/* * Copyright (c) 2018-2021, Renesas Electronics Corporation. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if RCAR_GEN3_BL33_GZIP == 1 #include #endif #include "avs_driver.h" #include "boot_init_dram.h" #include "cpg_registers.h" #include "board.h" #include "emmc_def.h" #include "emmc_hal.h" #include "emmc_std.h" #if PMIC_ROHM_BD9571 && RCAR_SYSTEM_RESET_KEEPON_DDR #include "iic_dvfs.h" #endif #include "io_common.h" #include "io_rcar.h" #include "qos_init.h" #include "rcar_def.h" #include "rcar_private.h" #include "rcar_version.h" #include "rom_api.h" #if RCAR_BL2_DCACHE == 1 /* * Following symbols are only used during plat_arch_setup() only * when RCAR_BL2_DCACHE is enabled. */ static const uint64_t BL2_RO_BASE = BL_CODE_BASE; static const uint64_t BL2_RO_LIMIT = BL_CODE_END; #if USE_COHERENT_MEM static const uint64_t BL2_COHERENT_RAM_BASE = BL_COHERENT_RAM_BASE; static const uint64_t BL2_COHERENT_RAM_LIMIT = BL_COHERENT_RAM_END; #endif #endif extern void plat_rcar_gic_driver_init(void); extern void plat_rcar_gic_init(void); extern void bl2_enter_bl31(const struct entry_point_info *bl_ep_info); extern void bl2_system_cpg_init(void); extern void bl2_secure_setting(void); extern void bl2_cpg_init(void); extern void rcar_io_emmc_setup(void); extern void rcar_io_setup(void); extern void rcar_swdt_release(void); extern void rcar_swdt_init(void); extern void rcar_rpc_init(void); extern void rcar_pfc_init(void); extern void rcar_dma_init(void); static void bl2_init_generic_timer(void); /* R-Car Gen3 product check */ #if (RCAR_LSI == RCAR_H3) || (RCAR_LSI == RCAR_H3N) #define TARGET_PRODUCT PRR_PRODUCT_H3 #define TARGET_NAME "R-Car H3" #elif RCAR_LSI == RCAR_M3 #define TARGET_PRODUCT PRR_PRODUCT_M3 #define TARGET_NAME "R-Car M3" #elif RCAR_LSI == RCAR_M3N #define TARGET_PRODUCT PRR_PRODUCT_M3N #define TARGET_NAME "R-Car M3N" #elif RCAR_LSI == RCAR_V3M #define TARGET_PRODUCT PRR_PRODUCT_V3M #define TARGET_NAME "R-Car V3M" #elif RCAR_LSI == RCAR_E3 #define TARGET_PRODUCT PRR_PRODUCT_E3 #define TARGET_NAME "R-Car E3" #elif RCAR_LSI == RCAR_D3 #define TARGET_PRODUCT PRR_PRODUCT_D3 #define TARGET_NAME "R-Car D3" #elif RCAR_LSI == RCAR_AUTO #define TARGET_NAME "R-Car H3/M3/M3N/V3M" #endif #if (RCAR_LSI == RCAR_E3) #define GPIO_INDT (GPIO_INDT6) #define GPIO_BKUP_TRG_SHIFT ((uint32_t)1U<<13U) #else #define GPIO_INDT (GPIO_INDT1) #define GPIO_BKUP_TRG_SHIFT ((uint32_t)1U<<8U) #endif CASSERT((PARAMS_BASE + sizeof(bl2_to_bl31_params_mem_t) + 0x100) < (RCAR_SHARED_MEM_BASE + RCAR_SHARED_MEM_SIZE), assert_bl31_params_do_not_fit_in_shared_memory); static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE); /* FDT with DRAM configuration */ uint64_t fdt_blob[PAGE_SIZE_4KB / sizeof(uint64_t)]; static void *fdt = (void *)fdt_blob; static void unsigned_num_print(unsigned long long int unum, unsigned int radix, char *string) { /* Just need enough space to store 64 bit decimal integer */ char num_buf[20]; int i = 0; unsigned int rem; do { rem = unum % radix; if (rem < 0xa) num_buf[i] = '0' + rem; else num_buf[i] = 'a' + (rem - 0xa); i++; unum /= radix; } while (unum > 0U); while (--i >= 0) *string++ = num_buf[i]; *string = 0; } #if (RCAR_LOSSY_ENABLE == 1) typedef struct bl2_lossy_info { uint32_t magic; uint32_t a0; uint32_t b0; } bl2_lossy_info_t; static void bl2_lossy_gen_fdt(uint32_t no, uint64_t start_addr, uint64_t end_addr, uint32_t format, uint32_t enable, int fcnlnode) { const uint64_t fcnlsize = cpu_to_fdt64(end_addr - start_addr); char nodename[40] = { 0 }; int ret, node; /* Ignore