1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
|
PSCI Performance Measurements on Arm Juno Development Platform
==============================================================
This document summarises the findings of performance measurements of key
operations in the Trusted Firmware-A Power State Coordination Interface (PSCI)
implementation, using the in-built Performance Measurement Framework (PMF) and
runtime instrumentation timestamps.
Method
------
We used the `Juno R1 platform`_ for these tests, which has 4 x Cortex-A53 and 2
x Cortex-A57 clusters running at the following frequencies:
+-----------------+--------------------+
| Domain | Frequency (MHz) |
+=================+====================+
| Cortex-A57 | 900 (nominal) |
+-----------------+--------------------+
| Cortex-A53 | 650 (underdrive) |
+-----------------+--------------------+
| AXI subsystem | 533 |
+-----------------+--------------------+
Juno supports CPU, cluster and system power down states, corresponding to power
levels 0, 1 and 2 respectively. It does not support any retention states.
Given that runtime instrumentation using PMF is invasive, there is a small
(unquantified) overhead on the results. PMF uses the generic counter for
timestamps, which runs at 50MHz on Juno.
The following source trees and binaries were used:
- TF-A [`v2.9-rc0`_]
- TFTF [`v2.9-rc0`_]
Please see the Runtime Instrumentation :ref:`Testing Methodology
<Runtime Instrumentation Methodology>`
page for more details.
Procedure
---------
#. Build TFTF with runtime instrumentation enabled:
.. code:: shell
make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
TESTS=runtime-instrumentation all
#. Fetch Juno's SCP binary from TF-A's archive:
.. code:: shell
curl --fail --connect-timeout 5 --retry 5 -sLS -o scp_bl2.bin \
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/juno/release/juno-bl2.bin
#. Build TF-A with the following build options:
.. code:: shell
make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
BL33="/path/to/tftf.bin" SCP_BL2="scp_bl2.bin" \
ENABLE_RUNTIME_INSTRUMENTATION=1 fiptool all fip
#. Load the following images onto the development board: ``fip.bin``,
``scp_bl2.bin``.
Results
-------
``CPU_SUSPEND`` to deepest power level
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
parallel (v2.9)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 104.58 | 241.20 | 5.26 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 384.24 | 22.50 | 138.76 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 244.56 | 22.18 | 5.16 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 670.56 | 18.58 | 4.44 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 809.36 | 269.28 | 4.44 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 984.96 | 219.70 | 79.62 |
+---------+------+-----------+--------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
parallel (v2.10)
+---------+------+-------------------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-------------------+--------+-------------+
| 0 | 0 | 242.66 (+132.03%) | 245.1 | 5.4 |
+---------+------+-------------------+--------+-------------+
| 0 | 1 | 522.08 (+35.87%) | 26.24 | 138.32 |
+---------+------+-------------------+--------+-------------+
| 1 | 0 | 104.36 (-57.33%) | 27.1 | 5.32 |
+---------+------+-------------------+--------+-------------+
| 1 | 1 | 382.56 (-42.95%) | 23.34 | 4.42 |
+---------+------+-------------------+--------+-------------+
| 1 | 2 | 807.74 | 271.54 | 4.64 |
+---------+------+-------------------+--------+-------------+
| 1 | 3 | 981.36 | 221.8 | 79.48 |
+---------+------+-------------------+--------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
serial (v2.9)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 236.56 | 23.24 | 138.18 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 236.86 | 23.28 | 138.10 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 281.04 | 22.80 | 77.24 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 100.28 | 18.52 | 4.54 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 100.12 | 18.78 | 4.50 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 100.36 | 18.94 | 4.44 |
+---------+------+-----------+--------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
serial (v2.10)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 236.84 | 27.1 | 138.36 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 236.96 | 27.1 | 138.32 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 280.06 | 26.94 | 77.5 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 100.76 | 23.42 | 4.36 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 100.02 | 23.42 | 4.44 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 100.08 | 23.2 | 4.4 |
+---------+------+-----------+--------+-------------+
``CPU_SUSPEND`` to power level 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in
parallel (v2.9)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 662.34 | 15.22 | 8.08 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 802.00 | 15.50 | 8.16 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 385.22 | 15.74 | 7.88 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 106.16 | 16.06 | 7.44 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 524.38 | 15.64 | 7.34 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 246.00 | 15.78 | 7.72 |
+---------+------+-----------+--------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in
parallel (v2.10)
+---------+------+-------------------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-------------------+--------+-------------+
| 0 | 0 | 801.04 | 18.66 | 8.22 |
+---------+------+-------------------+--------+-------------+
| 0 | 1 | 661.28 | 19.08 | 7.88 |
+---------+------+-------------------+--------+-------------+
| 1 | 0 | 105.9 (-72.51%) | 20.3 | 7.58 |
+---------+------+-------------------+--------+-------------+
| 1 | 1 | 383.58 (+261.32%) | 20.4 | 7.42 |
+---------+------+-------------------+--------+-------------+
| 1 | 2 | 523.52 | 20.1 | 7.74 |
+---------+------+-------------------+--------+-------------+
| 1 | 3 | 244.5 | 20.16 | 7.56 |
+---------+------+-------------------+--------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial (v2.9)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 99.80 | 15.94 | 5.42 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 99.76 | 15.80 | 5.24 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 278.26 | 16.16 | 4.58 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 96.88 | 16.00 | 4.52 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 96.80 | 16.12 | 4.54 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 96.88 | 16.12 | 4.54 |
+---------+------+-----------+--------+-------------+
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial (v2.10)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 99.84 | 18.86 | 5.54 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 100.2 | 18.82 | 5.66 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 278.12 | 20.56 | 4.48 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 96.68 | 20.62 | 4.3 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 96.94 | 20.14 | 4.42 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 96.68 | 20.46 | 4.32 |
+---------+------+-----------+--------+-------------+
``CPU_OFF`` on all non-lead CPUs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``CPU_OFF`` on all non-lead CPUs in sequence then, ``CPU_SUSPEND`` on the lead
core to the deepest power level.
