summaryrefslogtreecommitdiffstats
path: root/vendor/group/src/wnaf.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 12:47:55 +0000
commit2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4 (patch)
tree033cc839730fda84ff08db877037977be94e5e3a /vendor/group/src/wnaf.rs
parentInitial commit. (diff)
downloadcargo-upstream.tar.xz
cargo-upstream.zip
Adding upstream version 0.70.1+ds1.upstream/0.70.1+ds1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--vendor/group/src/wnaf.rs506
1 files changed, 506 insertions, 0 deletions
diff --git a/vendor/group/src/wnaf.rs b/vendor/group/src/wnaf.rs
new file mode 100644
index 0000000..175d676
--- /dev/null
+++ b/vendor/group/src/wnaf.rs
@@ -0,0 +1,506 @@
+use alloc::vec::Vec;
+use core::iter;
+use core::marker::PhantomData;
+use core::ops::Mul;
+
+use ff::PrimeField;
+
+use super::Group;
+
+/// Extension trait on a [`Group`] that provides helpers used by [`Wnaf`].
+pub trait WnafGroup: Group {
+ /// Recommends a wNAF window size given the number of scalars you intend to multiply
+ /// a base by. Always returns a number between 2 and 22, inclusive.
+ fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize;
+}
+
+/// Replaces the contents of `table` with a w-NAF window table for the given window size.
+pub(crate) fn wnaf_table<G: Group>(table: &mut Vec<G>, mut base: G, window: usize) {
+ table.truncate(0);
+ table.reserve(1 << (window - 1));
+
+ let dbl = base.double();
+
+ for _ in 0..(1 << (window - 1)) {
+ table.push(base);
+ base.add_assign(&dbl);
+ }
+}
+
+/// This struct represents a view of a sequence of bytes as a sequence of
+/// `u64` limbs in little-endian byte order. It maintains a current index, and
+/// allows access to the limb at that index and the one following it. Bytes
+/// beyond the end of the original buffer are treated as zero.
+struct LimbBuffer<'a> {
+ buf: &'a [u8],
+ cur_idx: usize,
+ cur_limb: u64,
+ next_limb: u64,
+}
+
+impl<'a> LimbBuffer<'a> {
+ fn new(buf: &'a [u8]) -> Self {
+ let mut ret = Self {
+ buf,
+ cur_idx: 0,
+ cur_limb: 0,
+ next_limb: 0,
+ };
+
+ // Initialise the limb buffers.
+ ret.increment_limb();
+ ret.increment_limb();
+ ret.cur_idx = 0usize;
+
+ ret
+ }
+
+ fn increment_limb(&mut self) {
+ self.cur_idx += 1;
+ self.cur_limb = self.next_limb;
+ match self.buf.len() {
+ // There are no more bytes in the buffer; zero-extend.
+ 0 => self.next_limb = 0,
+
+ // There are fewer bytes in the buffer than a u64 limb; zero-extend.
+ x @ 1..=7 => {
+ let mut next_limb = [0; 8];
+ next_limb[..x].copy_from_slice(self.buf);
+ self.next_limb = u64::from_le_bytes(next_limb);
+ self.buf = &[];
+ }
+
+ // There are at least eight bytes in the buffer; read the next u64 limb.
+ _ => {
+ let (next_limb, rest) = self.buf.split_at(8);
+ self.next_limb = u64::from_le_bytes(next_limb.try_into().unwrap());
+ self.buf = rest;
+ }
+ }
+ }
+
+ fn get(&mut self, idx: usize) -> (u64, u64) {
+ assert!([self.cur_idx, self.cur_idx + 1].contains(&idx));
+ if idx > self.cur_idx {
+ self.increment_limb();
+ }
+ (self.cur_limb, self.next_limb)
+ }
+}
+
+/// Replaces the contents of `wnaf` with the w-NAF representation of a little-endian
+/// scalar.
