < 0) { + WARN("%s process error %d\n", __func__, ret); + goto out; + } + + /* Check return status */ + ret = stm32_pka_ecdsa_verif_check_return(base); + + /* Unset end proc */ + mmio_setbits_32(base + _PKA_CLRFR, _PKA_IT_PROCEND); + +out: + /* Disable PKA (will stop all pending process and reset RAM) */ + pka_disable(base); + + return ret; +} diff --git a/drivers/st/crypto/stm32_rng.c b/drivers/st/crypto/stm32_rng.c new file mode 100644 index 0000000..1342fd4 --- /dev/null +++ b/drivers/st/crypto/stm32_rng.c @@ -0,0 +1,273 @@ +/* + * Copyright (c) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <errno.h> +#include <stdbool.h> + +#include <arch_helpers.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_rng.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <libfdt.h> + +#include <platform_def.h> + +#if STM32_RNG_VER == 2 +#define DT_RNG_COMPAT "st,stm32-rng" +#endif +#if STM32_RNG_VER == 4 +#define DT_RNG_COMPAT "st,stm32mp13-rng" +#endif +#define RNG_CR 0x00U +#define RNG_SR 0x04U +#define RNG_DR 0x08U + +#define RNG_CR_RNGEN BIT(2) +#define RNG_CR_IE BIT(3) +#define RNG_CR_CED BIT(5) +#define RNG_CR_CLKDIV GENMASK(19, 16) +#define RNG_CR_CLKDIV_SHIFT 16U +#define RNG_CR_CONDRST BIT(30) + +#define RNG_SR_DRDY BIT(0) +#define RNG_SR_CECS BIT(1) +#define RNG_SR_SECS BIT(2) +#define RNG_SR_CEIS BIT(5) +#define RNG_SR_SEIS BIT(6) + +#define RNG_TIMEOUT_US 100000U +#define RNG_TIMEOUT_STEP_US 10U + +#define TIMEOUT_US_1MS 1000U + +#define RNG_NIST_CONFIG_A 0x00F40F00U +#define RNG_NIST_CONFIG_B 0x01801000U +#define RNG_NIST_CONFIG_C 0x00F00D00U +#define RNG_NIST_CONFIG_MASK GENMASK(25, 8) + +#define RNG_MAX_NOISE_CLK_FREQ 48000000U + +struct stm32_rng_instance { + uintptr_t base; + unsigned long clock; +}; + +static struct stm32_rng_instance stm32_rng; + +static void seed_error_recovery(void) +{ + uint8_t i __maybe_unused; + + /* Recommended by the SoC reference manual */ + mmio_clrbits_32(stm32_rng.base + RNG_SR, RNG_SR_SEIS); + dmbsy(); + +#if STM32_RNG_VER == 2 + /* No Auto-reset on version 2, need to clean FIFO */ + for (i = 12U; i != 0U; i--) { + (void)mmio_read_32(stm32_rng.base + RNG_DR); + } + + dmbsy(); +#endif + + if ((mmio_read_32(stm32_rng.base + RNG_SR) & RNG_SR_SEIS) != 0U) { + ERROR("RNG noise\n"); + panic(); + } +} + +static uint32_t stm32_rng_clock_freq_restrain(void) +{ + unsigned long clock_rate; + uint32_t clock_div = 0U; + + clock_rate = clk_get_rate(stm32_rng.clock); + + /* + * Get the exponent to apply on the CLKDIV field in RNG_CR register + * No need to handle the case when clock-div > 0xF as it is physically + * impossible + */ + while ((clock_rate >> clock_div) > RNG_MAX_NOISE_CLK_FREQ) { + clock_div++; + } + + VERBOSE("RNG clk rate : %lu\n", clk_get_rate(stm32_rng.clock) >> clock_div); + + return clock_div; +} + +static int stm32_rng_enable(void) +{ + uint32_t sr; + uint64_t timeout; + uint32_t clock_div __maybe_unused; + +#if STM32_RNG_VER == 2 + mmio_write_32(stm32_rng.base + RNG_CR, RNG_CR_RNGEN | RNG_CR_CED); +#endif +#if STM32_RNG_VER == 4 + /* Reset internal block and disable CED bit */ + clock_div = stm32_rng_clock_freq_restrain(); + + /* Update configuration fields */ + mmio_clrsetbits_32(stm32_rng.base + RNG_CR, RNG_NIST_CONFIG_MASK, + RNG_NIST_CONFIG_A | RNG_CR_CONDRST | RNG_CR_CED); + + mmio_clrsetbits_32(stm32_rng.base + RNG_CR, RNG_CR_CLKDIV, + (clock_div << RNG_CR_CLKDIV_SHIFT)); + + mmio_clrsetbits_32(stm32_rng.base + RNG_CR, RNG_CR_CONDRST, RNG_CR_RNGEN); +#endif + timeout = timeout_init_us(RNG_TIMEOUT_US); + sr = mmio_read_32(stm32_rng.base + RNG_SR); + while ((sr & RNG_SR_DRDY) == 0U) { + if (timeout_elapsed(timeout)) { + WARN("Timeout waiting\n"); + return -ETIMEDOUT; + } + + if ((sr & (RNG_SR_SECS | RNG_SR_SEIS)) != 