undefined addresses */ if (start_addr == 0 && end_addr == 0) return; snprintf(nodename, sizeof(nodename), "lossy-decompression@"); unsigned_num_print(start_addr, 16, nodename + strlen(nodename)); node = ret = fdt_add_subnode(fdt, fcnlnode, nodename); if (ret < 0) { NOTICE("BL2: Cannot create FCNL node (ret=%i)\n", ret); panic(); } ret = fdt_setprop_string(fdt, node, "compatible", "renesas,lossy-decompression"); if (ret < 0) { NOTICE("BL2: Cannot add FCNL compat string (ret=%i)\n", ret); panic(); } ret = fdt_appendprop_string(fdt, node, "compatible", "shared-dma-pool"); if (ret < 0) { NOTICE("BL2: Cannot append FCNL compat string (ret=%i)\n", ret); panic(); } ret = fdt_setprop_u64(fdt, node, "reg", start_addr); if (ret < 0) { NOTICE("BL2: Cannot add FCNL reg prop (ret=%i)\n", ret); panic(); } ret = fdt_appendprop(fdt, node, "reg", &fcnlsize, sizeof(fcnlsize)); if (ret < 0) { NOTICE("BL2: Cannot append FCNL reg size prop (ret=%i)\n", ret); panic(); } ret = fdt_setprop(fdt, node, "no-map", NULL, 0); if (ret < 0) { NOTICE("BL2: Cannot add FCNL no-map prop (ret=%i)\n", ret); panic(); } ret = fdt_setprop_u32(fdt, node, "renesas,formats", format); if (ret < 0) { NOTICE("BL2: Cannot add FCNL formats prop (ret=%i)\n", ret); panic(); } } static void bl2_lossy_setting(uint32_t no, uint64_t start_addr, uint64_t end_addr, uint32_t format, uint32_t enable, int fcnlnode) { bl2_lossy_info_t info; uint32_t reg; bl2_lossy_gen_fdt(no, start_addr, end_addr, format, enable, fcnlnode); reg = format | (start_addr >> 20); mmio_write_32(AXI_DCMPAREACRA0 + 0x8 * no, reg); mmio_write_32(AXI_DCMPAREACRB0 + 0x8 * no, end_addr >> 20); mmio_write_32(AXI_DCMPAREACRA0 + 0x8 * no, reg | enable); info.magic = 0x12345678U; info.a0 = mmio_read_32(AXI_DCMPAREACRA0 + 0x8 * no); info.b0 = mmio_read_32(AXI_DCMPAREACRB0 + 0x8 * no); mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no, info.magic); mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x4, info.a0); mmio_write_32(LOSSY_PARAMS_BASE + sizeof(info) * no + 0x8, info.b0); NOTICE(" Entry %d: DCMPAREACRAx:0x%x DCMPAREACRBx:0x%x\n", no, mmio_read_32(AXI_DCMPAREACRA0 + 0x8 * no), mmio_read_32(AXI_DCMPAREACRB0 + 0x8 * no)); } static int bl2_create_reserved_memory(void) { int ret; int fcnlnode = fdt_add_subnode(fdt, 0, "reserved-memory"); if (fcnlnode < 0) { NOTICE("BL2: Cannot create reserved mem node (ret=%i)\n", fcnlnode); panic(); } ret = fdt_setprop(fdt, fcnlnode, "ranges", NULL, 0); if (ret < 0) { NOTICE("BL2: Cannot add FCNL ranges prop (ret=%i)\n", ret); panic(); } ret = fdt_setprop_u32(fdt, fcnlnode, "#address-cells", 2); if (ret < 0) { NOTICE("BL2: Cannot add FCNL #address-cells prop (ret=%i)\n", ret); panic(); } ret = fdt_setprop_u32(fdt, fcnlnode, "#size-cells", 2); if (ret < 0) { NOTICE("BL2: Cannot add FCNL #size-cells prop (ret=%i)\n", ret); panic(); } return fcnlnode; } static void bl2_create_fcnl_reserved_memory(void) { int fcnlnode; NOTICE("BL2: Lossy Decomp areas\n"); fcnlnode = bl2_create_reserved_memory(); bl2_lossy_setting(0, LOSSY_ST_ADDR0, LOSSY_END_ADDR0, LOSSY_FMT0, LOSSY_ENA_DIS0, fcnlnode); bl2_lossy_setting(1, LOSSY_ST_ADDR1, LOSSY_END_ADDR1, LOSSY_FMT1, LOSSY_ENA_DIS1, fcnlnode); bl2_lossy_setting(2, LOSSY_ST_ADDR2, LOSSY_END_ADDR2, LOSSY_FMT2, LOSSY_ENA_DIS2, fcnlnode); } #else static void bl2_create_fcnl_reserved_memory(void) {} #endif void bl2_plat_flush_bl31_params(void) { uint32_t product_cut, product, cut; uint32_t boot_dev, boot_cpu; uint32_t lcs, reg, val; reg = mmio_read_32(RCAR_MODEMR); boot_dev = reg & MODEMR_BOOT_DEV_MASK; if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 || boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) emmc_terminate(); if ((reg & MODEMR_BOOT_CPU_MASK) != MODEMR_BOOT_CPU_CR7) bl2_secure_setting(); reg = mmio_read_32(RCAR_PRR); product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK); product = reg & PRR_PRODUCT_MASK; cut = reg & PRR_CUT_MASK; if (product == PRR_PRODUCT_M3 && PRR_PRODUCT_30 > cut) goto tlb; if (product == PRR_PRODUCT_H3 && PRR_PRODUCT_20 > cut) goto tlb; /* Disable MFIS write protection */ mmio_write_32(MFISWPCNTR, MFISWPCNTR_PASSWORD | 1); tlb: reg = mmio_read_32(RCAR_MODEMR); boot_cpu = reg & MODEMR_BOOT_CPU_MASK; if (boot_cpu != MODEMR_BOOT_CPU_CA57 && boot_cpu != MODEMR_BOOT_CPU_CA53) goto mmu; if (product_cut == PRR_PRODUCT_H3_CUT20) { mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUVI1_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV1_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV2_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV3_IMSCTLR, IMSCTLR_DISCACHE); } else if (product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) || product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11)) { mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE); } else if ((product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) || (product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_11))) { mmio_write_32(IPMMUVI0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUVP0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUPV0_IMSCTLR, IMSCTLR_DISCACHE); } if (product_cut == (PRR_PRODUCT_H3_CUT20) || product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_10) || product_cut == (PRR_PRODUCT_M3N | PRR_PRODUCT_11) || product_cut == (PRR_PRODUCT_E3 | PRR_PRODUCT_10)) { mmio_write_32(IPMMUHC_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMURT_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUMP_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUDS0_IMSCTLR, IMSCTLR_DISCACHE); mmio_write_32(IPMMUDS1_IMSCTLR, IMSCTLR_DISCACHE); } mmu: mmio_write_32(IPMMUMM_IMSCTLR, IPMMUMM_IMSCTLR_ENABLE); mmio_write_32(IPMMUMM_IMAUXCTLR, IPMMUMM_IMAUXCTLR_NMERGE40_BIT); val = rcar_rom_get_lcs(&lcs); if (val) { ERROR("BL2: Failed to get the LCS. (%d)\n", val); panic(); } if (lcs == LCS_SE) mmio_clrbits_32(P_ARMREG_SEC_CTRL, P_ARMREG_SEC_CTRL_PROT); rcar_swdt_release(); bl2_system_cpg_init(); #if RCAR_BL2_DCACHE == 1 /* Disable data cache (clean and invalidate) */ disable_mmu_el3(); #endif } static uint32_t is_ddr_backup_mode(void) { #if RCAR_SYSTEM_SUSPEND static uint32_t reason = RCAR_COLD_BOOT; static uint32_t once; #if PMIC_ROHM_BD9571 && RCAR_SYSTEM_RESET_KEEPON_DDR uint8_t data; #endif if (once) return reason; once = 1; if ((mmio_read_32(GPIO_INDT) & GPIO_BKUP_TRG_SHIFT) == 0) return reason; #if PMIC_ROHM_BD9571 && RCAR_SYSTEM_RESET_KEEPON_DDR if (rcar_iic_dvfs_receive(PMIC, REG_KEEP10, &data)) { ERROR("BL2: REG Keep10 READ ERROR.\n"); panic(); } if (KEEP10_MAGIC != data) reason = RCAR_WARM_BOOT; #else reason = RCAR_WARM_BOOT; #endif return reason; #else return RCAR_COLD_BOOT; #endif } #if RCAR_GEN3_BL33_GZIP == 1 void bl2_plat_preload_setup(void) { image_decompress_init(BL33_COMP_BASE, BL33_COMP_SIZE, gunzip); } #endif int bl2_plat_handle_pre_image_load(unsigned int image_id) { u_register_t *boot_kind = (void *) BOOT_KIND_BASE; bl_mem_params_node_t *bl_mem_params; bl_mem_params = get_bl_mem_params_node(image_id); #if RCAR_GEN3_BL33_GZIP == 1 if (image_id == BL33_IMAGE_ID) { image_decompress_prepare(&bl_mem_params->image_info); } #endif if (image_id != BL31_IMAGE_ID) return 0; if (is_ddr_backup_mode() == RCAR_COLD_BOOT) goto cold_boot; *boot_kind = RCAR_WARM_BOOT; flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind)); console_flush(); bl2_plat_flush_bl31_params(); /* will not return */ bl2_enter_bl31(&bl_mem_params->ep_info); cold_boot: *boot_kind = RCAR_COLD_BOOT; flush_dcache_range(BOOT_KIND_BASE, sizeof(*boot_kind)); return 0; } static uint64_t rcar_get_dest_addr_from_cert(uint32_t certid, uintptr_t *dest) { uint32_t cert, len; int ret; ret = rcar_get_certificate(certid, &cert); if (ret) { ERROR("%s : cert file load error", __func__); return 1; } rcar_read_certificate((uint64_t) cert, &len, dest); return 0; } int bl2_plat_handle_post_image_load(unsigned int image_id) { static bl2_to_bl31_params_mem_t *params; bl_mem_params_node_t *bl_mem_params; uintptr_t dest; int ret; if (!params) { params = (bl2_to_bl31_params_mem_t *) PARAMS_BASE; memset((void *)PARAMS_BASE, 0, sizeof(*params)); } bl_mem_params = get_bl_mem_params_node(image_id); switch (image_id) { case BL31_IMAGE_ID: ret = rcar_get_dest_addr_from_cert(SOC_FW_CONTENT_CERT_ID, &dest); if (!ret) bl_mem_params->image_info.image_base = dest; break; case BL32_IMAGE_ID: ret = rcar_get_dest_addr_from_cert(TRUSTED_OS_FW_CONTENT_CERT_ID, &dest); if (!ret) bl_mem_params->image_info.image_base = dest; memcpy(¶ms->bl32_ep_info, &bl_mem_params->ep_info, sizeof(entry_point_info_t)); break; case BL33_IMAGE_ID: #if RCAR_GEN3_BL33_GZIP == 1 if ((mmio_read_32(BL33_COMP_BASE) & 0xffff) == 0x8b1f) { /* decompress gzip-compressed image */ ret = image_decompress(&bl_mem_params->image_info); if (ret != 0) { return ret; } } else { /* plain image, copy it in place */ memcpy((void *)BL33_BASE, (void *)BL33_COMP_BASE, bl_mem_params->image_info.image_size); } #endif memcpy(¶ms->bl33_ep_info, &bl_mem_params->ep_info, sizeof(entry_point_info_t)); break; } return 0; } struct meminfo *bl2_plat_sec_mem_layout(void) { return &bl2_tzram_layout; } static void bl2_populate_compatible_string(void *dt) { uint32_t board_type; uint32_t board_rev; uint32_t reg; int ret; fdt_setprop_u32(dt, 0, "#address-cells", 2); fdt_setprop_u32(dt, 0, "#size-cells", 2); /* Populate compatible string */ rcar_get_board_type(&board_type, &board_rev); switch (board_type) { case BOARD_SALVATOR_X: ret = fdt_setprop_string(dt, 0, "compatible", "renesas,salvator-x"); break; case BOARD_SALVATOR_XS: ret = fdt_setprop_string(dt, 0, "compatible", "renesas,salvator-xs"); break; case BOARD_STARTER_KIT: ret = fdt_setprop_string(dt, 0, "compatible", "renesas,m3ulcb"); break; case BOARD_STARTER_KIT_PRE: ret = fdt_setprop_string(dt, 0, "compatible", "renesas,h3ulcb"); break; case BOARD_EAGLE: ret = fdt_setprop_string(dt, 0, "compatible", "renesas,eagle"); break; case BOARD_EBISU: case BOARD_EBISU_4D: ret = fdt_setprop_string(dt, 0, "compatible", "renesas,ebisu"); break; case BOARD_DRAAK: ret = fdt_setprop_string(dt, 0, "compatible", "renesas,draak"); break; default: NOTICE("BL2: Cannot set compatible string, board unsupported\n"); panic(); } if (ret < 0) { NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret); panic(); } reg = mmio_read_32(RCAR_PRR); switch (reg & PRR_PRODUCT_MASK) { case PRR_PRODUCT_H3: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a7795"); break; case PRR_PRODUCT_M3: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a7796"); break; case PRR_PRODUCT_M3N: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a77965"); break; case