+pub(crate) fn wnaf_form<S: AsRef<[u8]>>(wnaf: &mut Vec<i64>, c: S, window: usize) {
+ // Required by the NAF definition
+ debug_assert!(window >= 2);
+ // Required so that the NAF digits fit in i64
+ debug_assert!(window <= 64);
+
+ let bit_len = c.as_ref().len() * 8;
+
+ wnaf.truncate(0);
+ wnaf.reserve(bit_len);
+
+ // Initialise the current and next limb buffers.
+ let mut limbs = LimbBuffer::new(c.as_ref());
+
+ let width = 1u64 << window;
+ let window_mask = width - 1;
+
+ let mut pos = 0;
+ let mut carry = 0;
+ while pos < bit_len {
+ // Construct a buffer of bits of the scalar, starting at bit `pos`
+ let u64_idx = pos / 64;
+ let bit_idx = pos % 64;
+ let (cur_u64, next_u64) = limbs.get(u64_idx);
+ let bit_buf = if bit_idx + window < 64 {
+ // This window's bits are contained in a single u64
+ cur_u64 >> bit_idx
+ } else {
+ // Combine the current u64's bits with the bits from the next u64
+ (cur_u64 >> bit_idx) | (next_u64 << (64 - bit_idx))
+ };
+
+ // Add the carry into the current window
+ let window_val = carry + (bit_buf & window_mask);
+
+ if window_val & 1 == 0 {
+ // If the window value is even, preserve the carry and emit 0.
+ // Why is the carry preserved?
+ // If carry == 0 and window_val & 1 == 0, then the next carry should be 0
+ // If carry == 1 and window_val & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
+ wnaf.push(0);
+ pos += 1;
+ } else {
+ wnaf.push(if window_val < width / 2 {
+ carry = 0;
+ window_val as i64
+ } else {
+ carry = 1;
+ (window_val as i64).wrapping_sub(width as i64)
+ });
+ wnaf.extend(iter::repeat(0).take(window - 1));
+ pos += window;
+ }
+ }
+}
+
+/// Performs w-NAF exponentiation with the provided window table and w-NAF form scalar.
+///
+/// This function must be provided a `table` and `wnaf` that were constructed with
+/// the same window size; otherwise, it may panic or produce invalid results.
+pub(crate) fn wnaf_exp<G: Group>(table: &[G], wnaf: &[i64]) -> G {
+ let mut result = G::identity();
+
+ let mut found_one = false;
+
+ for n in wnaf.iter().rev() {
+ if found_one {
+ result = result.double();
+ }
+
+ if *n != 0 {
+ found_one = true;
+
+ if *n > 0 {
+ result += &table[(n / 2) as usize];
+ } else {
+ result -= &table[((-n) / 2) as usize];
+ }
+ }
+ }
+
+ result
+}
+
+/// A "w-ary non-adjacent form" scalar multiplication (also known as exponentiation)
+/// context.
