/* * Copyright (c) 2019-2023, Arm Limited. All rights reserved. * Copyright (c) 2022-2023, NVIDIA Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * GIC-600 driver extension for multichip setup */ #include #include #include #include #include #include "../common/gic_common_private.h" #include "gic600_multichip_private.h" static struct gic600_multichip_data *plat_gic_multichip_data; /******************************************************************************* * Retrieve the address of the chip owner for a given SPI ID ******************************************************************************/ uintptr_t gic600_multichip_gicd_base_for_spi(uint32_t spi_id) { unsigned int i; /* Find the multichip instance */ for (i = 0U; i < GIC600_MAX_MULTICHIP; i++) { if ((spi_id <= plat_gic_multichip_data->spi_ids[i].spi_id_max) && (spi_id >= plat_gic_multichip_data->spi_ids[i].spi_id_min)) { break; } } /* Ensure that plat_gic_multichip_data contains valid values */ assert(i < GIC600_MAX_MULTICHIP); return plat_gic_multichip_data->spi_ids[i].gicd_base; } /******************************************************************************* * GIC-600 multichip operation related helper functions ******************************************************************************/ static void gicd_dchipr_wait_for_power_update_progress(uintptr_t base) { unsigned int retry = GICD_PUP_UPDATE_RETRIES; while ((read_gicd_dchipr(base) & GICD_DCHIPR_PUP_BIT) != 0U) { if (retry-- == 0U) { ERROR("GIC-600 connection to Routing Table Owner timed " "out\n"); panic(); } } } /******************************************************************************* * Sets up the routing table owner. ******************************************************************************/ static void set_gicd_dchipr_rt_owner(uintptr_t base, unsigned int rt_owner) { /* * Ensure that Group enables in GICD_CTLR are disabled and no pending * register writes to GICD_CTLR. */ if ((gicd_read_ctlr(base) & (CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1S_BIT | CTLR_ENABLE_G1NS_BIT | GICD_CTLR_RWP_BIT)) != 0) { ERROR("GICD_CTLR group interrupts are either enabled or have " "pending writes. Cannot set RT owner.\n"); panic(); } /* Poll till PUP is zero before intiating write */ gicd_dchipr_wait_for_power_update_progress(base); write_gicd_dchipr(base, read_gicd_dchipr(base) | (rt_owner << GICD_DCHIPR_RT_OWNER_SHIFT)); /* Poll till PUP is zero to ensure write is complete */ gicd_dchipr_wait_for_power_update_progress(base); } /******************************************************************************* * Configures the Chip Register to make connections to GICDs on * a multichip platform. ******************************************************************************/ static void set_gicd_chipr_n(uintptr_t base, unsigned int chip_id, uint64_t chip_addr, unsigned int spi_id_min, unsigned int spi_id_max) { unsigned int spi_block_min, spi_blocks; unsigned int gicd_iidr_val = gicd_read_iidr(base); uint64_t chipr_n_val; /* * Ensure that group enables in GICD_CTLR are disabled and no pending * register writes to GICD_CTLR. */ if ((gicd_read_ctlr(base) & (CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1S_BIT | CTLR_ENABLE_G1NS_BIT | GICD_CTLR_RWP_BIT)) != 0) { ERROR("GICD_CTLR group interrupts are either enabled or have " "pending writes. Cannot set CHIPR register.