PRR_PRODUCT_V3M: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a77970"); break; case PRR_PRODUCT_E3: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a77990"); break; case PRR_PRODUCT_D3: ret = fdt_appendprop_string(dt, 0, "compatible", "renesas,r8a77995"); break; default: NOTICE("BL2: Cannot set compatible string, SoC unsupported\n"); panic(); } if (ret < 0) { NOTICE("BL2: Cannot set compatible string (ret=%i)\n", ret); panic(); } } static void bl2_add_rpc_node(void) { #if (RCAR_RPC_HYPERFLASH_LOCKED == 0) int ret, node; node = ret = fdt_add_subnode(fdt, 0, "soc"); if (ret < 0) { goto err; } node = ret = fdt_add_subnode(fdt, node, "spi@ee200000"); if (ret < 0) { goto err; } ret = fdt_setprop_string(fdt, node, "status", "okay"); if (ret < 0) { goto err; } return; err: NOTICE("BL2: Cannot add RPC node to FDT (ret=%i)\n", ret); panic(); #endif } static void bl2_add_dram_entry(uint64_t start, uint64_t size) { char nodename[32] = { 0 }; uint64_t fdtsize; int ret, node; fdtsize = cpu_to_fdt64(size); snprintf(nodename, sizeof(nodename), "memory@"); unsigned_num_print(start, 16, nodename + strlen(nodename)); node = ret = fdt_add_subnode(fdt, 0, nodename); if (ret < 0) { goto err; } ret = fdt_setprop_string(fdt, node, "device_type", "memory"); if (ret < 0) { goto err; } ret = fdt_setprop_u64(fdt, node, "reg", start); if (ret < 0) { goto err; } ret = fdt_appendprop(fdt, node, "reg", &fdtsize, sizeof(fdtsize)); if (ret < 0) { goto err; } return; err: NOTICE("BL2: Cannot add memory node [%" PRIx64 " - %" PRIx64 "] to FDT (ret=%i)\n", start, start + size - 1, ret); panic(); } static void bl2_advertise_dram_entries(uint64_t dram_config[8]) { uint64_t start, size, size32; int chan; for (chan = 0; chan < 4; chan++) { start = dram_config[2 * chan]; size = dram_config[2 * chan + 1]; if (!size) continue; NOTICE("BL2: CH%d: %" PRIx64 " - %" PRIx64 ", %" PRId64 " %siB\n", chan, start, start + size - 1, (size >> 30) ? : size >> 20, (size >> 30) ? "G" : "M"); } /* * We add the DT nodes in reverse order here. The fdt_add_subnode() * adds the DT node before the first existing DT node, so we have * to add them in reverse order to get nodes sorted by address in * the resulting DT. */ for (chan = 3; chan >= 0; chan--) { start = dram_config[2 * chan]; size = dram_config[2 * chan + 1]; if (!size) continue; /* * Channel 0 is mapped in 32bit space and the first * 128 MiB are reserved and the maximum size is 2GiB. */ if (chan == 0) { /* Limit the 32bit entry to 2 GiB - 128 MiB */ size32 = size - 0x8000000U; if (size32 >= 0x78000000U) { size32 = 0x78000000U; } /* Emit 32bit entry, up to 2 GiB - 128 MiB long. */ bl2_add_dram_entry(0x48000000, size32); /* * If channel 0 is less than 2 GiB long, the * entire memory fits into the 32bit space entry, * so move on to the next channel. */ if (size <= 0x80000000U) { continue; } /* * If channel 0 is more than 2 GiB long, emit * another entry which covers the rest of the * memory in channel 0, in the 64bit space. * * Start of this new entry is at 2 GiB offset * from the beginning of the 64bit channel 0 * address, size is 2 GiB shorter than total * size of the channel. */ start += 0x80000000U; size -= 0x80000000U; } bl2_add_dram_entry(start, size); } } static void bl2_advertise_dram_size(uint32_t product) { uint64_t dram_config[8] = { [0] = 0x400000000ULL, [2] = 0x500000000ULL, [4] = 0x600000000ULL, [6] = 0x700000000ULL, }; uint32_t cut = mmio_read_32(RCAR_PRR) & PRR_CUT_MASK; switch (product) { case PRR_PRODUCT_H3: #if (RCAR_DRAM_LPDDR4_MEMCONF == 0) /* 4GB(1GBx4) */ dram_config[1] = 0x40000000ULL; dram_config[3] = 0x40000000ULL; dram_config[5] = 0x40000000ULL; dram_config[7] = 0x40000000ULL; #elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && \ (RCAR_DRAM_CHANNEL == 5) && \ (RCAR_DRAM_SPLIT == 2) /* 4GB(2GBx2 2ch split) */ dram_config[1] = 0x80000000ULL; dram_config[3] = 0x80000000ULL; #elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) && (RCAR_DRAM_CHANNEL == 15) /* 8GB(2GBx4: default) */ dram_config[1] = 0x80000000ULL; dram_config[3] = 0x80000000ULL; dram_config[5] = 0x80000000ULL; dram_config[7] = 0x80000000ULL; #endif /* RCAR_DRAM_LPDDR4_MEMCONF == 0 */ break; case PRR_PRODUCT_M3: if (cut < PRR_PRODUCT_30) { #if (RCAR_GEN3_ULCB == 1) /* 2GB(1GBx2 2ch split) */ dram_config[1] = 0x40000000ULL; dram_config[5] = 0x40000000ULL; #else /* 4GB(2GBx2 2ch split) */ dram_config[1] = 0x80000000ULL; dram_config[5] = 0x80000000ULL; #endif } else { /* 8GB(2GBx4 2ch split) */ dram_config[1] = 0x100000000ULL; dram_config[5] = 0x100000000ULL; } break; case PRR_PRODUCT_M3N: #if (RCAR_DRAM_LPDDR4_MEMCONF == 2) /* 4GB(4GBx1) */ dram_config[1] = 0x100000000ULL; #elif (RCAR_DRAM_LPDDR4_MEMCONF == 1) /* 2GB(1GBx2) */ dram_config[1] = 0x80000000ULL; #endif break; case PRR_PRODUCT_V3M: /* 1GB(512MBx2) */ dram_config[1] = 0x40000000ULL; break; case PRR_PRODUCT_E3: #if (RCAR_DRAM_DDR3L_MEMCONF == 0) /* 1GB(512MBx2) */ dram_config[1] = 0x40000000ULL; #elif (RCAR_DRAM_DDR3L_MEMCONF == 1) /* 2GB(512MBx4) */ dram_config[1] = 0x80000000ULL; #elif (RCAR_DRAM_DDR3L_MEMCONF == 2) /* 4GB(1GBx4) */ dram_config[1] = 0x100000000ULL; #endif /* RCAR_DRAM_DDR3L_MEMCONF == 0 */ break; case PRR_PRODUCT_D3: /* 512MB */ dram_config[1] = 0x20000000ULL; break; } bl2_advertise_dram_entries(dram_config); } void bl2_el3_early_platform_setup(u_register_t arg1, u_register_t arg2, u_register_t arg3, u_register_t arg4) { uint32_t reg, midr, lcs, boot_dev, boot_cpu, sscg, type, rev; uint32_t product, product_cut, major, minor; int32_t ret; const char *str; const char *unknown = "unknown"; const char *cpu_ca57 = "CA57"; const char *cpu_ca53 = "CA53"; const char *product_m3n = "M3N"; const char *product_h3 = "H3"; const char *product_m3 = "M3"; const char *product_e3 = "E3"; const char *product_d3 = "D3"; const char *product_v3m = "V3M"; const char *lcs_secure = "SE"; const char *lcs_cm = "CM"; const char *lcs_dm = "DM"; const char *lcs_sd = "SD"; const char *lcs_fa = "FA"; const char *sscg_off = "PLL1 nonSSCG Clock select"; const char *sscg_on = "PLL1 SSCG Clock select"; const char *boot_hyper80 = "HyperFlash(80MHz)"; const char *boot_qspi40 = "QSPI Flash(40MHz)"; const char *boot_qspi80 = "QSPI Flash(80MHz)"; const char *boot_emmc25x1 = "eMMC(25MHz x1)"; const char *boot_emmc50x8 = "eMMC(50MHz x8)"; #if (RCAR_LSI == RCAR_E3) || (RCAR_LSI == RCAR_D3) const char *boot_hyper160 = "HyperFlash(150MHz)"; #else const char *boot_hyper160 = "HyperFlash(160MHz)"; #endif bl2_init_generic_timer(); reg = mmio_read_32(RCAR_MODEMR); boot_dev = reg & MODEMR_BOOT_DEV_MASK; boot_cpu = reg & MODEMR_BOOT_CPU_MASK; bl2_cpg_init(); if (boot_cpu == MODEMR_BOOT_CPU_CA57 || boot_cpu == MODEMR_BOOT_CPU_CA53) { rcar_pfc_init(); rcar_console_boot_init(); } plat_rcar_gic_driver_init(); plat_rcar_gic_init(); rcar_swdt_init(); /* FIQ interrupts are taken to EL3 */ write_scr_el3(read_scr_el3() | SCR_FIQ_BIT); write_daifclr(DAIF_FIQ_BIT); reg = read_midr(); midr = reg & (MIDR_PN_MASK << MIDR_PN_SHIFT); switch (midr) { case MIDR_CA57: str = cpu_ca57; break; case MIDR_CA53: str = cpu_ca53; break; default: str = unknown; break; } NOTICE("BL2: R-Car Gen3 Initial Program Loader(%s) Rev.