+///
+/// # Examples
+///
+/// This struct can be used to implement several patterns:
+///
+/// ## One base, one scalar
+///
+/// For this pattern, you can use a transient `Wnaf` context:
+///
+/// ```ignore
+/// use group::Wnaf;
+///
+/// let result = Wnaf::new().scalar(&scalar).base(base);
+/// ```
+///
+/// ## Many bases, one scalar
+///
+/// For this pattern, you create a `Wnaf` context, load the scalar into it, and then
+/// process each base in turn:
+///
+/// ```ignore
+/// use group::Wnaf;
+///
+/// let mut wnaf = Wnaf::new();
+/// let mut wnaf_scalar = wnaf.scalar(&scalar);
+/// let results: Vec<_> = bases
+/// .into_iter()
+/// .map(|base| wnaf_scalar.base(base))
+/// .collect();
+/// ```
+///
+/// ## One base, many scalars
+///
+/// For this pattern, you create a `Wnaf` context, load the base into it, and then process
+/// each scalar in turn:
+///
+/// ```ignore
+/// use group::Wnaf;
+///
+/// let mut wnaf = Wnaf::new();
+/// let mut wnaf_base = wnaf.base(base, scalars.len());
+/// let results: Vec<_> = scalars
+/// .iter()
+/// .map(|scalar| wnaf_base.scalar(scalar))
+/// .collect();
+/// ```
+///
+/// ## Many bases, many scalars
+///
+/// Say you have `n` bases and `m` scalars, and want to produce `n * m` results. For this
+/// pattern, you need to cache the w-NAF tables for the bases and then compute the w-NAF
+/// form of the scalars on the fly for every base, or vice versa:
+///
+/// ```ignore
+/// use group::Wnaf;
+///
+/// let mut wnaf_contexts: Vec<_> = (0..bases.len()).map(|_| Wnaf::new()).collect();
+/// let mut wnaf_bases: Vec<_> = wnaf_contexts
+/// .iter_mut()
+/// .zip(bases)
+/// .map(|(wnaf, base)| wnaf.base(base, scalars.len()))
+/// .collect();
+/// let results: Vec<_> = wnaf_bases
+/// .iter()
+/// .flat_map(|wnaf_base| scalars.iter().map(|scalar| wnaf_base.scalar(scalar)))
+/// .collect();
+/// ```
+///
+/// Alternatively, use the [`WnafBase`] and [`WnafScalar`] types, which enable the various
+/// tables and w-NAF forms to be cached individually per base and scalar. These types can
+/// then be directly multiplied without any additional runtime work, at the cost of fixing
+/// a specific window size (rather than choosing the window size dynamically).
+#[derive(Debug)]
+pub struct Wnaf<W, B, S> {
+ base: B,
+ scalar: S,
+ window_size: W,
+}
+
+impl<G: Group> Wnaf<(), Vec<G>, Vec<i64>> {
+ /// Construct a new wNAF context without allocating.
+ pub fn new() -> Self {
+ Wnaf {
+ base: vec![],
+ scalar: vec![],
+ window_size: (),
+ }
+ }
+}
+
+#[cfg(feature = "wnaf-memuse")]
+impl<G: Group + memuse::DynamicUsage> memuse::DynamicUsage for Wnaf<(), Vec<G>, Vec<i64>> {
+ fn dynamic_usage(&self) -> usize {
+ self.base.dynamic_usage() + self.scalar.dynamic_usage()
+ }
+
+ fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
+ let (base_lower, base_upper) = self.base.dynamic_usage_bounds();
+ let (scalar_lower, scalar_upper) = self.scalar.dynamic_usage_bounds();
+
+ (
+ base_lower + scalar_lower,
+ base_upper.zip(scalar_upper).map(|(a, b)| a + b),
+ )
+ }
+}
+
+impl<G: WnafGroup> Wnaf<(), Vec<G>, Vec<i64>> {
+ /// Given a base and a number of scalars, compute a window table and return a `Wnaf` object that
+ /// can perform exponentiations with `.scalar(..)`.
+ pub fn base(&mut self, base: G, num_scalars: usize) -> Wnaf<usize, &[G], &mut Vec<i64>> {
+ // Compute the appropriate window size based on the number of scalars.
+ let window_size = G::recommended_wnaf_for_num_scalars(num_scalars);
+
+ // Compute a wNAF table for the provided base and window size.
+ wnaf_table(&mut self.base, base, window_size);
+
+ // Return a Wnaf object that immutably borrows the computed base storage location,
+ // but mutably borrows the scalar storage location.
+ Wnaf {
+ base: &self.base[..],
+ scalar: &mut self.scalar,
+ window_size,
+ }
+ }
+
+ /// Given a scalar, compute its wNAF representation and return a `Wnaf` object that can perform
+ /// exponentiations with `.base(..)`.
+ pub fn scalar(&mut self, scalar: &<G as Group>::Scalar) -> Wnaf<usize, &mut Vec<G>, &[i64]> {
+ // We hard-code a window size of 4.