.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs (v2.9)
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 235.76 | 26.14 | 137.80 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 235.40 | 25.72 | 137.62 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 174.70 | 22.40 | 77.26 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 100.92 | 24.04 | 4.52 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 100.68 | 22.44 | 4.36 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 101.36 | 22.70 | 4.52 |
+---------+------+-----------+--------+-------------+
.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs (v2.10)
+---------------------------------------------------+
| test_rt_instr_cpu_off_serial (latest) |
+---------+------+-----------+--------+-------------+
| Cluster | Core | Powerdown | Wakeup | Cache Flush |
+---------+------+-----------+--------+-------------+
| 0 | 0 | 236.04 | 30.02 | 137.9 |
+---------+------+-----------+--------+-------------+
| 0 | 1 | 235.38 | 29.7 | 137.72 |
+---------+------+-----------+--------+-------------+
| 1 | 0 | 175.18 | 26.96 | 77.26 |
+---------+------+-----------+--------+-------------+
| 1 | 1 | 100.56 | 28.34 | 4.32 |
+---------+------+-----------+--------+-------------+
| 1 | 2 | 100.38 | 26.82 | 4.3 |
+---------+------+-----------+--------+-------------+
| 1 | 3 | 100.86 | 26.98 | 4.42 |
+---------+------+-----------+--------+-------------+
``CPU_VERSION`` in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores (2.9)
+-------------+--------+-------------+
| Cluster | Core | Latency |
+-------------+--------+-------------+
| 0 | 0 | 1.48 |
+-------------+--------+-------------+
| 0 | 1 | 1.04 |
+-------------+--------+-------------+
| 1 | 0 | 0.56 |
+-------------+--------+-------------+
| 1 | 1 | 0.92 |
+-------------+--------+-------------+
| 1 | 2 | 0.96 |
+-------------+--------+-------------+
| 1 | 3 | 0.96 |
+-------------+--------+-------------+
.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores (2.10)
+-------------+--------+----------------------+
| Cluster | Core | Latency |
+-------------+--------+----------------------+
| 0 | 0 | 1.1 (-25.68%) |
+-------------+--------+----------------------+
| 0 | 1 | 1.06 |
+-------------+--------+----------------------+
| 1 | 0 | 0.58 |
+-------------+--------+----------------------+
| 1 | 1 | 0.88 |
+-------------+--------+----------------------+
| 1 | 2 | 0.92 |
+-------------+--------+----------------------+
| 1 | 3 | 0.9 |
+-------------+--------+----------------------+
Annotated Historic Results
--------------------------
The following results are based on the upstream `TF master as of 31/01/2017`_.
TF-A was built using the same build instructions as detailed in the procedure
above.
In the results below, CPUs 0-3 refer to CPUs in the little cluster (A53) and
CPUs 4-5 refer to CPUs in the big cluster (A57). In all cases CPU 4 is the lead
CPU.
``PSCI_ENTRY`` corresponds to the powerdown latency, ``PSCI_EXIT`` the wakeup latency, and
``CFLUSH_OVERHEAD`` the latency of the cache flush operation.
``CPU_SUSPEND`` to deepest power level on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 27 | 20 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 114 | 86 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 202 | 58 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 375 | 29 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 20 | 22 | 6 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 290 | 18 | 206 |
+-------+---------------------+--------------------+--------------------------+
A large variance in ``PSCI_ENTRY`` and ``PSCI_EXIT`` times across CPUs is
observed due to TF PSCI lock contention. In the worst case, CPU 3 has to wait
for the 3 other CPUs in the cluster (0-2) to complete ``PSCI_ENTRY`` and release
the lock before proceeding.
The ``CFLUSH_OVERHEAD`` times for CPUs 3 and 5 are higher because they are the
last CPUs in their respective clusters to power down, therefore both the L1 and
L2 caches are flushed.