%s\n", str, version_of_renesas); reg = mmio_read_32(RCAR_PRR); product_cut = reg & (PRR_PRODUCT_MASK | PRR_CUT_MASK); product = reg & PRR_PRODUCT_MASK; switch (product) { case PRR_PRODUCT_H3: str = product_h3; break; case PRR_PRODUCT_M3: str = product_m3; break; case PRR_PRODUCT_M3N: str = product_m3n; break; case PRR_PRODUCT_V3M: str = product_v3m; break; case PRR_PRODUCT_E3: str = product_e3; break; case PRR_PRODUCT_D3: str = product_d3; break; default: str = unknown; break; } if ((PRR_PRODUCT_M3 == product) && (PRR_PRODUCT_20 == (reg & RCAR_MAJOR_MASK))) { if (RCAR_M3_CUT_VER11 == (reg & PRR_CUT_MASK)) { /* M3 Ver.1.1 or Ver.1.2 */ NOTICE("BL2: PRR is R-Car %s Ver.1.1 / Ver.1.2\n", str); } else { NOTICE("BL2: PRR is R-Car %s Ver.1.%d\n", str, (reg & RCAR_MINOR_MASK) + RCAR_M3_MINOR_OFFSET); } } else if (product == PRR_PRODUCT_D3) { if (RCAR_D3_CUT_VER10 == (reg & PRR_CUT_MASK)) { NOTICE("BL2: PRR is R-Car %s Ver.1.0\n", str); } else if (RCAR_D3_CUT_VER11 == (reg & PRR_CUT_MASK)) { NOTICE("BL2: PRR is R-Car %s Ver.1.1\n", str); } else { NOTICE("BL2: PRR is R-Car %s Ver.X.X\n", str); } } else { major = (reg & RCAR_MAJOR_MASK) >> RCAR_MAJOR_SHIFT; major = major + RCAR_MAJOR_OFFSET; minor = reg & RCAR_MINOR_MASK; NOTICE("BL2: PRR is R-Car %s Ver.%d.%d\n", str, major, minor); } if (PRR_PRODUCT_E3 == product || PRR_PRODUCT_D3 == product) { reg = mmio_read_32(RCAR_MODEMR); sscg = reg & RCAR_SSCG_MASK; str = sscg == RCAR_SSCG_ENABLE ? sscg_on : sscg_off; NOTICE("BL2: %s\n", str); } rcar_get_board_type(&type, &rev); switch (type) { case BOARD_SALVATOR_X: case BOARD_KRIEK: case BOARD_STARTER_KIT: case BOARD_SALVATOR_XS: case BOARD_EBISU: case BOARD_STARTER_KIT_PRE: case BOARD_EBISU_4D: case BOARD_DRAAK: case BOARD_EAGLE: break; default: type = BOARD_UNKNOWN; break; } if (type == BOARD_UNKNOWN || rev == BOARD_REV_UNKNOWN) NOTICE("BL2: Board is %s Rev.---\n", GET_BOARD_NAME(type)); else { NOTICE("BL2: Board is %s Rev.%d.%d\n", GET_BOARD_NAME(type), GET_BOARD_MAJOR(rev), GET_BOARD_MINOR(rev)); } #if RCAR_LSI != RCAR_AUTO if (product != TARGET_PRODUCT) { ERROR("BL2: IPL was been built for the %s.\n", TARGET_NAME); ERROR("BL2: Please write the correct IPL to flash memory.\n"); panic(); } #endif rcar_avs_init(); rcar_avs_setting(); switch (boot_dev) { case MODEMR_BOOT_DEV_HYPERFLASH160: str = boot_hyper160; break; case MODEMR_BOOT_DEV_HYPERFLASH80: str = boot_hyper80; break; case MODEMR_BOOT_DEV_QSPI_FLASH40: str = boot_qspi40; break; case MODEMR_BOOT_DEV_QSPI_FLASH80: str = boot_qspi80; break; case MODEMR_BOOT_DEV_EMMC_25X1: #if RCAR_LSI == RCAR_D3 ERROR("BL2: Failed to Initialize. eMMC is not supported.\n"); panic(); #endif str = boot_emmc25x1; break; case MODEMR_BOOT_DEV_EMMC_50X8: str = boot_emmc50x8; break; default: str = unknown; break; } NOTICE("BL2: Boot device is %s\n", str); rcar_avs_setting(); reg = rcar_rom_get_lcs(&lcs); if (reg) { str = unknown; goto lcm_state; } switch (lcs) { case LCS_CM: str = lcs_cm; break; case LCS_DM: str = lcs_dm; break; case LCS_SD: str = lcs_sd; break; case LCS_SE: str = lcs_secure; break; case LCS_FA: str = lcs_fa; break; default: str = unknown; break; } lcm_state: NOTICE("BL2: LCM state is %s\n", str); rcar_avs_end(); is_ddr_backup_mode(); bl2_tzram_layout.total_base = BL31_BASE; bl2_tzram_layout.total_size = BL31_LIMIT - BL31_BASE; if (boot_cpu == MODEMR_BOOT_CPU_CA57 || boot_cpu == MODEMR_BOOT_CPU_CA53) { ret = rcar_dram_init(); if (ret) { NOTICE("BL2: Failed to DRAM initialize (%d).