+ let window_size = 4;
+
+ // Compute the wNAF form of the scalar.
+ wnaf_form(&mut self.scalar, scalar.to_repr(), window_size);
+
+ // Return a Wnaf object that mutably borrows the base storage location, but
+ // immutably borrows the computed wNAF form scalar location.
+ Wnaf {
+ base: &mut self.base,
+ scalar: &self.scalar[..],
+ window_size,
+ }
+ }
+}
+
+impl<'a, G: Group> Wnaf<usize, &'a [G], &'a mut Vec<i64>> {
+ /// Constructs new space for the scalar representation while borrowing
+ /// the computed window table, for sending the window table across threads.
+ pub fn shared(&self) -> Wnaf<usize, &'a [G], Vec<i64>> {
+ Wnaf {
+ base: self.base,
+ scalar: vec![],
+ window_size: self.window_size,
+ }
+ }
+}
+
+#[cfg(feature = "wnaf-memuse")]
+impl<'a, G: Group> memuse::DynamicUsage for Wnaf<usize, &'a [G], Vec<i64>> {
+ fn dynamic_usage(&self) -> usize {
+ // The heap memory for the window table is counted in the parent `Wnaf`.
+ self.scalar.dynamic_usage()
+ }
+
+ fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
+ self.scalar.dynamic_usage_bounds()
+ }
+}
+
+impl<'a, G: Group> Wnaf<usize, &'a mut Vec<G>, &'a [i64]> {
+ /// Constructs new space for the window table while borrowing
+ /// the computed scalar representation, for sending the scalar representation
+ /// across threads.
+ pub fn shared(&self) -> Wnaf<usize, Vec<G>, &'a [i64]> {
+ Wnaf {
+ base: vec![],
+ scalar: self.scalar,
+ window_size: self.window_size,
+ }
+ }
+}
+
+#[cfg(feature = "wnaf-memuse")]
+impl<'a, G: Group + memuse::DynamicUsage> memuse::DynamicUsage for Wnaf<usize, Vec<G>, &'a [i64]> {
+ fn dynamic_usage(&self) -> usize {
+ // The heap memory for the scalar representation is counted in the parent `Wnaf`.
+ self.base.dynamic_usage()
+ }
+
+ fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
+ self.base.dynamic_usage_bounds()
+ }
+}
+
+impl<B, S: AsRef<[i64]>> Wnaf<usize, B, S> {
+ /// Performs exponentiation given a base.
+ pub fn base<G: Group>(&mut self, base: G) -> G
+ where
+ B: AsMut<Vec<G>>,
+ {
+ wnaf_table(self.base.as_mut(), base, self.window_size);
+ wnaf_exp(self.base.as_mut(), self.scalar.as_ref())
+ }
+}
+
+impl<B, S: AsMut<Vec<i64>>> Wnaf<usize, B, S> {
+ /// Performs exponentiation given a scalar.
+ pub fn scalar<G: Group>(&mut self, scalar: &<G as Group>::Scalar) -> G
+ where
+ B: AsRef<[G]>,
+ {
+ wnaf_form(self.scalar.as_mut(), scalar.to_repr(), self.window_size);
+ wnaf_exp(self.base.as_ref(), self.scalar.as_mut())
+ }
+}
+
+/// A "w-ary non-adjacent form" scalar, that uses precomputation to improve the speed of
+/// scalar multiplication.
+///
+/// # Examples
+///
+/// See [`WnafBase`] for usage examples.
+#[derive(Clone, Debug)]
+pub struct WnafScalar<F: PrimeField, const WINDOW_SIZE: usize> {
+ wnaf: Vec<i64>,
+ field: PhantomData<F>,
+}
+
+#[cfg(feature = "wnaf-memuse")]
+impl<F: PrimeField, const WINDOW_SIZE: usize> memuse::DynamicUsage for WnafScalar<F, WINDOW_SIZE> {
+ fn dynamic_usage(&self) -> usize {
+ self.wnaf.dynamic_usage()
+ }
+
+ fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
+ self.wnaf.dynamic_usage_bounds()
+ }
+}
+
+impl<F: PrimeField, const WINDOW_SIZE: usize> WnafScalar<F, WINDOW_SIZE> {
+ /// Computes the w-NAF representation of the given scalar with the specified
+ /// `WINDOW_SIZE`.
