/* * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if ENABLE_RUNTIME_INSTRUMENTATION PMF_REGISTER_SERVICE_SMC(rt_instr_svc, PMF_RT_INSTR_SVC_ID, RT_INSTR_TOTAL_IDS, PMF_STORE_ENABLE) #endif #if ENABLE_RUNTIME_INSTRUMENTATION PMF_REGISTER_SERVICE(bl_svc, PMF_RT_INSTR_SVC_ID, BL_TOTAL_IDS, PMF_DUMP_ENABLE) #endif /******************************************************************************* * This function pointer is used to initialise the BL32 image. It's initialized * by SPD calling bl31_register_bl32_init after setting up all things necessary * for SP execution. In cases where both SPD and SP are absent, or when SPD * finds it impossible to execute SP, this pointer is left as NULL ******************************************************************************/ static int32_t (*bl32_init)(void); /***************************************************************************** * Function used to initialise RMM if RME is enabled *****************************************************************************/ #if ENABLE_RME static int32_t (*rmm_init)(void); #endif /******************************************************************************* * Variable to indicate whether next image to execute after BL31 is BL33 * (non-secure & default) or BL32 (secure). ******************************************************************************/ static uint32_t next_image_type = NON_SECURE; #ifdef SUPPORT_UNKNOWN_MPID /* * Flag to know whether an unsupported MPID has been detected. To avoid having it * landing on the .bss section, it is initialized to a non-zero value, this way * we avoid potential WAW hazards during system bring up. * */ volatile uint32_t unsupported_mpid_flag = 1; #endif /* * Implement the ARM Standard Service function to get arguments for a * particular service. */ uintptr_t get_arm_std_svc_args(unsigned int svc_mask) { /* Setup the arguments for PSCI Library */ DEFINE_STATIC_PSCI_LIB_ARGS_V1(psci_args, bl31_warm_entrypoint); /* PSCI is the only ARM Standard Service implemented */ assert(svc_mask == PSCI_FID_MASK); return (uintptr_t)&psci_args; } /******************************************************************************* * Simple function to initialise all BL31 helper libraries. ******************************************************************************/ void __init bl31_lib_init(void) { cm_init(); } /******************************************************************************* * Setup function for BL31. ******************************************************************************/ void bl31_setup(u_register_t arg0, u_register_t arg1, u_register_t arg2, u_register_t arg3) { /* Perform early platform-specific setup */ bl31_early_platform_setup2(arg0, arg1, arg2, arg3); /* Perform late platform-specific setup */ bl31_plat_arch_setup(); #if CTX_INCLUDE_PAUTH_REGS /* * Assert that the ARMv8.3-PAuth registers are present or an access * fault will be triggered when they are being saved or restored. */ assert(is_armv8_3_pauth_present()); #endif /* CTX_INCLUDE_PAUTH_REGS */ } /******************************************************************************* * BL31 is responsible for setting up the runtime services for the primary cpu * before passing control to the bootloader or an Operating System. This * function calls runtime_svc_init() which initializes all registered runtime * services. The run time services would setup enough context for the core to * switch to the next exception level. When this function returns, the core will * switch to the programmed exception level via an ERET. ******************************************************************************/ void bl31_main(void) { /* Init registers that never change for the lifetime of TF-A */ cm_manage_extensions_el3(); /* Init per-world context registers for non-secure world */ manage_extensions_nonsecure_per_world(); NOTICE("BL31: %s\n", version_string); NOTICE("BL31: %s\n", build_message); #if FEATURE_DETECTION /* Detect if features enabled during compilation are supported by PE. */ detect_arch_features(); #endif /* FEATURE_DETECTION */ #if ENABLE_RUNTIME_INSTRUMENTATION PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_ENTRY, PMF_CACHE_MAINT); #endif #ifdef SUPPORT_UNKNOWN_MPID if (unsupported_mpid_flag == 0) { NOTICE("Unsupported MPID detected!