diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:47:55 +0000 |
commit | 2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4 (patch) | |
tree | 033cc839730fda84ff08db877037977be94e5e3a /vendor/crypto-bigint/src/uint/inv_mod.rs | |
parent | Initial commit. (diff) | |
download | cargo-2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4.tar.xz cargo-2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4.zip |
Adding upstream version 0.70.1+ds1.upstream/0.70.1+ds1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/crypto-bigint/src/uint/inv_mod.rs')
-rw-r--r-- | vendor/crypto-bigint/src/uint/inv_mod.rs | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/vendor/crypto-bigint/src/uint/inv_mod.rs b/vendor/crypto-bigint/src/uint/inv_mod.rs new file mode 100644 index 0000000..e41dc66 --- /dev/null +++ b/vendor/crypto-bigint/src/uint/inv_mod.rs @@ -0,0 +1,306 @@ +use super::Uint; +use crate::CtChoice; + +impl<const LIMBS: usize> Uint<LIMBS> { + /// Computes 1/`self` mod `2^k`. + /// This method is constant-time w.r.t. `self` but not `k`. + /// + /// Conditions: `self` < 2^k and `self` must be odd + pub const fn inv_mod2k_vartime(&self, k: usize) -> Self { + // Using the Algorithm 3 from "A Secure Algorithm for Inversion Modulo 2k" + // by Sadiel de la Fe and Carles Ferrer. + // See <https://www.mdpi.com/2410-387X/2/3/23>. + + // Note that we are not using Alrgorithm 4, since we have a different approach + // of enforcing constant-timeness w.r.t. `self`. + + let mut x = Self::ZERO; // keeps `x` during iterations + let mut b = Self::ONE; // keeps `b_i` during iterations + let mut i = 0; + + while i < k { + // X_i = b_i mod 2 + let x_i = b.limbs[0].0 & 1; + let x_i_choice = CtChoice::from_lsb(x_i); + // b_{i+1} = (b_i - a * X_i) / 2 + b = Self::ct_select(&b, &b.wrapping_sub(self), x_i_choice).shr_vartime(1); + // Store the X_i bit in the result (x = x | (1 << X_i)) + x = x.bitor(&Uint::from_word(x_i).shl_vartime(i)); + + i += 1; + } + + x + } + + /// Computes 1/`self` mod `2^k`. + /// + /// Conditions: `self` < 2^k and `self` must be odd + pub const fn inv_mod2k(&self, k: usize) -> Self { + // This is the same algorithm as in `inv_mod2k_vartime()`, + // but made constant-time w.r.t `k` as well. + + let mut x = Self::ZERO; // keeps `x` during iterations + let mut b = Self::ONE; // keeps `b_i` during iterations + let mut i = 0; + + while i < Self::BITS { + // Only iterations for i = 0..k need to change `x`, + // the rest are dummy ones performed for the sake of constant-timeness. + let within_range = CtChoice::from_usize_lt(i, k); + + // X_i = b_i mod 2 + let x_i = b.limbs[0].0 & 1; + let x_i_choice = CtChoice::from_lsb(x_i); + // b_{i+1} = (b_i - a * X_i) / 2 + b = Self::ct_select(&b, &b.wrapping_sub(self), x_i_choice).shr_vartime(1); + + // Store the X_i bit in the result (x = x | (1 << X_i)) + // Don't change the result in dummy iterations. + let x_i_choice = x_i_choice.and(within_range); + x = x.set_bit(i, x_i_choice); + + i += 1; + } + + x + } + + /// Computes the multiplicative inverse of `self` mod `modulus`, where `modulus` is odd. + /// In other words `self^-1 mod modulus`. + /// `bits` and `modulus_bits` are the bounds on the bit size + /// of `self` and `modulus`, respectively + /// (the inversion speed will be proportional to `bits + modulus_bits`). + /// The second element of the tuple is the truthy value if an inverse exists, + /// otherwise it is a falsy value. + /// + /// **Note:** variable time in `bits` and `modulus_bits`. + /// + /// The algorithm is the same as in GMP 6.2.1's `mpn_sec_invert`. + pub const fn inv_odd_mod_bounded( + &self, + modulus: &Self, + bits: usize, + modulus_bits: usize, + ) -> (Self, CtChoice) { + debug_assert!