\n"); panic(); } /* * spi_id_min and spi_id_max of value 0 is used to intidicate that the * chip doesn't own any SPI block. Re-assign min and max values as SPI * id starts from 32. */ if (spi_id_min == 0 && spi_id_max == 0) { spi_id_min = GIC600_SPI_ID_MIN; spi_id_max = GIC600_SPI_ID_MIN; } switch ((gicd_iidr_val & IIDR_MODEL_MASK)) { case IIDR_MODEL_ARM_GIC_600: spi_block_min = SPI_BLOCK_MIN_VALUE(spi_id_min); spi_blocks = SPI_BLOCKS_VALUE(spi_id_min, spi_id_max); chipr_n_val = GICD_CHIPR_VALUE_GIC_600(chip_addr, spi_block_min, spi_blocks); break; case IIDR_MODEL_ARM_GIC_700: /* Calculate the SPI_ID_MIN value for ESPI */ if (spi_id_min >= GIC700_ESPI_ID_MIN) { spi_block_min = ESPI_BLOCK_MIN_VALUE(spi_id_min); spi_block_min += SPI_BLOCKS_VALUE(GIC700_SPI_ID_MIN, GIC700_SPI_ID_MAX); } else { spi_block_min = SPI_BLOCK_MIN_VALUE(spi_id_min); } /* Calculate the total number of blocks */ spi_blocks = SPI_BLOCKS_VALUE(spi_id_min, spi_id_max); chipr_n_val = GICD_CHIPR_VALUE_GIC_700(chip_addr, spi_block_min, spi_blocks); break; default: ERROR("Unsupported GIC model 0x%x for multichip setup.\n", gicd_iidr_val); panic(); break; } chipr_n_val |= GICD_CHIPRx_SOCKET_STATE; /* * Wait for DCHIPR.PUP to be zero before commencing writes to * GICD_CHIPRx. */ gicd_dchipr_wait_for_power_update_progress(base); /* * Assign chip addr, spi min block, number of spi blocks and bring chip * online by setting SocketState. */ write_gicd_chipr_n(base, chip_id, chipr_n_val); /* * Poll until DCHIP.PUP is zero to verify connection to rt_owner chip * is complete. */ gicd_dchipr_wait_for_power_update_progress(base); /* * Ensure that write to GICD_CHIPRx is successful and the chip_n came * online. */ if (read_gicd_chipr_n(base, chip_id) != chipr_n_val) { ERROR("GICD_CHIPR%u write failed\n", chip_id); panic(); } /* Ensure that chip is in consistent state */ if (((read_gicd_chipsr(base) & GICD_CHIPSR_RTS_MASK) >> GICD_CHIPSR_RTS_SHIFT) != GICD_CHIPSR_RTS_STATE_CONSISTENT) { ERROR("Chip %u routing table is not in consistent state\n", chip_id); panic(); } } /******************************************************************************* * Validates the GIC-600 Multichip data structure passed by the platform. ******************************************************************************/ static void gic600_multichip_validate_data( struct gic600_multichip_data *multichip_data) { unsigned int i, spi_id_min, spi_id_max, blocks_of_32; unsigned int multichip_spi_blocks = 0; assert(multichip_data != NULL); if (multichip_data->chip_count > GIC600_MAX_MULTICHIP) { ERROR("GIC-600 Multichip count should not exceed %d\n", GIC600_MAX_MULTICHIP); panic(); } for (i = 0U; i < multichip_data->chip_count; i++) { spi_id_min = multichip_data->spi_ids[i].spi_id_min; spi_id_max = multichip_data->spi_ids[i].spi_id_max; if ((spi_id_min != 0U) || (spi_id_max != 0U)) { /* SPI IDs range check */ if (!(spi_id_min >= GIC600_SPI_ID_MIN) || !(spi_id_max <= GIC600_SPI_ID_MAX) || !(spi_id_min <= spi_id_max) || !((spi_id_max - spi_id_min + 1) % 32 == 0)) { ERROR("Invalid SPI IDs {%u, %u} passed for " "Chip %u\n", spi_id_min, spi_id_max, i); panic(); } /* SPI IDs overlap check */ blocks_of_32 = BLOCKS_OF_32(spi_id_min, spi_id_max); if ((multichip_spi_blocks & blocks_of_32) != 0) { ERROR("SPI IDs of Chip %u overlapping\n", i); panic(); } multichip_spi_blocks |= blocks_of_32; } } } /******************************************************************************* * Validates the GIC-700 Multichip data structure passed by the platform. ******************************************************************************/ static void gic700_multichip_validate_data( struct gic600_multichip_data *multichip_data) { unsigned int i, spi_id_min, spi_id_max, blocks_of_32; unsigned int multichip_spi_blocks = 0U, multichip_espi_blocks = 0U; assert(multichip_data != NULL); if (multichip_data->chip_count > GIC600_MAX_MULTICHIP) { ERROR("GIC-700 Multichip count (%u) should not exceed %u\n", multichip_data->chip_count, GIC600_MAX_MULTICHIP); panic(); } for (i = 0U; i < multichip_data->chip_count; i++) { spi_id_min = multichip_data->spi_ids[i].spi_id_min; spi_id_max = multichip_data->spi_ids[i].spi_id_max; if ((spi_id_min == 