\n"); } #endif /* Perform platform setup in BL31 */ bl31_platform_setup(); /* Initialise helper libraries */ bl31_lib_init(); #if EL3_EXCEPTION_HANDLING INFO("BL31: Initialising Exception Handling Framework\n"); ehf_init(); #endif /* Initialize the runtime services e.g. psci. */ INFO("BL31: Initializing runtime services\n"); runtime_svc_init(); /* * All the cold boot actions on the primary cpu are done. We now need to * decide which is the next image and how to execute it. * If the SPD runtime service is present, it would want to pass control * to BL32 first in S-EL1. In that case, SPD would have registered a * function to initialize bl32 where it takes responsibility of entering * S-EL1 and returning control back to bl31_main. Similarly, if RME is * enabled and a function is registered to initialize RMM, control is * transferred to RMM in R-EL2. After RMM initialization, control is * returned back to bl31_main. Once this is done we can prepare entry * into BL33 as normal. */ /* * If SPD had registered an init hook, invoke it. */ if (bl32_init != NULL) { INFO("BL31: Initializing BL32\n"); console_flush(); int32_t rc = (*bl32_init)(); if (rc == 0) { WARN("BL31: BL32 initialization failed\n"); } } /* * If RME is enabled and init hook is registered, initialize RMM * in R-EL2. */ #if ENABLE_RME if (rmm_init != NULL) { INFO("BL31: Initializing RMM\n"); console_flush(); int32_t rc = (*rmm_init)(); if (rc == 0) { WARN("BL31: RMM initialization failed\n"); } } #endif /* * We are ready to enter the next EL. Prepare entry into the image * corresponding to the desired security state after the next ERET. */ bl31_prepare_next_image_entry(); console_flush(); /* * Perform any platform specific runtime setup prior to cold boot exit * from BL31 */ bl31_plat_runtime_setup(); #if ENABLE_RUNTIME_INSTRUMENTATION PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_EXIT, PMF_CACHE_MAINT); console_flush(); #endif } /******************************************************************************* * Accessor functions to help runtime services decide which image should be * executed after BL31. This is BL33 or the non-secure bootloader image by * default but the Secure payload dispatcher could override this by requesting * an entry into BL32 (Secure payload) first. If it does so then it should use * the same API to program an entry into BL33 once BL32 initialisation is * complete. ******************************************************************************/ void bl31_set_next_image_type(uint32_t security_state) { assert(sec_state_is_valid(security_state)); next_image_type = security_state; } uint32_t bl31_get_next_image_type(void) { return next_image_type; } /******************************************************************************* * This function programs EL3 registers and performs other setup to enable entry * into the next image after BL31 at the next ERET. ******************************************************************************/ void __init bl31_prepare_next_image_entry(void) { entry_point_info_t *next_image_info; uint32_t image_type; #if CTX_INCLUDE_AARCH32_REGS /* * Ensure that the build flag to save AArch32 system registers in CPU * context is not set for AArch64-only platforms. */ if (el_implemented(1) == EL_IMPL_A64ONLY) { ERROR("EL1 supports AArch64-only. Please set build flag " "CTX_INCLUDE_AARCH32_REGS = 0\n"); panic(); } #endif /* Determine which image to execute next */ image_type = bl31_get_next_image_type(); /* Program EL3 registers to enable entry into the next EL */ next_image_info = bl31_plat_get_next_image_ep_info(image_type); assert(next_image_info != NULL); assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr)); INFO("BL31: Preparing for EL3 exit to %s world\n", (image_type == SECURE) ? "secure" : "normal"); print_entry_point_info(next_image_info); cm_init_my_context(next_image_info); /* * If we are entering the Non-secure world, use * 'cm_prepare_el3_exit_ns' to exit. */ if (image_type == NON_SECURE) { cm_prepare_el3_exit_ns(); } else { cm_prepare_el3_exit(image_type); } } /******************************************************************************* * This function initializes the pointer to BL32 init function. This is expected * to be called by the SPD after it finishes all its initialization ******************************************************************************/ void bl31_register_bl32_init(int32_t (*func)(void)) { bl32_init = func; } #if ENABLE_RME /******************************************************************************* * This function initializes the pointer to RMM init function. This is expected * to be called by the RMMD after it finishes all its initialization ******************************************************************************/ void bl31_register_rmm_init(int32_t (*func)(void)) { rmm_init = func; } #endif