diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:47:55 +0000 |
commit | 2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4 (patch) | |
tree | 033cc839730fda84ff08db877037977be94e5e3a /vendor/hashbrown/src/raw | |
parent | Initial commit. (diff) | |
download | cargo-2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4.tar.xz cargo-2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4.zip |
Adding upstream version 0.70.1+ds1.upstream/0.70.1+ds1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/hashbrown/src/raw')
-rw-r--r-- | vendor/hashbrown/src/raw/alloc.rs | 86 | ||||
-rw-r--r-- | vendor/hashbrown/src/raw/bitmask.rs | 133 | ||||
-rw-r--r-- | vendor/hashbrown/src/raw/generic.rs | 157 | ||||
-rw-r--r-- | vendor/hashbrown/src/raw/mod.rs | 4478 | ||||
-rw-r--r-- | vendor/hashbrown/src/raw/neon.rs | 124 | ||||
-rw-r--r-- | vendor/hashbrown/src/raw/sse2.rs | 149 |
6 files changed, 5127 insertions, 0 deletions
diff --git a/vendor/hashbrown/src/raw/alloc.rs b/vendor/hashbrown/src/raw/alloc.rs new file mode 100644 index 0000000..15299e7 --- /dev/null +++ b/vendor/hashbrown/src/raw/alloc.rs @@ -0,0 +1,86 @@ +pub(crate) use self::inner::{do_alloc, Allocator, Global}; + +// Nightly-case. +// Use unstable `allocator_api` feature. +// This is compatible with `allocator-api2` which can be enabled or not. +// This is used when building for `std`. +#[cfg(feature = "nightly")] +mod inner { + use crate::alloc::alloc::Layout; + pub use crate::alloc::alloc::{Allocator, Global}; + use core::ptr::NonNull; + + #[allow(clippy::map_err_ignore)] + pub(crate) fn do_alloc<A: Allocator>(alloc: &A, layout: Layout) -> Result<NonNull<u8>, ()> { + match alloc.allocate(layout) { + Ok(ptr) => Ok(ptr.as_non_null_ptr()), + Err(_) => Err(()), + } + } +} + +// Basic non-nightly case. +// This uses `allocator-api2` enabled by default. +// If any crate enables "nightly" in `allocator-api2`, +// this will be equivalent to the nightly case, +// since `allocator_api2::alloc::Allocator` would be re-export of +// `core::alloc::Allocator`. +#[cfg(all(not(feature = "nightly"), feature = "allocator-api2"))] +mod inner { + use crate::alloc::alloc::Layout; + pub use allocator_api2::alloc::{Allocator, Global}; + use core::ptr::NonNull; + + #[allow(clippy::map_err_ignore)] + pub(crate) fn do_alloc<A: Allocator>(alloc: &A, layout: Layout) -> Result<NonNull<u8>, ()> { + match alloc.allocate(layout) { + Ok(ptr) => Ok(ptr.cast()), + Err(_) => Err(()), + } + } +} + +// No-defaults case. +// When building with default-features turned off and +// neither `nightly` nor `allocator-api2` is enabled, +// this will be used. +// Making it impossible to use any custom allocator with collections defined +// in this crate. +// Any crate in build-tree can enable `allocator-api2`, +// or `nightly` without disturbing users that don't want to use it. +#[cfg(not(any(feature = "nightly", feature = "allocator-api2")))] +mod inner { + use crate::alloc::alloc::{alloc, dealloc, Layout}; + use core::ptr::NonNull; + + #[allow(clippy::missing_safety_doc)] // not exposed outside of this crate + pub unsafe trait Allocator { + fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()>; + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout); + } + + #[derive(Copy, Clone)] + pub struct Global; + + unsafe impl Allocator for Global { + #[inline] + fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()> { + unsafe { NonNull::new(alloc(layout)).ok_or(()) } + } + #[inline] + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { + dealloc(ptr.as_ptr(), layout); + } + } + + impl Default for Global { + #[inline] + fn default() -> Self { + Global + } + } + + pub(crate) fn do_alloc<A: Allocator>(alloc: &A, layout: Layout) -> Result<NonNull<u8>, ()> { + alloc.allocate(layout) + } +} diff --git a/vendor/hashbrown/src/raw/bitmask.rs b/vendor/hashbrown/src/raw/bitmask.rs new file mode 100644 index 0000000..6576b3c --- /dev/null +++ b/vendor/hashbrown/src/raw/bitmask.rs @@ -0,0 +1,133 @@ +use super::imp::{ + BitMaskWord, NonZeroBitMaskWord, BITMASK_ITER_MASK, BITMASK_MASK, BITMASK_STRIDE, +}; + +/// A bit mask which contains the result of a `Match` operation on a `Group` and +/// allows iterating through them. +/// +/// The bit mask is arranged so that low-order bits represent lower memory +/// addresses for group match results. +/// +/// For implementation reasons, the bits in the set may be sparsely packed with +/// groups of 8 bits representing one element. If any of these bits are non-zero +/// then this element is considered to true in the mask. If this is the +/// case, `BITMASK_STRIDE` will be 8 to indicate a divide-by-8 should be +/// performed on counts/indices to normalize this difference. `BITMASK_MASK` is +/// similarly a mask of all the actually-used bits. +/// +/// To iterate over a bit mask, it must be converted to a form where only 1 bit +/// is set per element. This is done by applying `BITMASK_ITER_MASK` on the +/// mask bits. +#[derive(Copy, Clone)] +pub(crate) struct BitMask(pub(crate) BitMaskWord); + +#[allow(clippy::use_self)] +impl BitMask { + /// Returns a new `BitMask` with all bits inverted. + #[inline] + #[must_use] + #[allow(dead_code)] + pub(crate) fn invert(self) -> Self { + BitMask(self.0 ^ BITMASK_MASK) + } + + /// Returns a new `BitMask` with the lowest bit removed. + #[inline] + #[must_use] + fn remove_lowest_bit(self) -> Self { + BitMask(self.0 & (self.0 - 1)) + } + + /// Returns whether the `BitMask` has at least one set bit. + #[inline] + pub(crate) fn any_bit_set(self) -> bool { + self.0 != 0 + } + + /// Returns the first set bit in the `BitMask`, if there is one. + #[inline] + pub(crate) fn lowest_set_bit(self) -> Option<usize> { + if let Some(nonzero) = NonZeroBitMaskWord::new(self.0) { + Some(Self::nonzero_trailing_zeros(nonzero)) + } else { + None + } + } + + /// Returns the number of trailing zeroes in the `BitMask`. + #[inline] + pub(crate) fn trailing_zeros(self) -> usize { + // ARM doesn't have a trailing_zeroes instruction, and instead uses + // reverse_bits (RBIT) + leading_zeroes (CLZ). However older ARM + // versions (pre-ARMv7) don't have RBIT and need to emulate it + // instead. Since we only have 1 bit set in each byte on ARM, we can + // use swap_bytes (REV) + leading_zeroes instead. + if cfg!(target_arch = "arm") && BITMASK_STRIDE % 8 == 0 { + self.0.swap_bytes().leading_zeros() as usize / BITMASK_STRIDE + } else { + self.0.trailing_zeros() as usize / BITMASK_STRIDE + } + } + + /// Same as above but takes a `NonZeroBitMaskWord`. + #[inline] + fn nonzero_trailing_zeros(nonzero: NonZeroBitMaskWord) -> usize { + if cfg!(target_arch = "arm") && BITMASK_STRIDE % 8 == 0 { + // SAFETY: A byte-swapped non-zero value is still non-zero. + let swapped = unsafe { NonZeroBitMaskWord::new_unchecked(nonzero.get().swap_bytes()) }; + swapped.leading_zeros() as usize / BITMASK_STRIDE + } else { + nonzero.trailing_zeros() as usize / BITMASK_STRIDE + } + } + + /// Returns the number of leading zeroes in the `BitMask`. + #[inline] + pub(crate) fn leading_zeros(self) -> usize { + self.0.leading_zeros() as usize / BITMASK_STRIDE + } +} + +impl IntoIterator for BitMask { + type Item = usize; + type IntoIter = BitMaskIter; + + #[inline] + fn into_iter(self) -> BitMaskIter { + // A BitMask only requires each element (group of bits) to be non-zero. + // However for iteration we need each element to only contain 1 bit. + BitMaskIter(BitMask(self.0 & BITMASK_ITER_MASK)) + } +} + +/// Iterator over the contents of a `BitMask`, returning the indices of set +/// bits. +#[derive(Copy, Clone)] +pub(crate) struct BitMaskIter(pub(crate) BitMask); + +impl BitMaskIter { + /// Flip the bit in the mask for the entry at the given index. + /// + /// Returns the bit's previous state. