/* * Copyright (c) 2018-2023, STMicroelectronics - All Rights Reserved * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Registers offsets */ #define SDMMC_POWER 0x00U #define SDMMC_CLKCR 0x04U #define SDMMC_ARGR 0x08U #define SDMMC_CMDR 0x0CU #define SDMMC_RESPCMDR 0x10U #define SDMMC_RESP1R 0x14U #define SDMMC_RESP2R 0x18U #define SDMMC_RESP3R 0x1CU #define SDMMC_RESP4R 0x20U #define SDMMC_DTIMER 0x24U #define SDMMC_DLENR 0x28U #define SDMMC_DCTRLR 0x2CU #define SDMMC_DCNTR 0x30U #define SDMMC_STAR 0x34U #define SDMMC_ICR 0x38U #define SDMMC_MASKR 0x3CU #define SDMMC_ACKTIMER 0x40U #define SDMMC_IDMACTRLR 0x50U #define SDMMC_IDMABSIZER 0x54U #define SDMMC_IDMABASE0R 0x58U #define SDMMC_IDMABASE1R 0x5CU #define SDMMC_FIFOR 0x80U /* SDMMC power control register */ #define SDMMC_POWER_PWRCTRL GENMASK(1, 0) #define SDMMC_POWER_PWRCTRL_PWR_CYCLE BIT(1) #define SDMMC_POWER_DIRPOL BIT(4) /* SDMMC clock control register */ #define SDMMC_CLKCR_WIDBUS_4 BIT(14) #define SDMMC_CLKCR_WIDBUS_8 BIT(15) #define SDMMC_CLKCR_NEGEDGE BIT(16) #define SDMMC_CLKCR_HWFC_EN BIT(17) #define SDMMC_CLKCR_SELCLKRX_0 BIT(20) /* SDMMC command register */ #define SDMMC_CMDR_CMDTRANS BIT(6) #define SDMMC_CMDR_CMDSTOP BIT(7) #define SDMMC_CMDR_WAITRESP GENMASK(9, 8) #define SDMMC_CMDR_WAITRESP_SHORT BIT(8) #define SDMMC_CMDR_WAITRESP_SHORT_NOCRC BIT(9) #define SDMMC_CMDR_CPSMEN BIT(12) /* SDMMC data control register */ #define SDMMC_DCTRLR_DTEN BIT(0) #define SDMMC_DCTRLR_DTDIR BIT(1) #define SDMMC_DCTRLR_DTMODE GENMASK(3, 2) #define SDMMC_DCTRLR_DBLOCKSIZE GENMASK(7, 4) #define SDMMC_DCTRLR_DBLOCKSIZE_SHIFT 4 #define SDMMC_DCTRLR_FIFORST BIT(13) #define SDMMC_DCTRLR_CLEAR_MASK (SDMMC_DCTRLR_DTEN | \ SDMMC_DCTRLR_DTDIR | \ SDMMC_DCTRLR_DTMODE | \ SDMMC_DCTRLR_DBLOCKSIZE) /* SDMMC status register */ #define SDMMC_STAR_CCRCFAIL BIT(0) #define SDMMC_STAR_DCRCFAIL BIT(1) #define SDMMC_STAR_CTIMEOUT BIT(2) #define SDMMC_STAR_DTIMEOUT BIT(3) #define SDMMC_STAR_TXUNDERR BIT(4) #define SDMMC_STAR_RXOVERR BIT(5) #define SDMMC_STAR_CMDREND BIT(6) #define SDMMC_STAR_CMDSENT BIT(7) #define SDMMC_STAR_DATAEND BIT(8) #define SDMMC_STAR_DBCKEND BIT(10) #define SDMMC_STAR_DPSMACT BIT(12) #define SDMMC_STAR_RXFIFOHF BIT(15) #define SDMMC_STAR_RXFIFOE BIT(19) #define SDMMC_STAR_IDMATE BIT(27) #define SDMMC_STAR_IDMABTC BIT(28) /* SDMMC DMA control register */ #define SDMMC_IDMACTRLR_IDMAEN BIT(0) #define SDMMC_STATIC_FLAGS (SDMMC_STAR_CCRCFAIL | \ SDMMC_STAR_DCRCFAIL | \ SDMMC_STAR_CTIMEOUT | \ SDMMC_STAR_DTIMEOUT | \ SDMMC_STAR_TXUNDERR | \ SDMMC_STAR_RXOVERR | \ SDMMC_STAR_CMDREND | \ SDMMC_STAR_CMDSENT | \ SDMMC_STAR_DATAEND | \ SDMMC_STAR_DBCKEND | \ SDMMC_STAR_IDMATE | \ SDMMC_STAR_IDMABTC) #define TIMEOUT_US_1_MS 1000U #define TIMEOUT_US_10_MS 10000U #define TIMEOUT_US_1_S 1000000U /* Power cycle delays in ms */ #define VCC_POWER_OFF_DELAY 2 #define VCC_POWER_ON_DELAY 2 #define POWER_CYCLE_DELAY 2 #define POWER_OFF_DELAY 2 #define POWER_ON_DELAY 1 #ifndef DT_SDMMC2_COMPAT #define DT_SDMMC2_COMPAT "st,stm32-sdmmc2" #endif #define SDMMC_FIFO_SIZE 64U #define STM32MP_MMC_INIT_FREQ U(400000) /*400 KHz*/ #define STM32MP_SD_NORMAL_SPEED_MAX_FREQ U(25000000) /*25 MHz*/ #define STM32MP_SD_HIGH_SPEED_MAX_FREQ U(50000000) /*50 MHz*/ #define STM32MP_EMMC_NORMAL_SPEED_MAX_FREQ U(26000000) /*26 MHz*/ #define STM32MP_EMMC_HIGH_SPEED_MAX_FREQ U(52000000) /*52 MHz*/ static void stm32_sdmmc2_init(void); static int stm32_sdmmc2_send_cmd_req(struct mmc_cmd *cmd); static int stm32_sdmmc2_send_cmd(struct mmc_cmd *cmd); static int stm32_sdmmc2_set_ios(unsigned int clk, unsigned int width); static int stm32_sdmmc2_prepare(int lba, uintptr_t buf, size_t size); static int stm32_sdmmc2_read(int lba, uintptr_t buf, size_t size); static int stm32_sdmmc2_write(int lba, uintptr_t buf, size_t size); static const struct mmc_ops stm32_sdmmc2_ops = { .init = stm32_sdmmc2_init, .send_cmd = stm32_sdmmc2_send_cmd, .set_ios = stm32_sdmmc2_set_ios, .prepare = stm32_sdmmc2_prepare, .read = stm32_sdmmc2_read, .write = stm32_sdmmc2_write, }; static struct stm32_sdmmc2_params sdmmc2_params; static bool next_cmd_is_acmd; #pragma weak plat_sdmmc2_use_dma bool plat_sdmmc2_use_dma(unsigned int instance, unsigned int memory) { return false; } static void stm32_sdmmc2_init(void) { uint32_t clock_div; uint32_t freq = STM32MP_MMC_INIT_FREQ; uintptr_t base = sdmmc2_params.reg_base; int ret; if (sdmmc2_params.max_freq != 0U) { freq = MIN(sdmmc2_params.max_freq, freq); } if (sdmmc2_params.vmmc_regu != NULL) { ret = regulator_disable(sdmmc2_params.vmmc_regu); if (ret < 0) { panic(); } } mdelay(VCC_POWER_OFF_DELAY); mmio_write_32(base + SDMMC_POWER, SDMMC_POWER_PWRCTRL_PWR_CYCLE | sdmmc2_params.dirpol); mdelay(POWER_CYCLE_DELAY); if (sdmmc2_params.vmmc_regu != NULL) { ret = regulator_enable(sdmmc2_params.vmmc_regu); if (ret < 0) { panic(); } } mdelay(VCC_POWER_ON_DELAY); mmio_write_32(base + SDMMC_POWER, sdmmc2_params.dirpol); mdelay(POWER_OFF_DELAY); clock_div = div_round_up(sdmmc2_params.clk_rate, freq * 2U); mmio_write_32(base + SDMMC_CLKCR, SDMMC_CLKCR_HWFC_EN | clock_div | sdmmc2_params.negedge | sdmmc2_params.pin_ckin); mmio_write_32(base + SDMMC_POWER, SDMMC_POWER_PWRCTRL | sdmmc2_params.dirpol); mdelay(POWER_ON_DELAY); } static int stm32_sdmmc2_stop_transfer(void) { struct mmc_cmd cmd_stop; zeromem(&cmd_stop, sizeof(struct mmc_cmd)); cmd_stop.cmd_idx = MMC_CMD(12); cmd_stop.resp_type = MMC_RESPONSE_R1B; return stm32_sdmmc2_send_cmd(&cmd_stop); } static int stm32_sdmmc2_send_cmd_req(struct mmc_cmd *cmd) { uint64_t timeout; uint32_t flags_cmd, status; uint32_t flags_data = 0; int err = 0; uintptr_t base = sdmmc2_params.reg_base; unsigned int cmd_reg, arg_reg; if (cmd == NULL) { return -EINVAL; } flags_cmd = SDMMC_STAR_CTIMEOUT; arg_reg = cmd->cmd_arg; if ((mmio_read_32(base + SDMMC_CMDR) & SDMMC_CMDR_CPSMEN) != 0U) { mmio_write_32(base + SDMMC_CMDR, 0); } cmd_reg = cmd->cmd_idx | SDMMC_CMDR_CPSMEN; if (cmd->resp_type == 0U) { flags_cmd |= SDMMC_STAR_CMDSENT; } if ((cmd->resp_type & MMC_RSP_48) != 0U) { if ((cmd->resp_type & MMC_RSP_136) != 0U) { flags_cmd |= SDMMC_STAR_CMDREND; cmd_reg |= SDMMC_CMDR_WAITRESP; } else if ((cmd->resp_type & MMC_RSP_CRC) != 0U) { flags_cmd |= SDMMC_STAR_CMDREND | SDMMC_STAR_CCRCFAIL; cmd_reg |= SDMMC_CMDR_WAITRESP_SHORT; } else { flags_cmd |= SDMMC_STAR_CMDREND; cmd_reg |= SDMMC_CMDR_WAITRESP_SHORT_NOCRC; } } switch (cmd->cmd_idx) { case MMC_CMD(1): arg_reg |= OCR_POWERUP; break; case MMC_CMD(6): if ((sdmmc2_params.device_info->mmc_dev_type == MMC_IS_SD_HC) && (!next_cmd_is_acmd)) { cmd_reg |= SDMMC_CMDR_CMDTRANS; if (sdmmc2_params.use_dma) { flags_data |= SDMMC_STAR_DCRCFAIL | SDMMC_STAR_DTIMEOUT | SDMMC_STAR_DATAEND | SDMMC_STAR_RXOVERR | SDMMC_STAR_IDMATE | SDMMC_STAR_DBCKEND; } } break; case MMC_CMD(8): if (sdmmc2_params.device_info->mmc_dev_type == MMC_IS_EMMC) { cmd_reg |= SDMMC_CMDR_CMDTRANS; } break; case MMC_CMD(12): cmd_reg |= SDMMC_CMDR_CMDSTOP; break; case MMC_CMD(17): case MMC_CMD(18): cmd_reg |= SDMMC_CMDR_CMDTRANS; if (sdmmc2_params.use_dma) { flags_data |= SDMMC_STAR_DCRCFAIL | SDMMC_STAR_DTIMEOUT | SDMMC_STAR_DATAEND | SDMMC_STAR_RXOVERR | SDMMC_STAR_IDMATE; } break; case MMC_ACMD(41): arg_reg |= OCR_3_2_3_3 | OCR_3_3_3_4; break; case MMC_ACMD(51): cmd_reg |= SDMMC_CMDR_CMDTRANS; if (sdmmc2_params.use_dma) { flags_data |= SDMMC_STAR_DCRCFAIL | SDMMC_STAR_DTIMEOUT | SDMMC_STAR_DATAEND | SDMMC_STAR_RXOVERR | SDMMC_STAR_IDMATE | SDMMC_STAR_DBCKEND; } break; default: break; } next_cmd_is_acmd = (cmd->cmd_idx == MMC_CMD(55)); mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); /* * Clear the SDMMC_DCTRLR if the command does not await data. * Skip CMD55 as the next command could be data related, and * the register could have been set in prepare function. */ if (((cmd_reg & SDMMC_CMDR_CMDTRANS) == 0U) && !next_cmd_is_acmd) { mmio_write_32(base + SDMMC_DCTRLR, 0U); } if ((cmd->resp_type & MMC_RSP_BUSY) != 0U) { mmio_write_32(base + SDMMC_DTIMER, UINT32_MAX); } mmio_write_32(base + SDMMC_ARGR, arg_reg); mmio_write_32(base + SDMMC_CMDR, cmd_reg); status = mmio_read_32(base + SDMMC_STAR); timeout = timeout_init_us(TIMEOUT_US_10_MS); while ((status & flags_cmd) == 0U) { if (timeout_elapsed(timeout)) { err = -ETIMEDOUT; ERROR("%s: timeout 10ms (cmd = %u,status = %x)\n", __func__, cmd->cmd_idx, status); goto err_exit; } status = mmio_read_32(base + SDMMC_STAR); } if ((status & (SDMMC_STAR_CTIMEOUT | SDMMC_STAR_CCRCFAIL)) != 0U) { if ((status & SDMMC_STAR_CTIMEOUT) != 0U) { err = -ETIMEDOUT; /* * Those timeouts can occur, and framework will handle * the retries. CMD8 is expected to return this timeout * for eMMC */ if (!((cmd->cmd_idx == MMC_CMD(1)) || (cmd->cmd_idx == MMC_CMD(13)) || ((cmd->cmd_idx == MMC_CMD(8)) && (cmd->resp_type == MMC_RESPONSE_R7)))) { ERROR("%s: CTIMEOUT (cmd = %u,status = %x)\n", __func__, cmd->cmd_idx, status); } } else { err = -EIO; ERROR("%s: CRCFAIL (cmd = %u,status = %x)\n", __func__, cmd->cmd_idx, status); } goto err_exit; } if ((cmd_reg & SDMMC_CMDR_WAITRESP) != 0U) { if ((cmd->cmd_idx == MMC_CMD(9)) && ((cmd_reg & SDMMC_CMDR_WAITRESP) == SDMMC_CMDR_WAITRESP)) { /* Need to invert response to match CSD structure */ cmd->resp_data[0] = mmio_read_32(base + SDMMC_RESP4R); cmd->resp_data[1] = mmio_read_32(base + SDMMC_RESP3R); cmd->resp_data[2] = mmio_read_32(base + SDMMC_RESP2R); cmd->resp_data[3] = mmio_read_32(base + SDMMC_RESP1R); } else { cmd->resp_data[0] = mmio_read_32(base + SDMMC_RESP1R); if ((cmd_reg & SDMMC_CMDR_WAITRESP) == SDMMC_CMDR_WAITRESP) { cmd->resp_data[1] = mmio_read_32(base + SDMMC_RESP2R); cmd->resp_data[2] = mmio_read_32(base + SDMMC_RESP3R); cmd->resp_data[3] = mmio_read_32(base + SDMMC_RESP4R); } } } if (flags_data == 0U) { mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); return 0; } status = mmio_read_32(base + SDMMC_STAR); timeout = timeout_init_us(TIMEOUT_US_10_MS); while ((status & flags_data) == 0U) { if (timeout_elapsed(timeout)) { ERROR("%s: timeout 10ms (cmd = %u,status = %x)\n", __func__, cmd->cmd_idx, status); err = -ETIMEDOUT; goto err_exit; } status = mmio_read_32(base + SDMMC_STAR); }; if ((status & (SDMMC_STAR_DTIMEOUT | SDMMC_STAR_DCRCFAIL | SDMMC_STAR_TXUNDERR | SDMMC_STAR_RXOVERR | SDMMC_STAR_IDMATE)) != 0U) { ERROR("%s: Error flag (cmd = %u,status = %x)\n", __func__, cmd->cmd_idx, status); err = -EIO; } err_exit: mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); mmio_clrbits_32(base + SDMMC_CMDR, SDMMC_CMDR_CMDTRANS); if ((err != 0) && ((status & SDMMC_STAR_DPSMACT) != 0U)) { int ret_stop = stm32_sdmmc2_stop_transfer(); if (ret_stop != 0) { return ret_stop; } } return err; } static int stm32_sdmmc2_send_cmd(struct mmc_cmd *cmd) { uint8_t retry; int err; assert(cmd != NULL); for (retry = 0U; retry < 3U; retry++) { err = stm32_sdmmc2_send_cmd_req(cmd); if (err == 0) { return 0; } if ((cmd->cmd_idx == MMC_CMD(1)) || (cmd->cmd_idx == MMC_CMD(13))) { return 0; /* Retry managed by framework */ } /* Command 8 is expected to fail for eMMC */ if (cmd->cmd_idx != MMC_CMD(8)) { WARN(" CMD%u, Retry: %u, Error: %d\n", cmd->cmd_idx, retry + 1U, err); } udelay(10U); } return err; } static int stm32_sdmmc2_set_ios(unsigned int clk, unsigned int width) { uintptr_t base = sdmmc2_params.reg_base; uint32_t bus_cfg = 0; uint32_t clock_div, max_freq, freq; uint32_t clk_rate = sdmmc2_params.clk_rate; uint32_t max_bus_freq = sdmmc2_params.device_info->max_bus_freq; switch (width) { case MMC_BUS_WIDTH_1: break; case MMC_BUS_WIDTH_4: bus_cfg |= SDMMC_CLKCR_WIDBUS_4; break; case MMC_BUS_WIDTH_8: bus_cfg |= SDMMC_CLKCR_WIDBUS_8; break; default: panic(); break; } if (sdmmc2_params.device_info->mmc_dev_type == MMC_IS_EMMC) { if (max_bus_freq >= 52000000U) { max_freq = STM32MP_EMMC_HIGH_SPEED_MAX_FREQ; } else { max_freq = STM32MP_EMMC_NORMAL_SPEED_MAX_FREQ; } } else { if (max_bus_freq >= 50000000U) { max_freq = STM32MP_SD_HIGH_SPEED_MAX_FREQ; } else { max_freq = STM32MP_SD_NORMAL_SPEED_MAX_FREQ; } } if (sdmmc2_params.max_freq != 0U) { freq = MIN(sdmmc2_params.max_freq, max_freq); } else { freq = max_freq; } clock_div = div_round_up(clk_rate, freq * 2U); mmio_write_32(base + SDMMC_CLKCR, SDMMC_CLKCR_HWFC_EN | clock_div | bus_cfg | sdmmc2_params.negedge | sdmmc2_params.pin_ckin); return 0; } static int stm32_sdmmc2_prepare(int lba, uintptr_t buf, size_t size) { struct mmc_cmd cmd; int ret; uintptr_t base = sdmmc2_params.reg_base; uint32_t data_ctrl = SDMMC_DCTRLR_DTDIR; uint32_t arg_size; assert((size != 0U) && (size <= UINT32_MAX)); if (size > MMC_BLOCK_SIZE) { arg_size = MMC_BLOCK_SIZE; } else { arg_size = (uint32_t)size; } sdmmc2_params.use_dma = plat_sdmmc2_use_dma(base, buf); if (sdmmc2_params.use_dma) { inv_dcache_range(buf, size); } /* Prepare CMD 16*/ mmio_write_32(base + SDMMC_DTIMER, 0); mmio_write_32(base + SDMMC_DLENR, 0); mmio_write_32(base + SDMMC_DCTRLR, 0); zeromem(&cmd, sizeof(struct