/* * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved. * Copyright (c) 2020, NVIDIA Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void memcpy16(void *dest, const void *src, unsigned int length); /* state id mask */ #define TEGRA186_STATE_ID_MASK 0xFU /* constants to get power state's wake time */ #define TEGRA186_WAKE_TIME_MASK 0x0FFFFFF0U #define TEGRA186_WAKE_TIME_SHIFT 4U /* default core wake mask for CPU_SUSPEND */ #define TEGRA186_CORE_WAKE_MASK 0x180cU /* context size to save during system suspend */ #define TEGRA186_SE_CONTEXT_SIZE 3U static uint32_t se_regs[TEGRA186_SE_CONTEXT_SIZE]; static struct tegra_psci_percpu_data { uint32_t wake_time; } __aligned(CACHE_WRITEBACK_GRANULE) tegra_percpu_data[PLATFORM_CORE_COUNT]; int32_t tegra_soc_validate_power_state(uint32_t power_state, psci_power_state_t *req_state) { uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) & TEGRA186_STATE_ID_MASK; uint32_t cpu = plat_my_core_pos(); int32_t ret = PSCI_E_SUCCESS; /* save the core wake time (in TSC ticks)*/ tegra_percpu_data[cpu].wake_time = (power_state & TEGRA186_WAKE_TIME_MASK) << TEGRA186_WAKE_TIME_SHIFT; /* * Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that * the correct value is read in tegra_soc_pwr_domain_suspend(), which * is called with caches disabled. It is possible to read a stale value * from DRAM in that function, because the L2 cache is not flushed * unless the cluster is entering CC6/CC7. */ clean_dcache_range((uint64_t)&tegra_percpu_data[cpu], sizeof(tegra_percpu_data[cpu])); /* Sanity check the requested state id */ switch (state_id) { case PSTATE_ID_CORE_IDLE: case PSTATE_ID_CORE_POWERDN: if (psci_get_pstate_type(power_state) != PSTATE_TYPE_POWERDOWN) { ret = PSCI_E_INVALID_PARAMS; break; } /* Core powerdown request */ req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id; req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id; break; default: ERROR("%s: unsupported state id (%d)\n", __func__, state_id); ret = PSCI_E_INVALID_PARAMS; break; } return ret; } int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state) { (void)cpu_state; return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state; uint8_t stateid_afflvl0, stateid_afflvl2; uint32_t cpu = plat_my_core_pos(); const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); mce_cstate_info_t cstate_info = { 0 }; uint64_t mc_ctx_base; uint32_t val; /* get the state ID */ pwr_domain_state = target_state->pwr_domain_state; stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] & TEGRA186_STATE_ID_MASK; stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA186_STATE_ID_MASK; if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) || (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) { /* Enter CPU idle/powerdown */ val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ? (uint32_t)TEGRA_ARI_CORE_C6 : (uint32_t)TEGRA_ARI_CORE_C7; (void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)val, tegra_percpu_data[cpu].wake_time, 0U); } else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { /* save SE registers */ se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT); se_regs[1] = mmio_read_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT); se_regs[2] = mmio_read_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT); /* save 'Secure Boot' Processor Feature Config Register */ val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG); mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val); /* save MC context to TZDRAM */ mc_ctx_base = params_from_bl2->tzdram_base; tegra_mc_save_context((uintptr_t)mc_ctx_base); /* Prepare for system suspend */ cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7; cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC7; cstate_info.system_state_force = 1; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* Loop until system suspend is allowed */ do { val = (uint32_t)mce_command_handler( (uint64_t)MCE_CMD_IS_SC7_ALLOWED, (uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); } while (val == 0U); /* Instruct the MCE to enter system suspend state */ (void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); } else { ; /* do nothing */ } return PSCI_E_SUCCESS; } /******************************************************************************* * Helper function to check if this is the last ON CPU in the cluster ******************************************************************************/ static bool tegra_last_cpu_in_cluster(const plat_local_state_t *states, uint32_t ncpu) { plat_local_state_t target; bool last_on_cpu = true; uint32_t num_cpus = ncpu, pos = 0; do { target = states[pos]; if (target != PLAT_MAX_OFF_STATE) { last_on_cpu = false; } --num_cpus; pos++; } while (num_cpus != 0U); return last_on_cpu; } /******************************************************************************* * Helper function to get target power state for the cluster ******************************************************************************/ static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states, uint32_t ncpu) { uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK; uint32_t cpu = plat_my_core_pos(); int32_t ret; plat_local_state_t target = states[core_pos]; mce_cstate_info_t cstate_info = { 0 }; /* CPU suspend */ if (target == PSTATE_ID_CORE_POWERDN) { /* Program default wake mask */ cstate_info.wake_mask = TEGRA186_CORE_WAKE_MASK; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* Check if CCx state is allowed. */ ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED, (uint64_t)TEGRA_ARI_CORE_C7, tegra_percpu_data[cpu].wake_time, 0U); if (ret == 0) { target = PSCI_LOCAL_STATE_RUN; } } /* CPU off */ if (target == PLAT_MAX_OFF_STATE) { /* Enable cluster powerdn from last CPU in the cluster */ if (tegra_last_cpu_in_cluster(states, ncpu)) { /* Enable CC7 state and turn off wake mask */ cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* Check