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + #[cfg(feature = "raw")] + pub(crate) unsafe fn flip(&mut self, index: usize) -> bool { + // NOTE: The + BITMASK_STRIDE - 1 is to set the high bit. + let mask = 1 << (index * BITMASK_STRIDE + BITMASK_STRIDE - 1); + self.0 .0 ^= mask; + // The bit was set if the bit is now 0. + self.0 .0 & mask == 0 + } +} + +impl Iterator for BitMaskIter { + type Item = usize; + + #[inline] + fn next(&mut self) -> Option<usize> { + let bit = self.0.lowest_set_bit()?; + self.0 = self.0.remove_lowest_bit(); + Some(bit) + } +} diff --git a/vendor/hashbrown/src/raw/generic.rs b/vendor/hashbrown/src/raw/generic.rs new file mode 100644 index 0000000..c668b06 --- /dev/null +++ b/vendor/hashbrown/src/raw/generic.rs @@ -0,0 +1,157 @@ +use super::bitmask::BitMask; +use super::EMPTY; +use core::{mem, ptr}; + +// Use the native word size as the group size. Using a 64-bit group size on +// a 32-bit architecture will just end up being more expensive because +// shifts and multiplies will need to be emulated. + +cfg_if! { + if #[cfg(any( + target_pointer_width = "64", + target_arch = "aarch64", + target_arch = "x86_64", + target_arch = "wasm32", + ))] { + type GroupWord = u64; + type NonZeroGroupWord = core::num::NonZeroU64; + } else { + type GroupWord = u32; + type NonZeroGroupWord = core::num::NonZeroU32; + } +} + +pub(crate) type BitMaskWord = GroupWord; +pub(crate) type NonZeroBitMaskWord = NonZeroGroupWord; +pub(crate) const BITMASK_STRIDE: usize = 8; +// We only care about the highest bit of each byte for the mask. +#[allow(clippy::cast_possible_truncation, clippy::unnecessary_cast)] +pub(crate) const BITMASK_MASK: BitMaskWord = 0x8080_8080_8080_8080_u64 as GroupWord; +pub(crate) const BITMASK_ITER_MASK: BitMaskWord = !0; + +/// Helper function to replicate a byte across a `GroupWord`. +#[inline] +fn repeat(byte: u8) -> GroupWord { + GroupWord::from_ne_bytes([byte; Group::WIDTH]) +} + +/// Abstraction over a group of control bytes which can be scanned in +/// parallel. +/// +/// This implementation uses a word-sized integer. +#[derive(Copy, Clone)] +pub(crate) struct Group(GroupWord); + +// We perform all operations in the native endianness, and convert to +// little-endian just before creating a BitMask. The can potentially +// enable the compiler to eliminate unnecessary byte swaps if we are +// only checking whether a BitMask is empty. +#[allow(clippy::use_self)] +impl Group { + /// Number of bytes in the group. + pub(crate) const WIDTH: usize = mem::size_of::<Self>(); + + /// Returns a full group of empty bytes, suitable for use as the initial + /// value for an empty hash table. + /// + /// This is guaranteed to be aligned to the group size. + #[inline] + pub(crate) const fn static_empty() -> &'static [u8; Group::WIDTH] { + #[repr(C)] + struct AlignedBytes { + _align: [Group; 0], + bytes: [u8; Group::WIDTH], + } + const ALIGNED_BYTES: AlignedBytes = AlignedBytes { + _align: [], + bytes: [EMPTY; Group::WIDTH], + }; + &ALIGNED_BYTES.bytes + } + + /// Loads a group of bytes starting at the given address. + #[inline] + #[allow(clippy::cast_ptr_alignment)] // unaligned load + pub(crate) unsafe fn load(ptr: *const u8) -> Self { + Group(ptr::read_unaligned(ptr.cast())) + } + + /// Loads a group of bytes starting at the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub(crate) unsafe fn load_aligned(ptr: *const u8) -> Self { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + Group(ptr::read(ptr.cast())) + } + + /// Stores the group of bytes to the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub(crate) unsafe fn store_aligned(self, ptr: *mut u8) { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + ptr::write(ptr.cast(), self.0); + } + + /// Returns a `BitMask` indicating all bytes in the group which *may* + /// have the given value. + /// + /// This function may return a false positive in certain cases where + /// the byte in the group differs from the searched value only in its + /// lowest bit. This is fine because: + /// - This never happens for `EMPTY` and `DELETED`, only full entries. + /// - The check for key equality will catch these. + /// - This only happens if there is at least 1 true match. + /// - The chance of this happening is very low (< 1% chance per byte). + #[inline] + pub(crate) fn match_byte(self, byte: u8) -> BitMask { + // This algorithm is derived from + // https://graphics.stanford.edu/~seander/bithacks.html##ValueInWord + let cmp = self.0 ^ repeat(byte); + BitMask((cmp.wrapping_sub(repeat(0x01)) & !cmp & repeat(0x80)).to_le()) + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY`. + #[inline] + pub(crate) fn match_empty(self) -> BitMask { + // If the high bit is set, then the byte must be either: + // 1111_1111 (EMPTY) or 1000_0000 (DELETED). + // So we can just check if the top two bits are 1 by ANDing them. + BitMask((self.0 & (self.0 << 1) & repeat(0x80)).to_le()) + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY` or `DELETED`. + #[inline] + pub(crate) fn match_empty_or_deleted(self) -> BitMask { + // A byte is EMPTY or DELETED iff the high bit is set + BitMask((self.0 & repeat(0x80)).to_le()) + } + + /// Returns a `BitMask` indicating all bytes in the group which are full. + #[inline] + pub(crate) fn match_full(self) -> BitMask { + self.match_empty_or_deleted().invert() + } + + /// Performs the following transformation on all bytes in the group: + /// - `EMPTY => EMPTY` + /// - `DELETED => EMPTY` + /// - `FULL => DELETED` + #[inline] + pub(crate) fn convert_special_to_empty_and_full_to_deleted(self) -> Self { + // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111 + // and high_bit = 0 (FULL) to 1000_0000 + // + // Here's this logic expanded to concrete values: + // let full = 1000_0000 (true) or 0000_0000 (false) + // !1000_0000 + 1 = 0111_1111 + 1 = 1000_0000 (no carry) + // !0000_0000 + 0 = 1111_1111 + 0 = 1111_1111 (no carry) + let full = !self.0 & repeat(0x80); + Group(!full + (full >> 7)) + } +} diff --git a/vendor/hashbrown/src/raw/mod.rs b/vendor/hashbrown/src/raw/mod.rs new file mode 100644 index 0000000..789c3a5 --- /dev/null +++ b/vendor/hashbrown/src/raw/mod.rs @@ -0,0 +1,4478 @@ +use crate::alloc::alloc::{handle_alloc_error, Layout}; +use crate::scopeguard::{guard, ScopeGuard}; +use crate::TryReserveError; +use core::iter::FusedIterator; +use core::marker::PhantomData; +use core::mem; +use core::mem::MaybeUninit; +use core::ptr::NonNull; +use core::{hint, ptr}; + +cfg_if! { + // Use the SSE2 implementation if possible: it allows us to scan 16 buckets + // at once instead of 8. We don't bother with AVX since it would require + // runtime dispatch and wouldn't gain us much anyways: the probability of + // finding a match drops off drastically after the first few buckets. + // + // I attempted an implementation on ARM using NEON instructions, but it + // turns out that most NEON instructions have multi-cycle latency, which in + // the end outweighs any gains over the generic implementation. + if #[cfg(all( + target_feature = "sse2", + any(target_arch = "x86", target_arch = "x86_64"), + not(miri) + ))] { + mod sse2; + use sse2 as imp; + } else if #[cfg(all(target_arch = "aarch64", target_feature = "neon"))] { + mod neon; + use neon as imp; + } else { + mod generic; + use generic as imp; + } +} + +mod alloc; +pub(crate) use self::alloc::{do_alloc, Allocator, Global}; + +mod bitmask; + +use self::bitmask::BitMaskIter; +use self::imp::Group; + +// Branch prediction hint. This is currently only available on nightly but it +// consistently improves performance by 10-15%. +#[cfg(not(feature = "nightly"))] +use core::convert::identity as likely; +#[cfg(not(feature = "nightly"))] +use core::convert::identity as unlikely; +#[cfg(feature = "nightly")] +use core::intrinsics::{likely, unlikely}; + +// Use strict provenance functions if available. +#[cfg(feature = "nightly")] +use core::ptr::invalid_mut; +// Implement it with a cast otherwise. +#[cfg(not(feature = "nightly"))] +#[inline(always)] +fn invalid_mut<T>(addr: usize) -> *mut T { + addr as *mut T +} + +#[inline] +unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize { + to.offset_from(from) as usize +} + +/// Whether memory allocation errors should return an error or abort. +#[derive(Copy, Clone)] +enum Fallibility { + Fallible, + Infallible, +} + +impl Fallibility { + /// Error to return on capacity overflow. + #[cfg_attr(feature = "inline-more", inline)] + fn capacity_overflow(self) -> TryReserveError { + match self { + Fallibility::Fallible => TryReserveError::CapacityOverflow, + Fallibility::Infallible => panic!