The ``CFLUSH_OVERHEAD`` time for CPU 5 is a lot larger than that for CPU 3
because the L2 cache size for the big cluster is lot larger (2MB) compared to
the little cluster (1MB).
``CPU_SUSPEND`` to power level 0 on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 116 | 14 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 204 | 14 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 287 | 13 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 376 | 13 | 9 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 29 | 15 | 7 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 21 | 15 | 8 |
+-------+---------------------+--------------------+--------------------------+
There is no lock contention in TF generic code at power level 0 but the large
variance in ``PSCI_ENTRY`` times across CPUs is due to lock contention in Juno
platform code. The platform lock is used to mediate access to a single SCP
communication channel. This is compounded by the SCP firmware waiting for each
AP CPU to enter WFI before making the channel available to other CPUs, which
effectively serializes the SCP power down commands from all CPUs.
On platforms with a more efficient CPU power down mechanism, it should be
possible to make the ``PSCI_ENTRY`` times smaller and consistent.
The ``PSCI_EXIT`` times are consistent across all CPUs because TF does not
require locks at power level 0.
The ``CFLUSH_OVERHEAD`` times for all CPUs are small and consistent since only
the cache associated with power level 0 is flushed (L1).
``CPU_SUSPEND`` to deepest power level on all CPUs in sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 195 | 22 | 180 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 21 | 17 | 6 |
+-------+---------------------+--------------------+--------------------------+
The ``CFLUSH_OVERHEAD`` times for lead CPU 4 and all CPUs in the non-lead cluster
are large because all other CPUs in the cluster are powered down during the
test. The ``CPU_SUSPEND`` call powers down to the cluster level, requiring a
flush of both L1 and L2 caches.
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
to the little cluster (1MB).
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are low because lead
CPU 4 continues to run while CPU 5 is suspended. Hence CPU 5 only powers down to
level 0, which only requires L1 cache flush.
``CPU_SUSPEND`` to power level 0 on all CPUs in sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 21 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 17 | 14 | 6 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 18 | 15 | 6 |
+-------+---------------------+--------------------+--------------------------+
Here the times are small and consistent since there is no contention and it is
only necessary to flush the cache to power level 0 (L1). This is the best case
scenario.
The ``PSCI_ENTRY`` times for CPUs in the big cluster are slightly smaller than
for the CPUs in little cluster due to greater CPU performance.
The ``PSCI_EXIT`` times are generally lower than in the last test because the
cluster remains powered on throughout the test and there is less code to execute
on power on (for example, no need to enter CCI coherency)
``CPU_OFF`` on all non-lead CPUs in sequence then ``CPU_SUSPEND`` on lead CPU to deepest power level
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The test sequence here is as follows:
1. Call ``CPU_ON`` and ``CPU_OFF`` on each non-lead CPU in sequence.
2. Program wake up timer and suspend the lead CPU to the deepest power level.
3. Call ``CPU_ON`` on non-lead CPU to get the timestamps from each CPU.
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 111 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 195 | 22 | 181 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 20 | 23 | 6 |
+-------+---------------------+--------------------+--------------------------+
The ``CFLUSH_OVERHEAD`` times for all little CPUs are large because all other
CPUs in that cluster are powerered down during the test. The ``CPU_OFF`` call
powers down to the cluster level, requiring a flush of both L1 and L2 caches.
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are small because
lead CPU 4 is running and CPU 5 only powers down to level 0, which only requires
an L1 cache flush.
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
to the little cluster (1MB).
The ``PSCI_EXIT`` times for CPUs in the big cluster are slightly smaller than
for CPUs in the little cluster due to greater CPU performance. These times
generally are greater than the ``PSCI_EXIT`` times in the ``CPU_SUSPEND`` tests
because there is more code to execute in the "on finisher" compared to the
"suspend finisher" (for example, GIC redistributor register programming).
``PSCI_VERSION`` on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since very little code is associated with ``PSCI_VERSION``, this test
approximates the round trip latency for handling a fast SMC at EL3 in TF.
+-------+-------------------+
| CPU | TOTAL TIME (ns) |
+=======+===================+
| 0 | 3020 |
+-------+-------------------+
| 1 | 2940 |
+-------+-------------------+
| 2 | 2980 |
+-------+-------------------+
| 3 | 3060 |
+-------+-------------------+
| 4 | 520 |
+-------+-------------------+
| 5 | 720 |
+-------+-------------------+
The times for the big CPUs are less than the little CPUs due to greater CPU
performance.
We suspect the time for lead CPU 4 is shorter than CPU 5 due to subtle cache
effects, given that these measurements are at the nano-second level.
--------------
*Copyright (c) 2019-2023, Arm Limited and Contributors. All rights reserved.*
.. _Juno R1 platform: https://developer.arm.com/documentation/100122/latest/
.. _TF master as of 31/01/2017: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?id=c38b36d
.. _v2.9-rc0: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?h=v2.9-rc0
|