0U) { + seed_error_recovery(); + timeout = timeout_init_us(RNG_TIMEOUT_US); + } + + udelay(RNG_TIMEOUT_STEP_US); + sr = mmio_read_32(stm32_rng.base + RNG_SR); + } + + VERBOSE("Init RNG done\n"); + + return 0; +} + +/* + * stm32_rng_read - Read a number of random bytes from RNG + * out: pointer to the output buffer + * size: number of bytes to be read + * Return 0 on success, non-0 on failure + */ +int stm32_rng_read(uint8_t *out, uint32_t size) +{ + uint8_t *buf = out; + size_t len = size; + int nb_tries; + uint32_t data32; + int rc = 0; + unsigned int count; + + if (stm32_rng.base == 0U) { + return -EPERM; + } + + while (len != 0U) { + nb_tries = RNG_TIMEOUT_US / RNG_TIMEOUT_STEP_US; + do { + uint32_t status = mmio_read_32(stm32_rng.base + RNG_SR); + + if ((status & (RNG_SR_SECS | RNG_SR_SEIS)) != 0U) { + seed_error_recovery(); + } + + udelay(RNG_TIMEOUT_STEP_US); + nb_tries--; + if (nb_tries == 0) { + rc = -ETIMEDOUT; + goto bail; + } + } while ((mmio_read_32(stm32_rng.base + RNG_SR) & + RNG_SR_DRDY) == 0U); + + count = 4U; + while (len != 0U) { + if ((mmio_read_32(stm32_rng.base + RNG_SR) & RNG_SR_DRDY) == 0U) { + break; + } + + data32 = mmio_read_32(stm32_rng.base + RNG_DR); + count--; + + memcpy(buf, &data32, MIN(len, sizeof(uint32_t))); + buf += MIN(len, sizeof(uint32_t)); + len -= MIN(len, sizeof(uint32_t)); + + if (count == 0U) { + break; + } + } + } + +bail: + if (rc != 0) { + memset(out, 0, buf - out); + } + + return rc; +} + +/* + * stm32_rng_init: Initialize rng from DT + * return 0 on success, negative value on failure + */ +int stm32_rng_init(void) +{ + void *fdt; + struct dt_node_info dt_rng; + int node; + + if (stm32_rng.base != 0U) { + /* Driver is already initialized */ + return 0; + } + + if (fdt_get_address(&fdt) == 0) { + panic(); + } + + node = dt_get_node(&dt_rng, -1, DT_RNG_COMPAT); + if (node < 0) { + return 0; + } + + if (dt_rng.status == DT_DISABLED) { + return 0; + } + + assert(dt_rng.base != 0U); + + stm32_rng.base = dt_rng.base; + + if (dt_rng.clock < 0) { + panic(); + } + + stm32_rng.clock = (unsigned long)dt_rng.clock; + clk_enable(stm32_rng.clock); + + if (dt_rng.reset >= 0) { + int ret; + + ret = stm32mp_reset_assert((unsigned long)dt_rng.reset, + TIMEOUT_US_1MS); + if (ret != 0) { + panic(); + } + + udelay(20); + + ret = stm32mp_reset_deassert((unsigned long)dt_rng.reset, + TIMEOUT_US_1MS); + if (ret != 0) { + panic(); + } + } + + return stm32_rng_enable(); +} diff --git a/drivers/st/crypto/stm32_saes.c b/drivers/st/crypto/stm32_saes.c new file mode 100644 index 0000000..f4da571 --- /dev/null +++ b/drivers/st/crypto/stm32_saes.c @@ -0,0 +1,903 @@ +/* + * Copyright (c) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ +#include <assert.h> +#include <endian.h> +#include <errno.h> +#include <stdint.h> + +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32_saes.h> +#include <drivers/st/stm32mp_reset.h> +#include <lib/mmio.h> +#include <lib/utils_def.h> +#include <libfdt.h> + +#include <platform_def.h> + +#define UINT8_BIT 8U +#define AES_BLOCK_SIZE_BIT 128U +#define AES_BLOCK_SIZE (AES_BLOCK_SIZE_BIT / UINT8_BIT) + +#define AES_KEYSIZE_128 16U +#define AES_KEYSIZE_256 32U +#define AES_IVSIZE 16U + +/* SAES control register */ +#define _SAES_CR 0x0U +/* SAES status register */ +#define _SAES_SR 0x04U +/* SAES data input register */ +#define _SAES_DINR 0x08U +/* SAES data output register */ +#define _SAES_DOUTR 0x0CU +/* SAES key registers [0-3] */ +#define _SAES_KEYR0 0x10U +#define _SAES_KEYR1 0x14U +#define _SAES_KEYR2 0x18U +#define _SAES_KEYR3 0x1CU +/* SAES initialization vector registers [0-3] */ +#define _SAES_IVR0 0x20U +#define _SAES_IVR1 0x24U +#define _SAES_IVR2 0x28U +#define _SAES_IVR3 0x2CU +/* SAES key registers [4-7] */ +#define _SAES_KEYR4 