("Hash table capacity overflow"), + } + } + + /// Error to return on allocation error. + #[cfg_attr(feature = "inline-more", inline)] + fn alloc_err(self, layout: Layout) -> TryReserveError { + match self { + Fallibility::Fallible => TryReserveError::AllocError { layout }, + Fallibility::Infallible => handle_alloc_error(layout), + } + } +} + +trait SizedTypeProperties: Sized { + const IS_ZERO_SIZED: bool = mem::size_of::<Self>() == 0; + const NEEDS_DROP: bool = mem::needs_drop::<Self>(); +} + +impl<T> SizedTypeProperties for T {} + +/// Control byte value for an empty bucket. +const EMPTY: u8 = 0b1111_1111; + +/// Control byte value for a deleted bucket. +const DELETED: u8 = 0b1000_0000; + +/// Checks whether a control byte represents a full bucket (top bit is clear). +#[inline] +fn is_full(ctrl: u8) -> bool { + ctrl & 0x80 == 0 +} + +/// Checks whether a control byte represents a special value (top bit is set). +#[inline] +fn is_special(ctrl: u8) -> bool { + ctrl & 0x80 != 0 +} + +/// Checks whether a special control value is EMPTY (just check 1 bit). +#[inline] +fn special_is_empty(ctrl: u8) -> bool { + debug_assert!(is_special(ctrl)); + ctrl & 0x01 != 0 +} + +/// Primary hash function, used to select the initial bucket to probe from. +#[inline] +#[allow(clippy::cast_possible_truncation)] +fn h1(hash: u64) -> usize { + // On 32-bit platforms we simply ignore the higher hash bits. + hash as usize +} + +// Constant for h2 function that grabing the top 7 bits of the hash. +const MIN_HASH_LEN: usize = if mem::size_of::<usize>() < mem::size_of::<u64>() { + mem::size_of::<usize>() +} else { + mem::size_of::<u64>() +}; + +/// Secondary hash function, saved in the low 7 bits of the control byte. +#[inline] +#[allow(clippy::cast_possible_truncation)] +fn h2(hash: u64) -> u8 { + // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit + // value, some hash functions (such as FxHash) produce a usize result + // instead, which means that the top 32 bits are 0 on 32-bit platforms. + // So we use MIN_HASH_LEN constant to handle this. + let top7 = hash >> (MIN_HASH_LEN * 8 - 7); + (top7 & 0x7f) as u8 // truncation +} + +/// Probe sequence based on triangular numbers, which is guaranteed (since our +/// table size is a power of two) to visit every group of elements exactly once. +/// +/// A triangular probe has us jump by 1 more group every time. So first we +/// jump by 1 group (meaning we just continue our linear scan), then 2 groups +/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. +/// +/// Proof that the probe will visit every group in the table: +/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/> +struct ProbeSeq { + pos: usize, + stride: usize, +} + +impl ProbeSeq { + #[inline] + fn move_next(&mut self, bucket_mask: usize) { + // We should have found an empty bucket by now and ended the probe. + debug_assert!( + self.stride <= bucket_mask, + "Went past end of probe sequence" + ); + + self.stride += Group::WIDTH; + self.pos += self.stride; + self.pos &= bucket_mask; + } +} + +/// Returns the number of buckets needed to hold the given number of items, +/// taking the maximum load factor into account. +/// +/// Returns `None` if an overflow occurs. +// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258 +#[cfg_attr(target_os = "emscripten", inline(never))] +#[cfg_attr(not(target_os = "emscripten"), inline)] +fn capacity_to_buckets(cap: usize) -> Option<usize> { + debug_assert_ne!(cap, 0); + + // For small tables we require at least 1 empty bucket so that lookups are + // guaranteed to terminate if an element doesn't exist in the table. + if cap < 8 { + // We don't bother with a table size of 2 buckets since that can only + // hold a single element. Instead we skip directly to a 4 bucket table + // which can hold 3 elements. + return Some(if cap < 4 { 4 } else { 8 }); + } + + // Otherwise require 1/8 buckets to be empty (87.5% load) + // + // Be careful when modifying this, calculate_layout relies on the + // overflow check here. + let adjusted_cap = cap.checked_mul(8)? / 7; + + // Any overflows will have been caught by the checked_mul. Also, any + // rounding errors from the division above will be cleaned up by + // next_power_of_two (which can't overflow because of the previous division). + Some(adjusted_cap.next_power_of_two()) +} + +/// Returns the maximum effective capacity for the given bucket mask, taking +/// the maximum load factor into account. +#[inline] +fn bucket_mask_to_capacity(bucket_mask: usize) -> usize { + if bucket_mask < 8 { + // For tables with 1/2/4/8 buckets, we always reserve one empty slot. + // Keep in mind that the bucket mask is one less than the bucket count. + bucket_mask + } else { + // For larger tables we reserve 12.5% of the slots as empty. + ((bucket_mask + 1) / 8) * 7 + } +} + +/// Helper which allows the max calculation for ctrl_align to be statically computed for each T +/// while keeping the rest of `calculate_layout_for` independent of `T` +#[derive(Copy, Clone)] +struct TableLayout { + size: usize, + ctrl_align: usize, +} + +impl TableLayout { + #[inline] + const fn new<T>() -> Self { + let layout = Layout::new::<T>(); + Self { + size: layout.size(), + ctrl_align: if layout.align() > Group::WIDTH { + layout.align() + } else { + Group::WIDTH + }, + } + } + + #[inline] + fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> { + debug_assert!(buckets.is_power_of_two()); + + let TableLayout { size, ctrl_align } = self; + // Manual layout calculation since Layout methods are not yet stable. + let ctrl_offset = + size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1); + let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?; + + // We need an additional check to ensure that the allocation doesn't + // exceed `isize::MAX` (https://github.com/rust-lang/rust/pull/95295). + if len > isize::MAX as usize - (ctrl_align - 1) { + return None; + } + + Some(( + unsafe { Layout::from_size_align_unchecked(len, ctrl_align) }, + ctrl_offset, + )) + } +} + +/// A reference to an empty bucket into which an can be inserted. +pub struct InsertSlot { + index: usize, +} + +/// A reference to a hash table bucket containing a `T`. +/// +/// This is usually just a pointer to the element itself. However if the element +/// is a ZST, then we instead track the index of the element in the table so +/// that `erase` works properly. +pub struct Bucket<T> { + // Actually it is pointer to next element than element itself + // this is needed to maintain pointer arithmetic invariants + // keeping direct pointer to element