mmc_cmd)); cmd.cmd_idx = MMC_CMD(16); cmd.cmd_arg = arg_size; cmd.resp_type = MMC_RESPONSE_R1; ret = stm32_sdmmc2_send_cmd(&cmd); if (ret != 0) { ERROR("CMD16 failed\n"); return ret; } /* Prepare data command */ mmio_write_32(base + SDMMC_DTIMER, UINT32_MAX); mmio_write_32(base + SDMMC_DLENR, size); if (sdmmc2_params.use_dma) { mmio_write_32(base + SDMMC_IDMACTRLR, SDMMC_IDMACTRLR_IDMAEN); mmio_write_32(base + SDMMC_IDMABASE0R, buf); flush_dcache_range(buf, size); } data_ctrl |= __builtin_ctz(arg_size) << SDMMC_DCTRLR_DBLOCKSIZE_SHIFT; mmio_clrsetbits_32(base + SDMMC_DCTRLR, SDMMC_DCTRLR_CLEAR_MASK, data_ctrl); return 0; } static int stm32_sdmmc2_read(int lba, uintptr_t buf, size_t size) { uint32_t error_flags = SDMMC_STAR_RXOVERR | SDMMC_STAR_DCRCFAIL | SDMMC_STAR_DTIMEOUT; uint32_t flags = error_flags | SDMMC_STAR_DATAEND; uint32_t status; uint32_t *buffer; uintptr_t base = sdmmc2_params.reg_base; uintptr_t fifo_reg = base + SDMMC_FIFOR; uint64_t timeout; int ret; /* Assert buf is 4 bytes aligned */ assert((buf & GENMASK(1, 0)) == 0U); buffer = (uint32_t *)buf; if (sdmmc2_params.use_dma) { inv_dcache_range(buf, size); return 0; } if (size <= MMC_BLOCK_SIZE) { flags |= SDMMC_STAR_DBCKEND; } timeout = timeout_init_us(TIMEOUT_US_1_S); do { status = mmio_read_32(base + SDMMC_STAR); if ((status & error_flags) != 0U) { ERROR("%s: Read error (status = %x)\n", __func__, status); mmio_write_32(base + SDMMC_DCTRLR, SDMMC_DCTRLR_FIFORST); mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); ret = stm32_sdmmc2_stop_transfer(); if (ret != 0) { return ret; } return -EIO; } if (timeout_elapsed(timeout)) { ERROR("%s: timeout 1s (status = %x)\n", __func__, status); mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); ret = stm32_sdmmc2_stop_transfer(); if (ret != 0) { return ret; } return -ETIMEDOUT; } if (size < (SDMMC_FIFO_SIZE / 2U)) { if ((mmio_read_32(base + SDMMC_DCNTR) > 0U) && ((status & SDMMC_STAR_RXFIFOE) == 0U)) { *buffer = mmio_read_32(fifo_reg); buffer++; } } else if ((status & SDMMC_STAR_RXFIFOHF) != 0U) { uint32_t count; /* Read data from SDMMC Rx FIFO */ for (count = 0; count < (SDMMC_FIFO_SIZE / 2U); count += sizeof(uint32_t)) { *buffer = mmio_read_32(fifo_reg); buffer++; } } } while ((status & flags) == 0U); mmio_write_32(base + SDMMC_ICR, SDMMC_STATIC_FLAGS); if ((status & SDMMC_STAR_DPSMACT) != 0U) { WARN("%s: DPSMACT=1, send stop\n", __func__); return stm32_sdmmc2_stop_transfer(); } return 0; } static int stm32_sdmmc2_write(int lba, uintptr_t buf, size_t size) { return 0; } static int stm32_sdmmc2_dt_get_config(void) { int