if CCx state is allowed. */ ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED, (uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); if (ret == 0) { target = PSCI_LOCAL_STATE_RUN; } } else { /* Turn off wake_mask */ cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); target = PSCI_LOCAL_STATE_RUN; } } return target; } /******************************************************************************* * Platform handler to calculate the proper target power level at the * specified affinity level ******************************************************************************/ plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl, const plat_local_state_t *states, uint32_t ncpu) { plat_local_state_t target = PSCI_LOCAL_STATE_RUN; uint32_t cpu = plat_my_core_pos(); /* System Suspend */ if ((lvl == (uint32_t)MPIDR_AFFLVL2) && (states[cpu] == PSTATE_ID_SOC_POWERDN)) { target = PSTATE_ID_SOC_POWERDN; } /* CPU off, CPU suspend */ if (lvl == (uint32_t)MPIDR_AFFLVL1) { target = tegra_get_afflvl1_pwr_state(states, ncpu); } /* target cluster/system state */ return target; } int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state = target_state->pwr_domain_state; const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA186_STATE_ID_MASK; uint64_t val; uint64_t src_len_in_bytes = (uint64_t)(((uintptr_t)(&__BL31_END__) - (uintptr_t)BL31_BASE)); int32_t ret; if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { val = params_from_bl2->tzdram_base + tegra186_get_mc_ctx_size(); /* Initialise communication channel with BPMP */ assert(tegra_bpmp_ipc_init() == 0); /* Enable SE clock */ ret = tegra_bpmp_ipc_enable_clock(TEGRA186_CLK_SE); if (ret != 0) { ERROR("Failed to enable clock\n"); return ret; } /* * Generate/save SHA256 of ATF during SC7 entry */ if (tegra_se_save_sha256_hash(BL31_BASE, (uint32_t)src_len_in_bytes) != 0) { ERROR("Hash calculation failed. Reboot\n"); (void)tegra_soc_prepare_system_reset(); } /* * The TZRAM loses power when we enter system suspend. To * allow graceful exit from system suspend, we need to copy * BL3-1 over to TZDRAM. */ val = params_from_bl2->tzdram_base + tegra186_get_mc_ctx_size(); memcpy16((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE, (uintptr_t)BL31_END - (uintptr_t)BL31_BASE); /* * Save code base and size; this would be used by SC7-RF to * verify binary */ mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV68_LO, (uint32_t)val); mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV0_HI, (uint32_t)src_len_in_bytes); ret = tegra_bpmp_ipc_disable_clock(TEGRA186_CLK_SE); if (ret != 0) { ERROR("Failed to disable clock\n"); return ret; } } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state) { return PSCI_E_NOT_SUPPORTED; } int32_t tegra_soc_pwr_domain_on(u_register_t mpidr) { int32_t ret = PSCI_E_SUCCESS; uint64_t target_cpu = mpidr & MPIDR_CPU_MASK; uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS; if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) { ERROR("%s: unsupported CPU (0x%lx)\n", __func__, mpidr); ret = PSCI_E_NOT_PRESENT; } else { /* construct the target CPU # */ target_cpu |= (target_cluster << 2); (void)mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U); } return ret; } int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state) { uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL]; uint8_t stateid_afflvl0 = target_state->pwr_domain_state[MPIDR_AFFLVL0]; mce_cstate_info_t cstate_info = { 0 }; uint64_t impl, val; const plat_params_from_bl2_t *plat_params = bl31_get_plat_params(); impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; /* * Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186 * A02p and beyond). */ if ((plat_params->l2_ecc_parity_prot_dis != 1) && (impl != DENVER_IMPL)) { val = read_l2ctlr_el1(); val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT; write_l2ctlr_el1(val); } /* * Reset power state info for CPUs when onlining, we set * deepest power when offlining a core but that may not be * requested by non-secure sw which controls idle states. It * will re-init this info from non-secure software when the * core come online. */ if (stateid_afflvl0 == PLAT_MAX_OFF_STATE) { cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC1; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); } /* * Check if we are exiting from deep sleep and restore SE * context if we are. */ if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { mmio_write_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]); mmio_write_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT, se_regs[1]); mmio_write_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]); /* Init SMMU */ tegra_smmu_init(); /* * Reset power state info for the last core doing SC7 * entry and exit, we set deepest power state as CC7 * and SC7 for SC7 entry which may not be requested by * non-secure SW which controls idle states. */ cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7; cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC1; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_off_early(const psci_power_state_t *target_state) { /* Do not power off the boot CPU */ if (plat_is_my_cpu_primary()) { return PSCI_E_DENIED; } return PSCI_E_SUCCESS; } int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state) { uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK; (void)target_state; /* Disable Denver's DCO operations */ if (impl == DENVER_IMPL) { denver_disable_dco(); } /* Turn off CPU */ (void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U); return PSCI_E_SUCCESS; } __dead2 void tegra_soc_prepare_system_off(void) { /* power off the entire system */ mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF); wfi(); /* wait for the system to power down */ for (;;) { ; } } int32_t tegra_soc_prepare_system_reset(void) { mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT); return PSCI_E_SUCCESS; }