introduces difficulty. + // Using `NonNull` for variance and niche layout + ptr: NonNull<T>, +} + +// This Send impl is needed for rayon support. This is safe since Bucket is +// never exposed in a public API. +unsafe impl<T> Send for Bucket<T> {} + +impl<T> Clone for Bucket<T> { + #[inline] + fn clone(&self) -> Self { + Self { ptr: self.ptr } + } +} + +impl<T> Bucket<T> { + /// Creates a [`Bucket`] that contain pointer to the data. + /// The pointer calculation is performed by calculating the + /// offset from given `base` pointer (convenience for + /// `base.as_ptr().sub(index)`). + /// + /// `index` is in units of `T`; e.g., an `index` of 3 represents a pointer + /// offset of `3 * size_of::<T>()` bytes. + /// + /// If the `T` is a ZST, then we instead track the index of the element + /// in the table so that `erase` works properly (return + /// `NonNull::new_unchecked((index + 1) as *mut T)`) + /// + /// # Safety + /// + /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived + /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and the safety + /// rules of [`NonNull::new_unchecked`] function. + /// + /// Thus, in order to uphold the safety contracts for the [`<*mut T>::sub`] method + /// and [`NonNull::new_unchecked`] function, as well as for the correct + /// logic of the work of this crate, the following rules are necessary and + /// sufficient: + /// + /// * the `base` pointer must not be `dangling` and must points to the + /// end of the first `value element` from the `data part` of the table, i.e. + /// must be the pointer that returned by [`RawTable::data_end`] or by + /// [`RawTableInner::data_end<T>`]; + /// + /// * `index` must not be greater than `RawTableInner.bucket_mask`, i.e. + /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` + /// must be no greater than the number returned by the function + /// [`RawTable::buckets`] or [`RawTableInner::buckets`]. + /// + /// If `mem::size_of::<T>() == 0`, then the only requirement is that the + /// `index` must not be greater than `RawTableInner.bucket_mask`, i.e. + /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` + /// must be no greater than the number returned by the function + /// [`RawTable::buckets`] or [`RawTableInner::buckets`]. + /// + /// [`Bucket`]: crate::raw::Bucket + /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1 + /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked + /// [`RawTable::data_end`]: crate::raw::RawTable::data_end + /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T> + /// [`RawTable::buckets`]: crate::raw::RawTable::buckets + /// [`RawTableInner::buckets`]: RawTableInner::buckets + #[inline] + unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self { + // If mem::size_of::<T>() != 0 then return a pointer to an `element` in + // the data part of the table (we start counting from "0", so that + // in the expression T[last], the "last" index actually one less than the + // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"): + // + // `from_base_index(base, 1).as_ptr()` returns a pointer that + // points here in the data part of the table + // (to the start of T1) + // | + // | `base: NonNull<T>` must point here + // | (to the end of T0 or to the start of C0) + // v v + // [Padding], Tlast, ..., |T1|, T0, |C0, C1, ..., Clast + // ^ + // `from_base_index(base, 1)` returns a pointer + // that points here in the data part of the table + // (to the end of T1) + // + // where: T0...Tlast - our stored data; C0...Clast - control bytes + // or metadata for data. + let ptr = if T::IS_ZERO_SIZED { + // won't overflow because index must be less than length (bucket_mask) + // and bucket_mask is guaranteed to be less than `isize::MAX` + // (see TableLayout::calculate_layout_for method) + invalid_mut(index + 1) + } else { + base.as_ptr().sub(index) + }; + Self { + ptr: NonNull::new_unchecked(ptr), + } + } + + /// Calculates the index of a [`Bucket`] as distance between two pointers + /// (convenience for `base.as_ptr().offset_from(self.ptr.as_ptr()) as usize`). + /// The returned value is in units of T: the distance in bytes divided by + /// [`core::mem::size_of::<T>()`]. + /// + /// If the `T` is a ZST, then we return the index of the element in + /// the table so that `erase` works properly (return `self.ptr.as_ptr() as usize - 1`). + /// + /// This function is the inverse of [`from_base_index`]. + /// + /// # Safety + /// + /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived + /// from the safety rules for [`<*const T>::offset_from`] method of `*const T`. + /// + /// Thus, in order to uphold the safety contracts for [`<*const T>::offset_from`] + /// method, as well as for the correct logic of the work of this crate, the + /// following rules are necessary and sufficient: + /// + /// * `base` contained pointer must not be `dangling` and must point to the + /// end of the first `element` from the `data part` of the table, i.e. + /// must be a pointer that returns by [`RawTable::data_end`] or by + /// [`RawTableInner::data_end<T>`]; + /// + /// * `self` also must not contain dangling pointer; + /// + /// * both `self` and `base` must be created from the same [`RawTable`] + /// (or [`RawTableInner`]). + /// + /// If `mem::size_of::<T>() == 0`, this function is always safe. + /// + /// [`Bucket`]: crate::raw::Bucket + /// [`from_base_index`]: crate::raw::Bucket::from_base_index + /// [`RawTable::data_end`]: crate::raw::RawTable::data_end + /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T> + /// [`RawTable`]: crate::raw::RawTable + /// [`RawTableInner`]: RawTableInner + /// [`<*const T>::offset_from`]: https://doc.rust-lang.org/nightly/core/primitive.pointer.html#method.offset_from + #[inline] + unsafe fn to_base_index(&self, base: NonNull<T>) -> usize { + // If mem::size_of::<T>() != 0 then return an index under which we used to store the + // `element` in the data part of the table (we start counting from "0", so + // that in the expression T[last], the "last" index actually is one less than the + // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"). + // For example for 5th element in table calculation is performed like this: + // + // mem::size_of::<T>() + // | + // | `self = from_base_index(base, 5)` that returns pointer + // | that points here in tha data part of the table + // | (to the end of T5) + // | | `base: NonNull<T>` must point here + // v | (to the end of T0 or to the start of C0) + // /???\ v v + // [Padding], Tlast, ..., |T10|, ..., T5|, T4, T3, T2, T1, T0, |C0, C1, C2, C3, C4, C5, ..., C10, ..., Clast + // \__________ __________/ + // \/ + // `bucket.to_base_index(base)` = 5 + // (base.as_ptr() as usize - self.ptr.as_ptr() as usize) / mem::size_of::<T>() + // + // where: T0...Tlast - our stored data; C0...Clast - control bytes or metadata for data. + if T::IS_ZERO_SIZED { + // this can not be UB + self.ptr.as_ptr() as usize - 1 + } else { + offset_from(base.as_ptr(), self.ptr.as_ptr()) + } + } + + /// Acquires the underlying raw pointer `*mut T` to `data`. + /// + /// # Note + /// + /// If `T` is not [`Copy`], do not use `*mut T` methods that can cause calling the + /// destructor of `T` (for example the [`<*mut T>::drop_in_place`] method), because + /// for properly dropping the data we also need to clear `data` control bytes. If we + /// drop data, but do not clear `data control byte` it leads to double drop when + /// [`RawTable`] goes out of scope. + /// + /// If you modify an already initialized `value`, so [`Hash`] and [`Eq`] on the new + /// `T` value and its borrowed form *must* match those for the old `T` value, as the map + /// will not re-evaluate where the