(modulus.ct_is_odd().is_true_vartime()); + + let mut a = *self; + + let mut u = Uint::ONE; + let mut v = Uint::ZERO; + + let mut b = *modulus; + + // `bit_size` can be anything >= `self.bits()` + `modulus.bits()`, setting to the minimum. + let bit_size = bits + modulus_bits; + + let mut m1hp = *modulus; + let (m1hp_new, carry) = m1hp.shr_1(); + debug_assert!(carry.is_true_vartime()); + m1hp = m1hp_new.wrapping_add(&Uint::ONE); + + let mut i = 0; + while i < bit_size { + debug_assert!(b.ct_is_odd().is_true_vartime()); + + let self_odd = a.ct_is_odd(); + + // Set `self -= b` if `self` is odd. + let (new_a, swap) = a.conditional_wrapping_sub(&b, self_odd); + // Set `b += self` if `swap` is true. + b = Uint::ct_select(&b, &b.wrapping_add(&new_a), swap); + // Negate `self` if `swap` is true. + a = new_a.conditional_wrapping_neg(swap); + + let (new_u, new_v) = Uint::ct_swap(&u, &v, swap); + let (new_u, cy) = new_u.conditional_wrapping_sub(&new_v, self_odd); + let (new_u, cyy) = new_u.conditional_wrapping_add(modulus, cy); + debug_assert!(cy.is_true_vartime() == cyy.is_true_vartime()); + + let (new_a, overflow) = a.shr_1(); + debug_assert!(!overflow.is_true_vartime()); + let (new_u, cy) = new_u.shr_1(); + let (new_u, cy) = new_u.conditional_wrapping_add(&m1hp, cy); + debug_assert!(!cy.is_true_vartime()); + + a = new_a; + u = new_u; + v = new_v; + + i += 1; + } + + debug_assert!(!a.ct_is_nonzero().is_true_vartime()); + + (v, Uint::ct_eq(&b, &Uint::ONE)) + } + + /// Computes the multiplicative inverse of `self` mod `modulus`, where `modulus` is odd. + /// Returns `(inverse, CtChoice::TRUE)` if an inverse exists, + /// otherwise `(undefined, CtChoice::FALSE)`. + pub const fn inv_odd_mod(&self, modulus: &Self) -> (Self, CtChoice) { + self.inv_odd_mod_bounded(modulus, Uint::<LIMBS>::BITS, Uint::<LIMBS>::BITS) + } + + /// Computes the multiplicative inverse of `self` mod `modulus`. + /// Returns `(inverse, CtChoice::TRUE)` if an inverse exists, + /// otherwise `(undefined, CtChoice::FALSE)`. + pub const fn inv_mod(&self, modulus: &Self) -> (Self, CtChoice) { + // Decompose `modulus = s * 2^k` where `s` is odd + let k = modulus.trailing_zeros(); + let s = modulus.shr(k); + + // Decompose `self` into RNS with moduli `2^k` and `s` and calculate the inverses. + // Using the fact that `(z^{-1} mod (m1 * m2)) mod m1 == z^{-1} mod m1` + let (a, a_is_some) = self.inv_odd_mod(&s); + let b = self.inv_mod2k(k); + // inverse modulo 2^k exists either if `k` is 0 or if `self` is odd. + let b_is_some = CtChoice::from_usize_being_nonzero(k) + .not() + .or(self.ct_is_odd()); + + // Restore from RNS: + // self^{-1} = a mod s = b mod 2^k + // => self^{-1} = a + s * ((b - a) * s^(-1) mod 2^k) + // (essentially one step of the Garner's algorithm for recovery from RNS). + + let m_odd_inv = s.inv_mod2k(k); // `s` is odd, so this always exists + + // This part is mod 2^k + let mask = Uint::ONE.shl(k).wrapping_sub(&Uint::ONE); + let t = (b.wrapping_sub(&a).wrapping_mul(&m_odd_inv)).bitand(&mask); + + // Will not overflow since `a <= s - 1`, `t <= 2^k - 1`, + // so `a + s * t <= s * 2^k - 1 == modulus - 1`. + let result = a.wrapping_add(&s.wrapping_mul(&t)); + (result, a_is_some.and(b_is_some)) + } +} + +#[cfg(test)] +mod tests { + use crate::{U1024, U256, U64}; + + #[test] + fn inv_mod2k() { + let v = + U256::from_be_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"); + let e = + U256::from_be_hex("3642e6faeaac7c6663b93d3d6a0d489e434ddc0123db5fa627c7f6e22ddacacf"); + let a = v.inv_mod2k(256); + assert_eq!(e, a); + + let v = + U256::from_be_hex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"); + let e = + U256::from_be_hex("261776f29b6b106c7680cf3ed83054a1af5ae537cb4613dbb4f20099aa774ec1"); + let a = v.inv_mod2k(256); + assert_eq!