0x30U +#define _SAES_KEYR5 0x34U +#define _SAES_KEYR6 0x38U +#define _SAES_KEYR7 0x3CU +/* SAES suspend registers [0-7] */ +#define _SAES_SUSPR0 0x40U +#define _SAES_SUSPR1 0x44U +#define _SAES_SUSPR2 0x48U +#define _SAES_SUSPR3 0x4CU +#define _SAES_SUSPR4 0x50U +#define _SAES_SUSPR5 0x54U +#define _SAES_SUSPR6 0x58U +#define _SAES_SUSPR7 0x5CU +/* SAES Interrupt Enable Register */ +#define _SAES_IER 0x300U +/* SAES Interrupt Status Register */ +#define _SAES_ISR 0x304U +/* SAES Interrupt Clear Register */ +#define _SAES_ICR 0x308U + +/* SAES control register fields */ +#define _SAES_CR_RESET_VALUE 0x0U +#define _SAES_CR_IPRST BIT(31) +#define _SAES_CR_KEYSEL_MASK GENMASK(30, 28) +#define _SAES_CR_KEYSEL_SHIFT 28U +#define _SAES_CR_KEYSEL_SOFT 0x0U +#define _SAES_CR_KEYSEL_DHUK 0x1U +#define _SAES_CR_KEYSEL_BHK 0x2U +#define _SAES_CR_KEYSEL_BHU_XOR_BH_K 0x4U +#define _SAES_CR_KEYSEL_TEST 0x7U +#define _SAES_CR_KSHAREID_MASK GENMASK(27, 26) +#define _SAES_CR_KSHAREID_SHIFT 26U +#define _SAES_CR_KSHAREID_CRYP 0x0U +#define _SAES_CR_KEYMOD_MASK GENMASK(25, 24) +#define _SAES_CR_KEYMOD_SHIFT 24U +#define _SAES_CR_KEYMOD_NORMAL 0x0U +#define _SAES_CR_KEYMOD_WRAPPED 0x1U +#define _SAES_CR_KEYMOD_SHARED 0x2U +#define _SAES_CR_NPBLB_MASK GENMASK(23, 20) +#define _SAES_CR_NPBLB_SHIFT 20U +#define _SAES_CR_KEYPROT BIT(19) +#define _SAES_CR_KEYSIZE BIT(18) +#define _SAES_CR_GCMPH_MASK GENMASK(14, 13) +#define _SAES_CR_GCMPH_SHIFT 13U +#define _SAES_CR_GCMPH_INIT 0U +#define _SAES_CR_GCMPH_HEADER 1U +#define _SAES_CR_GCMPH_PAYLOAD 2U +#define _SAES_CR_GCMPH_FINAL 3U +#define _SAES_CR_DMAOUTEN BIT(12) +#define _SAES_CR_DMAINEN BIT(11) +#define _SAES_CR_CHMOD_MASK (BIT(16) | GENMASK(6, 5)) +#define _SAES_CR_CHMOD_SHIFT 5U +#define _SAES_CR_CHMOD_ECB 0x0U +#define _SAES_CR_CHMOD_CBC 0x1U +#define _SAES_CR_CHMOD_CTR 0x2U +#define _SAES_CR_CHMOD_GCM 0x3U +#define _SAES_CR_CHMOD_GMAC 0x3U +#define _SAES_CR_CHMOD_CCM 0x800U +#define _SAES_CR_MODE_MASK GENMASK(4, 3) +#define _SAES_CR_MODE_SHIFT 3U +#define _SAES_CR_MODE_ENC 0U +#define _SAES_CR_MODE_KEYPREP 1U +#define _SAES_CR_MODE_DEC 2U +#define _SAES_CR_DATATYPE_MASK GENMASK(2, 1) +#define _SAES_CR_DATATYPE_SHIFT 1U +#define _SAES_CR_DATATYPE_NONE 0U +#define _SAES_CR_DATATYPE_HALF_WORD 1U +#define _SAES_CR_DATATYPE_BYTE 2U +#define _SAES_CR_DATATYPE_BIT 3U +#define _SAES_CR_EN BIT(0) + +/* SAES status register fields */ +#define _SAES_SR_KEYVALID BIT(7) +#define _SAES_SR_BUSY BIT(3) +#define _SAES_SR_WRERR BIT(2) +#define _SAES_SR_RDERR BIT(1) +#define _SAES_SR_CCF BIT(0) + +/* SAES interrupt registers fields */ +#define _SAES_I_RNG_ERR BIT(3) +#define _SAES_I_KEY_ERR BIT(2) +#define _SAES_I_RW_ERR BIT(1) +#define _SAES_I_CC BIT(0) + +#define SAES_TIMEOUT_US 100000U +#define TIMEOUT_US_1MS 1000U +#define SAES_RESET_DELAY 20U + +#define IS_CHAINING_MODE(mod, cr) \ + (((cr) & _SAES_CR_CHMOD_MASK) == (_SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT)) + +#define SET_CHAINING_MODE(mod, cr) \ + mmio_clrsetbits_32((cr), _SAES_CR_CHMOD_MASK, _SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT) + +static struct stm32_saes_platdata saes_pdata; + +static int stm32_saes_parse_fdt(struct stm32_saes_platdata *pdata) +{ + int node; + struct dt_node_info info; + void *fdt; + + if (fdt_get_address(&fdt) == 0) { + return -FDT_ERR_NOTFOUND; + } + + node = dt_get_node(&info, -1, DT_SAES_COMPAT); + if (node < 0) { + ERROR("No SAES entry in DT\n"); + return -FDT_ERR_NOTFOUND; + } + + if (info.status == DT_DISABLED) { + return -FDT_ERR_NOTFOUND; + } + + if ((info.base == 0U) || (info.clock < 0) || (info.reset < 0)) { + return -FDT_ERR_BADVALUE; + } + + pdata->base = (uintptr_t)info.base; + pdata->clock_id = (unsigned long)info.clock; + pdata->reset_id = (unsigned int)info.reset; + + return 0; +} + +static bool does_chaining_mode_need_iv(uint32_t cr) +{ + return !