new value should go, meaning the value may become + /// "lost" if their location does not reflect their state. + /// + /// [`RawTable`]: crate::raw::RawTable + /// [`<*mut T>::drop_in_place`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.drop_in_place + /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html + /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html + /// + /// # Examples + /// + /// ``` + /// # #[cfg(feature = "raw")] + /// # fn test() { + /// use core::hash::{BuildHasher, Hash}; + /// use hashbrown::raw::{Bucket, RawTable}; + /// + /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>; + /// + /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { + /// use core::hash::Hasher; + /// let mut state = hash_builder.build_hasher(); + /// key.hash(&mut state); + /// state.finish() + /// } + /// + /// let hash_builder = NewHashBuilder::default(); + /// let mut table = RawTable::new(); + /// + /// let value = ("a", 100); + /// let hash = make_hash(&hash_builder, &value.0); + /// + /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0)); + /// + /// let bucket: Bucket<(&str, i32)> = table.find(hash, |(k1, _)| k1 == &value.0).unwrap(); + /// + /// assert_eq!(unsafe { &*bucket.as_ptr() }, &("a", 100)); + /// # } + /// # fn main() { + /// # #[cfg(feature = "raw")] + /// # test() + /// # } + /// ``` + #[inline] + pub fn as_ptr(&self) -> *mut T { + if T::IS_ZERO_SIZED { + // Just return an arbitrary ZST pointer which is properly aligned + // invalid pointer is good enough for ZST + invalid_mut(mem::align_of::<T>()) + } else { + unsafe { self.ptr.as_ptr().sub(1) } + } + } + + /// Create a new [`Bucket`] that is offset from the `self` by the given + /// `offset`. The pointer calculation is performed by calculating the + /// offset from `self` pointer (convenience for `self.ptr.as_ptr().sub(offset)`). + /// This function is used for iterators. + /// + /// `offset` is in units of `T`; e.g., a `offset` of 3 represents a pointer + /// offset of `3 * size_of::<T>()` bytes. + /// + /// # Safety + /// + /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived + /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and safety + /// rules of [`NonNull::new_unchecked`] function. + /// + /// Thus, in order to uphold the safety contracts for [`<*mut T>::sub`] method + /// and [`NonNull::new_unchecked`] function, as well as for the correct + /// logic of the work of this crate, the following rules are necessary and + /// sufficient: + /// + /// * `self` contained pointer must not be `dangling`; + /// + /// * `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`, + /// i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other + /// words, `self.to_base_index() + ofset + 1` must be no greater than the number returned + /// by the function [`RawTable::buckets`] or [`RawTableInner::buckets`]. + /// + /// If `mem::size_of::<T>() == 0`, then the only requirement is that the + /// `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`, + /// i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other words, + /// `self.to_base_index() + ofset + 1` must be no greater than the number returned by the + /// function [`RawTable::buckets`] or [`RawTableInner::buckets`]. + /// + /// [`Bucket`]: crate::raw::Bucket + /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1 + /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked + /// [`RawTable::buckets`]: crate::raw::RawTable::buckets + /// [`RawTableInner::buckets`]: RawTableInner::buckets + #[inline] + unsafe fn next_n(&self, offset: usize) -> Self { + let ptr = if T::IS_ZERO_SIZED { + // invalid pointer is good enough for ZST + invalid_mut(self.ptr.as_ptr() as usize + offset) + } else { + self.ptr.as_ptr().sub(offset) + }; + Self { + ptr: NonNull::new_unchecked(ptr), + } + } + + /// Executes the destructor (if any) of the pointed-to `data`. + /// + /// # Safety + /// + /// See [`ptr::drop_in_place`] for safety concerns. + /// + /// You should use [`RawTable::erase`] instead of this function, + /// or be careful with calling this function directly, because for + /// properly dropping the data we need also clear `data` control bytes. + /// If we drop data, but do not erase `data control byte` it leads to + /// double drop when [`RawTable`] goes out of scope. + /// + /// [`ptr::drop_in_place`]: https://doc.rust-lang.org/core/ptr/fn.drop_in_place.html + /// [`RawTable`]: crate::raw::RawTable + /// [`RawTable::erase`]: crate::raw::RawTable::erase + #[cfg_attr(feature = "inline-more", inline)] + pub(crate) unsafe fn drop(&self) { + self.as_ptr().drop_in_place(); + } + + /// Reads the `value` from `self` without moving it. This leaves the + /// memory in `self` unchanged. + /// + /// # Safety + /// + /// See [`ptr::read`] for safety concerns. + /// + /// You should use [`RawTable::remove`] instead of this function, + /// or be careful with calling this function directly, because compiler + /// calls its destructor when readed `value` goes out of scope. It + /// can cause double dropping when [`RawTable`] goes out of scope, + /// because of not erased `data control byte`. + /// + /// [`ptr::read`]: https://doc.rust-lang.org/core/ptr/fn.read.html + /// [`RawTable`]: crate::raw::RawTable + /// [`RawTable::remove`]: crate::raw::RawTable::remove + #[inline] + pub(crate) unsafe fn read(&self) -> T { + self.as_ptr().read() + } + + /// Overwrites a memory location with the given `value` without reading + /// or dropping the old value (like [`ptr::write`] function). + /// + /// # Safety + /// + /// See [`ptr::write`] for safety concerns. + /// + /// # Note + /// + /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match + /// those for the old `T` value, as the map will not re-evaluate where the new + /// value should go, meaning the value may become "lost" if their location + /// does not reflect their state. + /// + /// [`ptr::write`]: https://doc.rust-lang.org/core/ptr/fn.write.html + /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html + /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html + #[inline] + pub(crate) unsafe fn write(&self, val: T) { + self.as_ptr().write(val); + } + + /// Returns a shared immutable reference to the `value`. + /// + /// # Safety + /// + /// See [`NonNull::as_ref`] for safety concerns. + /// + /// [`NonNull::as_ref`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_ref + /// + /// # Examples + /// + /// ``` + /// # #[cfg(feature = "raw")] + /// # fn test() { + /// use core::hash::{BuildHasher, Hash}; + /// use hashbrown::raw::{Bucket, RawTable}; + /// + /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>; + /// + /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { + /// use core::hash::Hasher; + /// let mut state = hash_builder.build_hasher(); + /// key.hash(&mut state); + /// state.finish() + /// } + /// + /// let hash_builder = NewHashBuilder::default(); + /// let mut table = RawTable::new(); + /// + /// let value: (&str, String) = ("A pony", "is a small horse".to_owned()); + /// let hash = make_hash(&hash_builder, &value.0); + /// + /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0)); + /// + /// let bucket: Bucket<(&str, String)> = table.find(hash, |(k, _)| k == &value.0).unwrap(); + /// + /// assert_eq!