0U) || (spi_id_max == 0U)) { continue; } /* MIN SPI ID check */ if ((spi_id_min < GIC700_SPI_ID_MIN) || ((spi_id_min >= GIC700_SPI_ID_MAX) && (spi_id_min < GIC700_ESPI_ID_MIN))) { ERROR("Invalid MIN SPI ID {%u} passed for " "Chip %u\n", spi_id_min, i); panic(); } if ((spi_id_min > spi_id_max) || ((spi_id_max - spi_id_min + 1) % 32 != 0)) { ERROR("Unaligned SPI IDs {%u, %u} passed for " "Chip %u\n", spi_id_min, spi_id_max, i); panic(); } /* ESPI IDs range check */ if ((spi_id_min >= GIC700_ESPI_ID_MIN) && (spi_id_max > GIC700_ESPI_ID_MAX)) { ERROR("Invalid ESPI IDs {%u, %u} passed for " "Chip %u\n", spi_id_min, spi_id_max, i); panic(); } /* SPI IDs range check */ if (((spi_id_min < GIC700_SPI_ID_MAX) && (spi_id_max > GIC700_SPI_ID_MAX))) { ERROR("Invalid SPI IDs {%u, %u} passed for " "Chip %u\n", spi_id_min, spi_id_max, i); panic(); } /* SPI IDs overlap check */ if (spi_id_max < GIC700_SPI_ID_MAX) { blocks_of_32 = BLOCKS_OF_32(spi_id_min, spi_id_max); if ((multichip_spi_blocks & blocks_of_32) != 0) { ERROR("SPI IDs of Chip %u overlapping\n", i); panic(); } multichip_spi_blocks |= blocks_of_32; } /* ESPI IDs overlap check */ if (spi_id_max > GIC700_ESPI_ID_MIN) { blocks_of_32 = BLOCKS_OF_32(spi_id_min - GIC700_ESPI_ID_MIN, spi_id_max - GIC700_ESPI_ID_MIN); if ((multichip_espi_blocks & blocks_of_32) != 0) { ERROR("SPI IDs of Chip %u overlapping\n", i); panic(); } multichip_espi_blocks |= blocks_of_32; } } } /******************************************************************************* * Initialize GIC-600 and GIC-700 Multichip operation. ******************************************************************************/ void gic600_multichip_init(struct gic600_multichip_data *multichip_data) { unsigned int i; uint32_t gicd_iidr_val = gicd_read_iidr(multichip_data->rt_owner_base); if ((gicd_iidr_val & IIDR_MODEL_MASK) == IIDR_MODEL_ARM_GIC_600) { gic600_multichip_validate_data(multichip_data); } if ((gicd_iidr_val & IIDR_MODEL_MASK) == IIDR_MODEL_ARM_GIC_700) { gic700_multichip_validate_data(multichip_data); } /* * Ensure that G0/G1S/G1NS interrupts are disabled. This also ensures * that GIC-600 Multichip configuration is done first. */ if ((gicd_read_ctlr(multichip_data->rt_owner_base) & (CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1S_BIT | CTLR_ENABLE_G1NS_BIT | GICD_CTLR_RWP_BIT)) != 0) { ERROR("GICD_CTLR group interrupts are either enabled or have " "pending writes.\n"); panic(); } /* Ensure that the routing table owner is in disconnected state */ if (((read_gicd_chipsr(multichip_data->rt_owner_base) & GICD_CHIPSR_RTS_MASK) >> GICD_CHIPSR_RTS_SHIFT) != GICD_CHIPSR_RTS_STATE_DISCONNECTED) { ERROR("GIC-600 routing table owner is not in disconnected " "state to begin multichip configuration\n"); panic(); } /* Initialize the GICD which is marked as routing table owner first */ set_gicd_dchipr_rt_owner(multichip_data->rt_owner_base, multichip_data->rt_owner); set_gicd_chipr_n(multichip_data->rt_owner_base, multichip_data->rt_owner, multichip_data->chip_addrs[multichip_data->rt_owner], multichip_data-> spi_ids[multichip_data->rt_owner].spi_id_min, multichip_data-> spi_ids[multichip_data->rt_owner].spi_id_max); for (i = 0; i < multichip_data->chip_count; i++) { if (i == multichip_data->rt_owner) continue; set_gicd_chipr_n(multichip_data->rt_owner_base, i, multichip_data->chip_addrs[i], multichip_data->spi_ids[i].spi_id_min, multichip_data->spi_ids[i].spi_id_max); } plat_gic_multichip_data = multichip_data; } /******************************************************************************* * Allow a way to query the status of the GIC600 multichip driver ******************************************************************************/ bool gic600_multichip_is_initialized(void) { return (plat_gic_multichip_data != NULL); }