(IS_CHAINING_MODE(ECB, cr)); +} + +static bool is_encrypt(uint32_t cr) +{ + return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT); +} + +static bool is_decrypt(uint32_t cr) +{ + return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT); +} + +static int wait_computation_completed(uintptr_t base) +{ + uint64_t timeout = timeout_init_us(SAES_TIMEOUT_US); + + while ((mmio_read_32(base + _SAES_SR) & _SAES_SR_CCF) != _SAES_SR_CCF) { + if (timeout_elapsed(timeout)) { + WARN("%s: timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void clear_computation_completed(uintptr_t base) +{ + mmio_setbits_32(base + _SAES_ICR, _SAES_I_CC); +} + +static int saes_start(struct stm32_saes_context *ctx) +{ + uint64_t timeout; + + /* Reset IP */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + udelay(SAES_RESET_DELAY); + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + + timeout = timeout_init_us(SAES_TIMEOUT_US); + while ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_BUSY) == _SAES_SR_BUSY) { + if (timeout_elapsed(timeout)) { + WARN("%s: timeout\n", __func__); + return -ETIMEDOUT; + } + } + + return 0; +} + +static void saes_end(struct stm32_saes_context *ctx, int prev_error) +{ + if (prev_error != 0) { + /* Reset IP */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + udelay(SAES_RESET_DELAY); + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + } + + /* Disable the SAES peripheral */ + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); +} + +static void saes_write_iv(struct stm32_saes_context *ctx) +{ + /* If chaining mode need to restore IV */ + if (does_chaining_mode_need_iv(ctx->cr)) { + uint8_t i; + + /* Restore the _SAES_IVRx */ + for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) { + mmio_write_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t), ctx->iv[i]); + } + } + +} + +static void saes_write_key(struct stm32_saes_context *ctx) +{ + /* Restore the _SAES_KEYRx if SOFTWARE key */ + if ((ctx->cr & _SAES_CR_KEYSEL_MASK) == (_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT)) { + uint8_t i; + + for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) { + mmio_write_32(ctx->base + _SAES_KEYR0 + i * sizeof(uint32_t), ctx->key[i]); + } + + if ((ctx->cr & _SAES_CR_KEYSIZE) == _SAES_CR_KEYSIZE) { + for (i = 0U; i < (AES_KEYSIZE_256 / 2U) / sizeof(uint32_t); i++) { + mmio_write_32(ctx->base + _SAES_KEYR4 + i * sizeof(uint32_t), + ctx->key[i + 4U]); + } + } + } +} + +static int saes_prepare_key(struct stm32_saes_context *ctx) +{ + /* Disable the SAES peripheral */ + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + /* Set key size */ + if ((ctx->cr & _SAES_CR_KEYSIZE) != 0U) { + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE); + } else { + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE); + } + + saes_write_key(ctx); + + /* For ECB/CBC decryption, key preparation mode must be selected to populate the key */ + if ((IS_CHAINING_MODE(ECB, ctx->cr) || IS_CHAINING_MODE(CBC, ctx->cr)) && + is_decrypt(ctx->cr)) { + int ret; + + /* Select Mode 2 */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK, + _SAES_CR_MODE_KEYPREP << _SAES_CR_MODE_SHIFT); + + /* Enable SAES */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + /* Wait Computation completed */ + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + return ret; + } + + clear_computation_completed(ctx->base); + + /* Set Mode 3 */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK, + _SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT); + } + + return 0; +} + +static int save_context(struct stm32_saes_context *ctx) +{ + if ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_CCF) != 0U) { + /* Device should not be in a processing phase */ + return -EINVAL; + } + + /* Save CR */ + ctx->cr = mmio_read_32(ctx->base + _SAES_CR); + + /* If chaining mode need to save current IV */ + if (does_chaining_mode_need_iv(ctx->cr)) { + uint8_t i; + + /* Save IV */ + for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) { + ctx->iv[i] = mmio_read_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t)); + } + } + + /* Disable the SAES peripheral */ + mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + return 0; +} + +/* To resume the processing of a message */ +static int restore_context(struct stm32_saes_context *ctx) +{ + int ret; + + /* IP should be disabled */ + if ((mmio_read_32(ctx->base + _SAES_CR) & _SAES_CR_EN) != 0U) { + VERBOSE("%s: Device is still enabled\n", __func__); + return -EINVAL; + } + + /* Reset internal state */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST); + + /* Restore the _SAES_CR */ + mmio_write_32(ctx->base + _SAES_CR, ctx->cr); + + /* Preparation decrypt key */ + ret = saes_prepare_key(ctx); + if (ret != 0) { + return ret; + } + + saes_write_iv(ctx); + + /* Enable the SAES peripheral */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + return 0; +} + +/** + * @brief Initialize SAES driver. + * @param None. + * @retval 0 if OK; negative value else. + */ +int stm32_saes_driver_init(void) +{ + int err; + + err = stm32_saes_parse_fdt(&saes_pdata); + if (err != 0) { + return err; + } + + clk_enable(saes_pdata.clock_id); + if (stm32mp_reset_assert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + + udelay(SAES_RESET_DELAY); + if (stm32mp_reset_deassert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) { + panic(); + } + + return 0; +} + +/** + * @brief Start a AES computation. + * @param ctx: SAES process context + * @param is_dec: true if decryption, false if encryption + * @param ch_mode: define the chaining mode + * @param key_select: define where the key comes from. + * @param key: pointer to key (if key_select is KEY_SOFT, else unused) + * @param key_size: key size + * @param iv: pointer to initialization vectore (unsed if ch_mode is ECB) + * @param iv_size: iv size + * @note this function doesn't access to hardware but store in ctx the values + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_init(struct stm32_saes_context *ctx, bool is_dec, + enum stm32_saes_chaining_mode ch_mode, enum stm32_saes_key_selection key_select, + const void *key, size_t key_size, const void *iv, size_t iv_size) +{ + unsigned int i; + const uint32_t *iv_u32; + const uint32_t *key_u32; + + ctx->assoc_len = 0U; + ctx->load_len = 0U; + + ctx->base = saes_pdata.base; + ctx->cr = _SAES_CR_RESET_VALUE; + + /* We want buffer to be u32 aligned */ + assert((uintptr_t)key % __alignof__(uint32_t) == 0); + assert((uintptr_t)iv % __alignof__(uint32_t) == 0); + + iv_u32 = iv; + key_u32 = key; + + if (is_dec) { + /* Save Mode 3 = decrypt */ + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK, + _SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT); + } else { + /* Save Mode 1 = crypt */ + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK, + _SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT); + } + + /* Save chaining mode */ + switch (ch_mode) { + case STM32_SAES_MODE_ECB: + SET_CHAINING_MODE(ECB, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_CBC: + SET_CHAINING_MODE(CBC, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_CTR: + SET_CHAINING_MODE(CTR, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_GCM: + SET_CHAINING_MODE(GCM, (uintptr_t)&(ctx->cr)); + break; + case STM32_SAES_MODE_CCM: + SET_CHAINING_MODE(CCM, (uintptr_t)&(ctx->cr)); + break; + default: + return -EINVAL; + } + + /* We