( + /// unsafe { bucket.as_ref() }, + /// &("A pony", "is a small horse".to_owned()) + /// ); + /// # } + /// # fn main() { + /// # #[cfg(feature = "raw")] + /// # test() + /// # } + /// ``` + #[inline] + pub unsafe fn as_ref<'a>(&self) -> &'a T { + &*self.as_ptr() + } + + /// Returns a unique mutable reference to the `value`. + /// + /// # Safety + /// + /// See [`NonNull::as_mut`] for safety concerns. + /// + /// # Note + /// + /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match + /// those for the old `T` value, as the map will not re-evaluate where the new + /// value should go, meaning the value may become "lost" if their location + /// does not reflect their state. + /// + /// [`NonNull::as_mut`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_mut + /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html + /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html + /// + /// # Examples + /// + /// ``` + /// # #[cfg(feature = "raw")] + /// # fn test() { + /// use core::hash::{BuildHasher, Hash}; + /// use hashbrown::raw::{Bucket, RawTable}; + /// + /// type NewHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>; + /// + /// fn make_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { + /// use core::hash::Hasher; + /// let mut state = hash_builder.build_hasher(); + /// key.hash(&mut state); + /// state.finish() + /// } + /// + /// let hash_builder = NewHashBuilder::default(); + /// let mut table = RawTable::new(); + /// + /// let value: (&str, String) = ("A pony", "is a small horse".to_owned()); + /// let hash = make_hash(&hash_builder, &value.0); + /// + /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0)); + /// + /// let bucket: Bucket<(&str, String)> = table.find(hash, |(k, _)| k == &value.0).unwrap(); + /// + /// unsafe { + /// bucket + /// .as_mut() + /// .1 + /// .push_str(" less than 147 cm at the withers") + /// }; + /// assert_eq!( + /// unsafe { bucket.as_ref() }, + /// &( + /// "A pony", + /// "is a small horse less than 147 cm at the withers".to_owned() + /// ) + /// ); + /// # } + /// # fn main() { + /// # #[cfg(feature = "raw")] + /// # test() + /// # } + /// ``` + #[inline] + pub unsafe fn as_mut<'a>(&self) -> &'a mut T { + &mut *self.as_ptr() + } + + /// Copies `size_of<T>` bytes from `other` to `self`. The source + /// and destination may *not* overlap. + /// + /// # Safety + /// + /// See [`ptr::copy_nonoverlapping`] for safety concerns. + /// + /// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of + /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values + /// in the region beginning at `*self` and the region beginning at `*other` can + /// [violate memory safety]. + /// + /// # Note + /// + /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match + /// those for the old `T` value, as the map will not re-evaluate where the new + /// value should go, meaning the value may become "lost" if their location + /// does not reflect their state. + /// + /// [`ptr::copy_nonoverlapping`]: https://doc.rust-lang.org/core/ptr/fn.copy_nonoverlapping.html + /// [`read`]: https://doc.rust-lang.org/core/ptr/fn.read.html + /// [violate memory safety]: https://doc.rust-lang.org/std/ptr/fn.read.html#ownership-of-the-returned-value + /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html + /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html + #[cfg(feature = "raw")] + #[inline] + pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) { + self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1); + } +} + +/// A raw hash table with an unsafe API. +pub struct RawTable<T, A: Allocator = Global> { + table: RawTableInner, + alloc: A, + // Tell dropck that we own instances of T. + marker: PhantomData<T>, +} + +/// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless +/// of how many different key-value types are used. +struct RawTableInner { + // Mask to get an index from a hash value. The value is one less than the + // number of buckets in the table. + bucket_mask: usize, + + // [Padding], T1, T2, ..., Tlast, C1, C2, ... + // ^ points here + ctrl: NonNull<u8>, + + // Number of elements that can be inserted before we need to grow the table + growth_left: usize, + + // Number of elements in the table, only really used by len() + items: usize, +} + +impl<T> RawTable<T, Global> { + /// Creates a new empty hash table without allocating any memory. + /// + /// In effect this returns a table with exactly 1 bucket. However we can + /// leave the data pointer dangling since that bucket is never written to + /// due to our load factor forcing us to always have at least 1 free bucket. + #[inline] + pub const fn new() -> Self { + Self { + table: RawTableInner::NEW, + alloc: Global, + marker: PhantomData, + } + } + + /// Attempts to allocate a new hash table with at least enough capacity + /// for inserting the given number of elements without reallocating. + #[cfg(feature = "raw")] + pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> { + Self::try_with_capacity_in(capacity, Global) + } + + /// Allocates a new hash table with at least enough capacity for inserting + /// the given number of elements without reallocating. + pub fn with_capacity(capacity: usize) -> Self { + Self::with_capacity_in(capacity, Global) + } +} + +impl<T, A: Allocator> RawTable<T, A> { + const TABLE_LAYOUT: TableLayout = TableLayout::new::<T>(); + + /// Creates a new empty hash table without allocating any memory, using the + /// given allocator. + /// + /// In effect this returns a table with exactly 1 bucket. However we can + /// leave the data pointer dangling since that bucket is never written to + /// due to our load factor forcing us to always have at least 1 free bucket. + #[inline] + pub const fn new_in(alloc: A) -> Self { + Self { + table: RawTableInner::NEW, + alloc, + marker: PhantomData, + } + } + + /// Allocates a new hash table with the given number of buckets. + /// + /// The control bytes are left uninitialized. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn new_uninitialized( + alloc: A, + buckets: usize, + fallibility: Fallibility, + ) -> Result<Self, TryReserveError> { + debug_assert!(buckets.is_power_of_two()); + + Ok(Self { + table: RawTableInner::new_uninitialized( + &alloc, + Self::TABLE_LAYOUT, + buckets, + fallibility, + )?, + alloc, + marker: PhantomData, + }) + } + + /// Attempts to allocate a new hash table using the given allocator, with at least enough + /// capacity for inserting the given number of elements without reallocating. + #[cfg(feature = "raw")] + pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { + Ok(Self { + table: RawTableInner::fallible_with_capacity( + &alloc, + Self::TABLE_LAYOUT, + capacity, + Fallibility::Fallible, + )?, + alloc, + marker: PhantomData, + }) + } + + /// Allocates a new hash table using the given allocator, with at least enough capacity for + /// inserting the given number of elements without reallocating. + pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { + Self { + table: RawTableInner::with_capacity(&alloc, Self::TABLE_LAYOUT, capacity), + alloc, + marker: PhantomData, + } + } + + /// Returns a reference to the underlying allocator. + #[inline] + pub fn allocator(&self) -> &A { + &self.alloc + } + + /// Returns pointer to one past last element of data table. + #[inline] + pub unsafe fn data_end(&self) -> NonNull<T> { + NonNull::new_unchecked(self.table.ctrl.as_ptr().cast()) + } + + /// Returns pointer to start of data table. + #[inline] + #[cfg(any(feature = "raw", feature = "nightly"))] + pub unsafe fn data_start(&self) -> NonNull<T> { + NonNull::new_unchecked(self.data_end().as_ptr().wrapping_sub(self.buckets())) + } + + /// Return the information about memory allocated by the table. + /// + /// `RawTable` allocates single memory block to store both data and metadata. + /// This function returns allocation size and alignment and the beginning of the area. + /// These are the arguments which will be passed to `dealloc` when the table is dropped. + /// + /// This function might be useful for memory profiling. + #[inline] + #[cfg(feature = "raw")] + pub fn allocation_info(&self) -> (NonNull<u8>, Layout) { + // SAFETY: We use the same `table_layout` that was used to allocate + // this table. + unsafe { self.table.allocation_info_or_zero(Self::TABLE_LAYOUT) } + } + + /// Returns the index of a bucket from a `Bucket`. + #[inline] + pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize { + bucket.to_base_index(self.data_end()) + } + + /// Returns a pointer to an element in the table. + #[inline] + pub unsafe fn bucket(&self, index: usize) -> Bucket<T> { + debug_assert_ne!