(e, a); + } + + #[test] + fn test_invert_odd() { + let a = U1024::from_be_hex(concat![ + "000225E99153B467A5B451979A3F451DAEF3BF8D6C6521D2FA24BBB17F29544E", + "347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8", + "BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8", + "382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985" + ]); + let m = U1024::from_be_hex(concat![ + "D509E7854ABDC81921F669F1DC6F61359523F3949803E58ED4EA8BC16483DC6F", + "37BFE27A9AC9EEA2969B357ABC5C0EE214BE16A7D4C58FC620D5B5A20AFF001A", + "D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C", + "558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156767" + ]); + let expected = U1024::from_be_hex(concat![ + "B03623284B0EBABCABD5C5881893320281460C0A8E7BF4BFDCFFCBCCBF436A55", + "D364235C8171E46C7D21AAD0680676E57274A8FDA6D12768EF961CACDD2DAE57", + "88D93DA5EB8EDC391EE3726CDCF4613C539F7D23E8702200CB31B5ED5B06E5CA", + "3E520968399B4017BF98A864FABA2B647EFC4998B56774D4F2CB026BC024A336" + ]); + + let (res, is_some) = a.inv_odd_mod(&m); + assert!(is_some.is_true_vartime()); + assert_eq!(res, expected); + + // Even though it is less efficient, it still works + let (res, is_some) = a.inv_mod(&m); + assert!(is_some.is_true_vartime()); + assert_eq!(res, expected); + } + + #[test] + fn test_invert_even() { + let a = U1024::from_be_hex(concat![ + "000225E99153B467A5B451979A3F451DAEF3BF8D6C6521D2FA24BBB17F29544E", + "347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8", + "BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8", + "382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985" + ]); + let m = U1024::from_be_hex(concat![ + "D509E7854ABDC81921F669F1DC6F61359523F3949803E58ED4EA8BC16483DC6F", + "37BFE27A9AC9EEA2969B357ABC5C0EE214BE16A7D4C58FC620D5B5A20AFF001A", + "D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C", + "558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156000" + ]); + let expected = U1024::from_be_hex(concat![ + "1EBF391306817E1BC610E213F4453AD70911CCBD59A901B2A468A4FC1D64F357", + "DBFC6381EC5635CAA664DF280028AF4651482C77A143DF38D6BFD4D64B6C0225", + "FC0E199B15A64966FB26D88A86AD144271F6BDCD3D63193AB2B3CC53B99F21A3", + "5B9BFAE5D43C6BC6E7A9856C71C7318C76530E9E5AE35882D5ABB02F1696874D", + ]); + + let (res, is_some) = a.inv_mod(&m); + assert!(is_some.is_true_vartime()); + assert_eq!(res, expected); + } + + #[test] + fn test_invert_bounded() { + let a = U1024::from_be_hex(concat![ + "0000000000000000000000000000000000000000000000000000000000000000", + "347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8", + "BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8", + "382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985" + ]); + let m = U1024::from_be_hex(concat![ + "0000000000000000000000000000000000000000000000000000000000000000", + "0000000000000000000000000000000000000000000000000000000000000000", + "D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C", + "558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156767" + ]); + + let (res, is_some) = a.inv_odd_mod_bounded(&m, 768, 512); + + let expected = U1024::from_be_hex(concat![ + "0000000000000000000000000000000000000000000000000000000000000000", + "0000000000000000000000000000000000000000000000000000000000000000", + "0DCC94E2FE509E6EBBA0825645A38E73EF85D5927C79C1AD8FFE7C8DF9A822FA", + "09EB396A21B1EF05CBE51E1A8EF284EF01EBDD36A9A4EA17039D8EEFDD934768" + ]); + assert!(is_some.is_true_vartime()); + assert_eq!(res, expected); + } + + #[test] + fn test_invert_small() { + let a = U64::from(3u64); + let m = U64::from(13u64); + + let (res, is_some) = a.inv_odd_mod(&m); + + assert!(is_some.is_true_vartime()); + assert_eq!(U64::from(9u64), res); + } + + #[test] + fn test_no_inverse_small() { + let a = U64::from(14u64); + let m = U64::from(49u64); + + let (_res, is_some) = a.inv_odd_mod(&m); + + assert!(!is_some.is_true_vartime()); + } +} |