+ pub fn new(scalar: &F) -> Self {
+ let mut wnaf = vec![];
+
+ // Compute the w-NAF form of the scalar.
+ wnaf_form(&mut wnaf, scalar.to_repr(), WINDOW_SIZE);
+
+ WnafScalar {
+ wnaf,
+ field: PhantomData::default(),
+ }
+ }
+}
+
+/// A fixed window table for a group element, precomputed to improve the speed of scalar
+/// multiplication.
+///
+/// This struct is designed for usage patterns that have long-term cached bases and/or
+/// scalars, or [Cartesian products] of bases and scalars. The [`Wnaf`] API enables one or
+/// the other to be cached, but requires either the base window tables or the scalar w-NAF
+/// forms to be computed repeatedly on the fly, which can become a significant performance
+/// issue for some use cases.
+///
+/// `WnafBase` and [`WnafScalar`] enable an alternative trade-off: by fixing the window
+/// size at compile time, the precomputations are guaranteed to only occur once per base
+/// and once per scalar. Users should select their window size based on how long the bases
+/// are expected to live; a larger window size will consume more memory and take longer to
+/// precompute, but result in faster scalar multiplications.
+///
+/// [Cartesian products]: https://en.wikipedia.org/wiki/Cartesian_product
+///
+/// # Examples
+///
+/// ```ignore
+/// use group::{WnafBase, WnafScalar};
+///
+/// let wnaf_bases: Vec<_> = bases.into_iter().map(WnafBase::<_, 4>::new).collect();
+/// let wnaf_scalars: Vec<_> = scalars.iter().map(WnafScalar::new).collect();
+/// let results: Vec<_> = wnaf_bases
+/// .iter()
+/// .flat_map(|base| wnaf_scalars.iter().map(|scalar| base * scalar))
+/// .collect();
+/// ```
+///
+/// Note that this pattern requires specifying a fixed window size (unlike previous
+/// patterns that picked a suitable window size internally). This is necessary to ensure
+/// in the type system that the base and scalar `Wnaf`s were computed with the same window
+/// size, allowing the result to be computed infallibly.
+#[derive(Clone, Debug)]
+pub struct WnafBase<G: Group, const WINDOW_SIZE: usize> {
+ table: Vec<G>,
+}
+
+#[cfg(feature = "wnaf-memuse")]
+impl<G: Group + memuse::DynamicUsage, const WINDOW_SIZE: usize> memuse::DynamicUsage
+ for WnafBase<G, WINDOW_SIZE>
+{
+ fn dynamic_usage(&self) -> usize {
+ self.table.dynamic_usage()
+ }
+
+ fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
+ self.table.dynamic_usage_bounds()
+ }
+}
+
+impl<G: Group, const WINDOW_SIZE: usize> WnafBase<G, WINDOW_SIZE> {
+ /// Computes a window table for the given base with the specified `WINDOW_SIZE`.
+ pub fn new(base: G) -> Self {
+ let mut table = vec![];
+
+ // Compute a window table for the provided base and window size.
+ wnaf_table(&mut table, base, WINDOW_SIZE);
+
+ WnafBase { table }
+ }
+}
+
+impl<G: Group, const WINDOW_SIZE: usize> Mul<&WnafScalar<G::Scalar, WINDOW_SIZE>>
+ for &WnafBase<G, WINDOW_SIZE>
+{
+ type Output = G;
+
+ fn mul(self, rhs: &WnafScalar<G::Scalar, WINDOW_SIZE>) -> Self::Output {
+ wnaf_exp(&self.table, &rhs.wnaf)
+ }
+}