will use HW Byte swap (_SAES_CR_DATATYPE_BYTE) for data. + * so we won't need to + * htobe32(data) before write to DINR + * nor + * be32toh after reading from DOUTR + * + * But note that wrap key only accept _SAES_CR_DATATYPE_NONE + */ + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_DATATYPE_MASK, + _SAES_CR_DATATYPE_BYTE << _SAES_CR_DATATYPE_SHIFT); + + /* Configure keysize */ + switch (key_size) { + case AES_KEYSIZE_128: + mmio_clrbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE); + break; + case AES_KEYSIZE_256: + mmio_setbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE); + break; + default: + return -EINVAL; + } + + /* Configure key */ + switch (key_select) { + case STM32_SAES_KEY_SOFT: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT); + /* Save key */ + switch (key_size) { + case AES_KEYSIZE_128: + /* First 16 bytes == 4 u32 */ + for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) { + mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[3 - i])); + /* /!\ we save the key in HW byte order + * and word order : key[i] is for _SAES_KEYRi + */ + } + break; + case AES_KEYSIZE_256: + for (i = 0U; i < AES_KEYSIZE_256 / sizeof(uint32_t); i++) { + mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[7 - i])); + /* /!\ we save the key in HW byte order + * and word order : key[i] is for _SAES_KEYRi + */ + } + break; + default: + return -EINVAL; + } + + break; + case STM32_SAES_KEY_DHU: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_DHUK << _SAES_CR_KEYSEL_SHIFT); + break; + case STM32_SAES_KEY_BH: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_BHK << _SAES_CR_KEYSEL_SHIFT); + break; + case STM32_SAES_KEY_BHU_XOR_BH: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_BHU_XOR_BH_K << _SAES_CR_KEYSEL_SHIFT); + break; + case STM32_SAES_KEY_WRAPPED: + mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK, + _SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT); + break; + + default: + return -EINVAL; + } + + /* Save IV */ + if (ch_mode != STM32_SAES_MODE_ECB) { + if ((iv == NULL) || (iv_size != AES_IVSIZE)) { + return -EINVAL; + } + + for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) { + mmio_write_32((uintptr_t)(ctx->iv + i), htobe32(iv_u32[3 - i])); + /* /!\ We save the iv in HW byte order */ + } + } + + return saes_start(ctx); +} + +/** + * @brief Update (or start) a AES authentificate process of associated data (CCM or GCM). + * @param ctx: SAES process context + * @param last_block: true if last assoc data block + * @param data: pointer to associated data + * @param data_size: data size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_update_assodata(struct stm32_saes_context *ctx, bool last_block, + uint8_t *data, size_t data_size) +{ + int ret; + uint32_t *data_u32; + unsigned int i = 0U; + + /* We want buffers to be u32 aligned */ + assert((uintptr_t)data % __alignof__(uint32_t) == 0); + data_u32 = (uint32_t *)data; + + /* Init phase */ + ret = restore_context(ctx); + if (ret != 0) { + goto out; + } + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + return ret; + } + + clear_computation_completed(ctx->base); + + if ((data == NULL) || (data_size == 0U)) { + /* No associated data */ + /* ret already = 0 */ + goto out; + } + + /* There is an header/associated data phase */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK, + _SAES_CR_GCMPH_HEADER << _SAES_CR_GCMPH_SHIFT); + + /* Enable the SAES peripheral */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + + while (i < round_down(data_size, AES_BLOCK_SIZE)) { + unsigned int w; /* Word index */ + + w = i / sizeof(uint32_t); + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 0U]); + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 