sdmmc_node; void *fdt = NULL; const fdt32_t *cuint; struct dt_node_info dt_info; if (fdt_get_address(&fdt) == 0) { return -FDT_ERR_NOTFOUND; } if (fdt == NULL) { return -FDT_ERR_NOTFOUND; } sdmmc_node = dt_match_instance_by_compatible(DT_SDMMC2_COMPAT, sdmmc2_params.reg_base); if (sdmmc_node == -FDT_ERR_NOTFOUND) { return -FDT_ERR_NOTFOUND; } dt_fill_device_info(&dt_info, sdmmc_node); if (dt_info.status == DT_DISABLED) { return -FDT_ERR_NOTFOUND; } if (dt_set_pinctrl_config(sdmmc_node) != 0) { return -FDT_ERR_BADVALUE; } sdmmc2_params.clock_id = dt_info.clock; sdmmc2_params.reset_id = dt_info.reset; if ((fdt_getprop(fdt, sdmmc_node, "st,use-ckin", NULL)) != NULL) { sdmmc2_params.pin_ckin = SDMMC_CLKCR_SELCLKRX_0; } if ((fdt_getprop(fdt, sdmmc_node, "st,sig-dir", NULL)) != NULL) { sdmmc2_params.dirpol = SDMMC_POWER_DIRPOL; } if ((fdt_getprop(fdt, sdmmc_node, "st,neg-edge", NULL)) != NULL) { sdmmc2_params.negedge = SDMMC_CLKCR_NEGEDGE; } cuint = fdt_getprop(fdt, sdmmc_node, "bus-width", NULL); if (cuint != NULL) { switch (fdt32_to_cpu(*cuint)) { case 4: sdmmc2_params.bus_width = MMC_BUS_WIDTH_4; break; case 8: sdmmc2_params.bus_width = MMC_BUS_WIDTH_8; break; default: break; } } cuint = fdt_getprop(fdt, sdmmc_node, "max-frequency", NULL); if (cuint != NULL) { sdmmc2_params.max_freq = fdt32_to_cpu(*cuint); } sdmmc2_params.vmmc_regu = regulator_get_by_supply_name(fdt, sdmmc_node, "vmmc"); return 0; } unsigned long long stm32_sdmmc2_mmc_get_device_size(void) { return sdmmc2_params.device_info->device_size; } int stm32_sdmmc2_mmc_init(struct stm32_sdmmc2_params *params) { assert((params != NULL) && ((params->reg_base & MMC_BLOCK_MASK) == 0U) && ((params->bus_width == MMC_BUS_WIDTH_1) || (params->bus_width == MMC_BUS_WIDTH_4) || (params->bus_width == MMC_BUS_WIDTH_8))); memcpy(&sdmmc2_params, params, sizeof(struct stm32_sdmmc2_params)); sdmmc2_params.vmmc_regu = NULL; if (stm32_sdmmc2_dt_get_config() != 0) { ERROR("%s: DT error\n", __func__); return -ENOMEM; } clk_enable(sdmmc2_params.clock_id); if ((int)sdmmc2_params.reset_id >= 0) { int rc; rc = stm32mp_reset_assert(sdmmc2_params.reset_id, TIMEOUT_US_1_MS); if (rc != 0) { panic(); } udelay(2); rc = stm32mp_reset_deassert(sdmmc2_params.reset_id, TIMEOUT_US_1_MS); if (rc != 0) { panic(); } mdelay(1); } sdmmc2_params.clk_rate = clk_get_rate(sdmmc2_params.clock_id); sdmmc2_params.device_info->ocr_voltage = OCR_3_2_3_3 | OCR_3_3_3_4; return mmc_init(&stm32_sdmmc2_ops, sdmmc2_params.clk_rate, sdmmc2_params.bus_width, sdmmc2_params.flags, sdmmc2_params.device_info); }