\n", ret); panic(); } rcar_qos_init(); } /* Set up FDT */ ret = fdt_create_empty_tree(fdt, sizeof(fdt_blob)); if (ret) { NOTICE("BL2: Cannot allocate FDT for U-Boot (ret=%i)\n", ret); panic(); } /* Add platform compatible string */ bl2_populate_compatible_string(fdt); /* Enable RPC if unlocked */ bl2_add_rpc_node(); /* Print DRAM layout */ bl2_advertise_dram_size(product); if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 || boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) { if (rcar_emmc_init() != EMMC_SUCCESS) { NOTICE("BL2: Failed to eMMC driver initialize.\n"); panic(); } rcar_emmc_memcard_power(EMMC_POWER_ON); if (rcar_emmc_mount() != EMMC_SUCCESS) { NOTICE("BL2: Failed to eMMC mount operation.\n"); panic(); } } else { rcar_rpc_init(); rcar_dma_init(); } reg = mmio_read_32(RST_WDTRSTCR); reg &= ~WDTRSTCR_RWDT_RSTMSK; reg |= WDTRSTCR_PASSWORD; mmio_write_32(RST_WDTRSTCR, reg); mmio_write_32(CPG_CPGWPR, CPGWPR_PASSWORD); mmio_write_32(CPG_CPGWPCR, CPGWPCR_PASSWORD); reg = mmio_read_32(RCAR_PRR); if ((reg & RCAR_CPU_MASK_CA57) == RCAR_CPU_HAVE_CA57) mmio_write_32(CPG_CA57DBGRCR, DBGCPUPREN | mmio_read_32(CPG_CA57DBGRCR)); if ((reg & RCAR_CPU_MASK_CA53) == RCAR_CPU_HAVE_CA53) mmio_write_32(CPG_CA53DBGRCR, DBGCPUPREN | mmio_read_32(CPG_CA53DBGRCR)); if (product_cut == PRR_PRODUCT_H3_CUT10) { reg = mmio_read_32(CPG_PLL2CR); reg &= ~((uint32_t) 1 << 5); mmio_write_32(CPG_PLL2CR, reg); reg = mmio_read_32(CPG_PLL4CR); reg &= ~((uint32_t) 1 << 5); mmio_write_32(CPG_PLL4CR, reg); reg = mmio_read_32(CPG_PLL0CR); reg &= ~((uint32_t) 1 << 12); mmio_write_32(CPG_PLL0CR, reg); } bl2_create_fcnl_reserved_memory(); fdt_pack(fdt); NOTICE("BL2: FDT at %p\n", fdt); if (boot_dev == MODEMR_BOOT_DEV_EMMC_25X1 || boot_dev == MODEMR_BOOT_DEV_EMMC_50X8) rcar_io_emmc_setup(); else rcar_io_setup(); } void bl2_el3_plat_arch_setup(void) { #if RCAR_BL2_DCACHE == 1 NOTICE("BL2: D-Cache enable\n"); rcar_configure_mmu_el3(BL2_BASE, BL2_END - BL2_BASE, BL2_RO_BASE, BL2_RO_LIMIT #if USE_COHERENT_MEM , BL2_COHERENT_RAM_BASE, BL2_COHERENT_RAM_LIMIT #endif ); #endif } void bl2_platform_setup(void) { } static void bl2_init_generic_timer(void) { /* FIXME: V3M 16.666 MHz ? */ #if RCAR_LSI == RCAR_D3 uint32_t reg_cntfid = EXTAL_DRAAK; #elif RCAR_LSI == RCAR_E3 uint32_t reg_cntfid = EXTAL_EBISU; #else /* RCAR_LSI == RCAR_E3 */ uint32_t reg; uint32_t reg_cntfid; uint32_t modemr; uint32_t modemr_pll; uint32_t board_type; uint32_t board_rev; uint32_t pll_table[] = { EXTAL_MD14_MD13_TYPE_0, /* MD14/MD13 : 0b00 */ EXTAL_MD14_MD13_TYPE_1, /* MD14/MD13 : 0b01 */ EXTAL_MD14_MD13_TYPE_2, /* MD14/MD13 : 0b10 */ EXTAL_MD14_MD13_TYPE_3 /* MD14/MD13 : 0b11 */ }; modemr = mmio_read_32(RCAR_MODEMR); modemr_pll = (modemr & MODEMR_BOOT_PLL_MASK); /* Set frequency data in CNTFID0 */ reg_cntfid = pll_table[modemr_pll >> MODEMR_BOOT_PLL_SHIFT]; reg = mmio_read_32(RCAR_PRR) & (PRR_PRODUCT_MASK | PRR_CUT_MASK); switch (modemr_pll) { case MD14_MD13_TYPE_0: rcar_get_board_type(&board_type, &board_rev); if (BOARD_SALVATOR_XS == board_type) { reg_cntfid = EXTAL_SALVATOR_XS; } break; case MD14_MD13_TYPE_3: if (PRR_PRODUCT_H3_CUT10 == reg) { reg_cntfid = reg_cntfid >> 1U; } break; default: /* none */ break; } #endif /* RCAR_LSI == RCAR_E3 */ /* Update memory mapped and register based frequency */ write_cntfrq_el0((u_register_t )reg_cntfid); mmio_write_32(ARM_SYS_CNTCTL_BASE + (uintptr_t)CNTFID_OFF, reg_cntfid); /* Enable counter */ mmio_setbits_32(RCAR_CNTC_BASE + (uintptr_t)CNTCR_OFF, (uint32_t)CNTCR_EN); }