1U]); + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 2U]); + mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + clear_computation_completed(ctx->base); + + /* Process next block */ + i += AES_BLOCK_SIZE; + ctx->assoc_len += AES_BLOCK_SIZE_BIT; + } + + /* Manage last block if not a block size multiple */ + if ((last_block) && (i < data_size)) { + /* We don't manage unaligned last block yet */ + ret = -ENODEV; + goto out; + } + +out: + if (ret != 0) { + saes_end(ctx, ret); + } + + return ret; +} + +/** + * @brief Update (or start) a AES authenticate and de/encrypt with payload data (CCM or GCM). + * @param ctx: SAES process context + * @param last_block: true if last payload data block + * @param data_in: pointer to payload + * @param data_out: pointer where to save de/encrypted payload + * @param data_size: payload size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_update_load(struct stm32_saes_context *ctx, bool last_block, + uint8_t *data_in, uint8_t *data_out, size_t data_size) +{ + int ret = 0; + uint32_t *data_in_u32; + uint32_t *data_out_u32; + unsigned int i = 0U; + uint32_t prev_cr; + + /* We want buffers to be u32 aligned */ + assert((uintptr_t)data_in % __alignof__(uint32_t) == 0); + assert((uintptr_t)data_out % __alignof__(uint32_t) == 0); + data_in_u32 = (uint32_t *)data_in; + data_out_u32 = (uint32_t *)data_out; + + prev_cr = mmio_read_32(ctx->base + _SAES_CR); + + if ((data_in == NULL) || (data_size == 0U)) { + /* there is no data */ + goto out; + } + + /* There is a load phase */ + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK, + _SAES_CR_GCMPH_PAYLOAD << _SAES_CR_GCMPH_SHIFT); + + if ((prev_cr & _SAES_CR_GCMPH_MASK) == + (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) { + /* Still in initialization phase, no header + * We need to enable the SAES peripheral + */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + } + + while (i < round_down(data_size, AES_BLOCK_SIZE)) { + unsigned int w; /* Word index */ + + w = i / sizeof(uint32_t); + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + /* Process next block */ + i += AES_BLOCK_SIZE; + ctx->load_len += AES_BLOCK_SIZE_BIT; + } + /* Manage last block if not a block size multiple */ + if ((last_block) && (i < data_size)) { + uint32_t block_in[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0}; + uint32_t block_out[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0}; + + memcpy(block_in, data_in + i, data_size - i); + + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, block_in[0U]); + mmio_write_32(ctx->base + _SAES_DINR, block_in[1U]); + mmio_write_32(ctx->base + _SAES_DINR, block_in[2U]); + mmio_write_32(ctx->base + _SAES_DINR, block_in[3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + VERBOSE("%s %d\n", __func__, __LINE__); + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + block_out[0U] = mmio_read_32(ctx->base + _SAES_DOUTR); + block_out[1U] = mmio_read_32(ctx->base + _SAES_DOUTR); + block_out[2U] = mmio_read_32(ctx->base + _SAES_DOUTR); + block_out[3U] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + memcpy(data_out + i, block_out, data_size - i); + + ctx->load_len += (data_size - i) * UINT8_BIT; + } + +out: + if (ret != 0) { + saes_end(ctx, ret); + } + + return ret; +} + +/** + * @brief Get authentication tag for AES authenticated algorithms (CCM or GCM). + * @param ctx: SAES process context + * @param tag: pointer where to save the tag + * @param data_size: tag size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_final(struct stm32_saes_context *ctx, uint8_t *tag, + size_t tag_size) +{ + int ret; + uint32_t tag_u32[4]; + uint32_t prev_cr; + + prev_cr = mmio_read_32(ctx->base + _SAES_CR); + + mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK, + _SAES_CR_GCMPH_FINAL << _SAES_CR_GCMPH_SHIFT); + + if ((prev_cr & _SAES_CR_GCMPH_MASK) == (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) { + /* Still in initialization phase, no header + * We need to enable the SAES peripheral + */ + mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN); + } + + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, 0); + mmio_write_32(ctx->base + _SAES_DINR, ctx->assoc_len); + mmio_write_32(ctx->base + _SAES_DINR, 0); + mmio_write_32(ctx->base + _SAES_DINR, ctx->load_len); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + tag_u32[0] = mmio_read_32(ctx->base + _SAES_DOUTR); + tag_u32[1] = mmio_read_32(ctx->base + _SAES_DOUTR); + tag_u32[2] = mmio_read_32(ctx->base + _SAES_DOUTR); + tag_u32[3] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + memcpy(tag, tag_u32, MIN(sizeof(tag_u32), tag_size)); + +out: + saes_end(ctx, ret); + + return ret; +} + +/** + * @brief Update (or start) a AES de/encrypt process (ECB, CBC or CTR). + * @param ctx: SAES process context + * @param last_block: true if last payload data block + * @param data_in: pointer to payload + * @param data_out: pointer where to save de/encrypted payload + * @param data_size: payload size + * + * @retval 0 if OK; negative value else. + */ +int stm32_saes_update(struct stm32_saes_context *ctx, bool last_block, + uint8_t *data_in, uint8_t *data_out, size_t data_size) +{ + int ret; + uint32_t *data_in_u32; + uint32_t *data_out_u32; + unsigned int i = 0U; + + /* We want buffers to be u32 aligned */ + assert((uintptr_t)data_in % __alignof__(uint32_t) == 0); + assert((uintptr_t)data_out % __alignof__(uint32_t) == 0); + data_in_u32 = (uint32_t *)data_in; + data_out_u32 = (uint32_t *)data_out; + + if ((!last_block) && + (round_down(data_size, AES_BLOCK_SIZE) != data_size)) { + ERROR("%s: non last block must be multiple of 128 bits\n", + __func__); + ret = -EINVAL; + goto out; + } + + /* In CBC encryption we need to manage specifically last 2 128bits + * blocks if total size in not a block size aligned + * work TODO. Currently return ENODEV. + * Morevoer as we need to know last 2 block, if unaligned and + * call with less than two block, return -EINVAL. + */ + if (last_block && IS_CHAINING_MODE(CBC, ctx->cr) && is_encrypt(ctx->cr) && + (round_down(data_size, AES_BLOCK_SIZE) != data_size)) { + if (data_size < AES_BLOCK_SIZE * 2U) { + ERROR("if CBC, last part size should be at least 2 * AES_BLOCK_SIZE\n"); + ret = -EINVAL; + goto out; + } + /* Moreover the CBC specific padding for encrypt is not yet implemented */ + ret = -ENODEV; + goto out; + } + + ret = restore_context(ctx); + if (ret != 0) { + goto out; + } + + while (i < round_down(data_size, AES_BLOCK_SIZE)) { + unsigned int w; /* Word index */ + + w = i / sizeof(uint32_t); + /* No need to htobe() as we configure the HW to swap bytes */ + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]); + mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]); + + ret = wait_computation_completed(ctx->base); + if (ret != 0) { + goto out; + } + + /* No need to htobe() as we configure the HW to swap bytes */ + data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR); + data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR); + + clear_computation_completed(ctx->base); + + /* Process next block */ + i += AES_BLOCK_SIZE; + } + /* Manage last block if not a block size multiple */ + + if ((last_block) && (i < data_size)) { + /* In and out buffer have same size so should be AES_BLOCK_SIZE multiple */ + ret = -ENODEV; + goto out; + } + + if (!last_block) { + ret = save_context(ctx); + } + +out: + /* If last block or error, end of SAES process */ + if (last_block || (ret != 0)) { + saes_end(ctx, ret); + } + + return ret; +} |