(self.table.bucket_mask, 0); + debug_assert!(index < self.buckets()); + Bucket::from_base_index(self.data_end(), index) + } + + /// Erases an element from the table without dropping it. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) { + let index = self.bucket_index(item); + self.table.erase(index); + } + + /// Erases an element from the table, dropping it in place. + #[cfg_attr(feature = "inline-more", inline)] + #[allow(clippy::needless_pass_by_value)] + pub unsafe fn erase(&mut self, item: Bucket<T>) { + // Erase the element from the table first since drop might panic. + self.erase_no_drop(&item); + item.drop(); + } + + /// Finds and erases an element from the table, dropping it in place. + /// Returns true if an element was found. + #[cfg(feature = "raw")] + #[cfg_attr(feature = "inline-more", inline)] + pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool { + // Avoid `Option::map` because it bloats LLVM IR. + if let Some(bucket) = self.find(hash, eq) { + unsafe { + self.erase(bucket); + } + true + } else { + false + } + } + + /// Removes an element from the table, returning it. + /// + /// This also returns an `InsertSlot` pointing to the newly free bucket. + #[cfg_attr(feature = "inline-more", inline)] + #[allow(clippy::needless_pass_by_value)] + pub unsafe fn remove(&mut self, item: Bucket<T>) -> (T, InsertSlot) { + self.erase_no_drop(&item); + ( + item.read(), + InsertSlot { + index: self.bucket_index(&item), + }, + ) + } + + /// Finds and removes an element from the table, returning it. + #[cfg_attr(feature = "inline-more", inline)] + pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> { + // Avoid `Option::map` because it bloats LLVM IR. + match self.find(hash, eq) { + Some(bucket) => Some(unsafe { self.remove(bucket).0 }), + None => None, + } + } + + /// Marks all table buckets as empty without dropping their contents. + #[cfg_attr(feature = "inline-more", inline)] + pub fn clear_no_drop(&mut self) { + self.table.clear_no_drop(); + } + + /// Removes all elements from the table without freeing the backing memory. + #[cfg_attr(feature = "inline-more", inline)] + pub fn clear(&mut self) { + if self.is_empty() { + // Special case empty table to avoid surprising O(capacity) time. + return; + } + // Ensure that the table is reset even if one of the drops panic + let mut self_ = guard(self, |self_| self_.clear_no_drop()); + unsafe { + // SAFETY: ScopeGuard sets to zero the `items` field of the table + // even in case of panic during the dropping of the elements so + // that there will be no double drop of the elements. + self_.table.drop_elements::<T>(); + } + } + + /// Shrinks the table to fit `max(self.len(), min_size)` elements. + #[cfg_attr(feature = "inline-more", inline)] + pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) { + // Calculate the minimal number of elements that we need to reserve + // space for. + let min_size = usize::max(self.table.items, min_size); + if min_size == 0 { + let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW); + unsafe { + // SAFETY: + // 1. We call the function only once; + // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] + // and [`TableLayout`] that were used to allocate this table. + // 3. If any elements' drop function panics, then there will only be a memory leak, + // because we have replaced the inner table with a new one. + old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); + } + return; + } + + // Calculate the number of buckets that we need for this number of + // elements. If the calculation overflows then the requested bucket + // count must be larger than what we have right and nothing needs to be + // done. + let min_buckets = match capacity_to_buckets(min_size) { + Some(buckets) => buckets, + None => return, + }; + + // If we have more buckets than we need, shrink the table. + if min_buckets < self.buckets() { + // Fast path if the table is empty + if self.table.items == 0 { + let new_inner = + RawTableInner::with_capacity(&self.alloc, Self::TABLE_LAYOUT, min_size); + let mut old_inner = mem::replace(&mut self.table, new_inner); + unsafe { + // SAFETY: + // 1. We call the function only once; + // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] + // and [`TableLayout`] that were used to allocate this table. + // 3. If any elements' drop function panics, then there will only be a memory leak, + // because we have replaced the inner table with a new one. + old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); + } + } else { + // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. + unsafe { + // SAFETY: + // 1. We know for sure that `min_size >= self.table.items`. + // 2. The [`RawTableInner`] must already have properly initialized control bytes since + // we will never expose RawTable::new_uninitialized in a public API. + if self + .resize(min_size, hasher, Fallibility::Infallible) + .is_err() + { + // SAFETY: The result of calling the `resize` function cannot be an error + // because `fallibility == Fallibility::Infallible. + hint::unreachable_unchecked() + } + } + } + } + } + + /// Ensures that at least `additional` items can be inserted into the table + /// without reallocation. + #[cfg_attr(feature = "inline-more", inline)] + pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) { + if unlikely(additional > self.table.growth_left) { + // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. + unsafe { + // SAFETY: The [`RawTableInner`] must already have properly initialized control + // bytes since we will never expose RawTable::new_uninitialized in a public API. + if self + .reserve_rehash(additional, hasher, Fallibility::Infallible) + .is_err() + { + // SAFETY: All allocation errors will be caught inside `RawTableInner::reserve_rehash`. + hint::unreachable_unchecked() + } + } + } + } + + /// Tries to ensure that at least `additional` items can be inserted into + /// the table without reallocation. + #[cfg_attr(feature = "inline-more", inline)] + pub fn try_reserve( + &mut self, + additional: usize, + hasher: impl Fn(&T) -> u64, + ) -> Result<(), TryReserveError> { + if additional > self.table.growth_left { + // SAFETY: The [`RawTableInner`] must already have properly initialized control + // bytes since we will never expose RawTable::new_uninitialized in a public API. + unsafe { self.reserve_rehash(additional, hasher, Fallibility::Fallible) } + } else { + Ok(()) + } + } + + /// Out-of-line slow path for `reserve` and `try_reserve`. + /// + /// # Safety + /// + /// The [`RawTableInner`] must have properly initialized control bytes, + /// otherwise calling this function results in [`undefined behavior`] + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[cold] + #[inline(never)] + unsafe fn reserve_rehash( + &mut self, + additional: usize, + hasher: impl Fn(&T) -> u64, + fallibility: Fallibility, + ) -> Result<(), TryReserveError> { + unsafe { + // SAFETY: + // 1. We know for sure that `alloc` and `layout` matches the [`Allocator`] and + // [`TableLayout`] that were used to allocate this table. + // 2. The `drop` function is the actual drop function of the elements stored in + // the table. + // 3. The caller ensures that the control bytes of the `RawTableInner` + // are already initialized. + self.table.reserve_rehash_inner( + &self.alloc, + additional, + &|table, index| hasher(table.bucket::<T>(index).as_ref()), + fallibility, + Self::TABLE_LAYOUT, + if T::NEEDS_DROP { + Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) + } else { + None + }, + ) + } + } + + /// Allocates a new table of a different size and moves the contents of the + /// current table into it. + /// + /// # Safety + /// + /// The [`RawTableInner`] must have properly initialized control bytes, + /// otherwise calling this function results in [`undefined behavior`] + /// + /// The caller of this function must ensure that `capacity >= self.table.items` + /// otherwise: + /// + /// * If `self.table.items != 0`, calling of this function with `capacity` + /// equal to 0 (`capacity == 0`) results in [`undefined behavior`]. + /// + /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and + /// `self.table.items > capacity_to_buckets(capacity)` + /// calling this function results in [`undefined behavior`]. + /// + /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and + /// `self.table.items > capacity_to_buckets(capacity)` + /// calling this function are never return (will go into an + /// infinite loop). + /// + /// See [`RawTableInner::find_insert_slot`] for more information. + /// + /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + unsafe fn resize( + &mut self, + capacity: usize, + hasher: impl Fn(&T) -> u64, + fallibility: Fallibility, + ) -> Result<(), TryReserveError> { + // SAFETY: + // 1. The caller of this function guarantees that `capacity >= self.table.items`. + // 2. We know for sure that `alloc` and `layout` matches the [`Allocator`] and + // [`TableLayout`] that were used to allocate this table. + // 3. The caller ensures that the control bytes of the `RawTableInner` + // are already initialized. + self.table.resize_inner( + &self.alloc, + capacity, + &|table, index| hasher(table.bucket::<T>(index).as_ref()), + fallibility, + Self::TABLE_LAYOUT, + ) + } + + /// Inserts a new element into the table, and returns its raw bucket. + /// + /// This does not check if the given element already exists in the table. + #[cfg_attr(feature = "inline-more", inline)] + pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> { + unsafe { + // SAFETY: + // 1. The [`RawTableInner`] must already have properly initialized control bytes since + // we will never expose `RawTable::new_uninitialized` in a public API. + // + // 2. We reserve additional space (if necessary) right after calling this function. + let mut slot = self.table.find_insert_slot(hash); + + // We can avoid growing the table once we have reached our load factor if we are replacing + // a tombstone. This works since the number of EMPTY slots does not change in this case. + // + // SAFETY: The function is guaranteed to return [`InsertSlot`] that contains an index + // in the range `0..=self.buckets()`. + let old_ctrl = *self.table.ctrl(slot.index); + if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) { + self.reserve(1, hasher); + // SAFETY: We know for sure that `RawTableInner` has control bytes + // initialized and that there is extra space in the table. + slot = self.table.find_insert_slot(hash); + } + + self.insert_in_slot(hash, slot, value) + } + } + + /// Attempts to insert a new element without growing the table and return its raw bucket. + /// + /// Returns an `Err` containing the given element if inserting it would require growing the + /// table. + /// + /// This does not check if the given element already exists in the table. + #[cfg(feature = "raw")] + #[cfg_attr(feature = "inline-more", inline)] + pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result<Bucket<T>, T> { + unsafe { + match self.table.prepare_insert_no_grow(hash) { + Ok(index) => { + let bucket = self.bucket(index); + bucket.write(value); + Ok(bucket) + } + Err(()) => Err(value), + } + } + } + + /// Inserts a new element into the table, and returns a mutable reference to it. + /// + /// This does not check if the given element already exists in the table. + #[cfg_attr(feature = "inline-more", inline)] + pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T { + unsafe { self.insert(hash, value, hasher).as_mut() } + } + + /// Inserts a new element into the table, without growing the table. + /// + /// There must be enough space in the table to insert the new element. + /// + /// This does not check if the given element already exists in the table. + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(any(feature = "raw", feature = "rustc-internal-api"))] + pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> { + let (index, old_ctrl) = self.table.prepare_insert_slot(hash); + let bucket = self.table.bucket(index); + + // If we are replacing a DELETED entry then we don't need to update + // the load counter. + self.table.growth_left -= special_is_empty(old_ctrl) as usize; + + bucket.write(value); + self.table.items += 1; + bucket + } + + /// Temporary removes a bucket, applying the given function to the removed + /// element and optionally put back the returned value in the same bucket. + /// + /// Returns `true` if the bucket still contains an element + /// + /// This does not check if the given bucket is actually occupied. + #[cfg_attr(feature = "inline-more", inline)] + pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool + where + F: FnOnce(T) -> Option<T>, + { + let index = self.bucket_index(&bucket); + let old_ctrl = *self.table.ctrl(index); + debug_assert!(self.is_bucket_full(index)); + let old_growth_left = self.table.growth_left; + let item = self.remove(bucket).0; + if let Some(new_item) = f(item) { + self.table.growth_left = old_growth_left; + self.table.set_ctrl(index, old_ctrl); + self.table.items += 1; + self.bucket(index).write(new_item); + true + } else { + false + } + } + + /// Searches for an element in the table. If the element is not found, + /// returns `Err` with the position of a slot where an element with the + /// same hash could be inserted. + /// + /// This function may resize the table if additional space is required for + /// inserting an element. + #[inline] + pub fn find_or_find_insert_slot( + &mut self, + hash: u64, + mut eq: impl FnMut(&T) -> bool, + hasher: impl Fn(&T) -> u64, + ) -> Result<Bucket<T>, InsertSlot> { + self.reserve(1, hasher); + + unsafe { + // SAFETY: + // 1. We know for sure that there is at least one empty `bucket` in the table. + // 2. The [`RawTableInner`] must already have properly initialized control bytes since we will + // never expose `RawTable::new_uninitialized` in a public API. + // 3. The `find_or_find_insert_slot_inner` function returns the `index` of only the full bucket, + // which is in the range `0..self.buckets()` (since there is at least one empty `bucket` in + // the table), so calling `self.bucket(index)` and `Bucket::as_ref` is safe. + match self + .table + .find_or_find_insert_slot_inner(hash, &mut |index| eq(self.bucket(index).as_ref())) + { + // SAFETY: See explanation above. + Ok(index) => Ok(self.bucket(index)), + Err(slot) => Err(slot), + } + } + } + + /// Inserts a new element into the table in the given slot, and returns its + /// raw bucket. + /// + /// # Safety + /// + /// `slot` must point to a slot previously returned by + /// `find_or_find_insert_slot`, and no mutation of the table must have + /// occurred since that call. + #[inline] + pub unsafe fn insert_in_slot(&mut self, hash: u64, slot: InsertSlot, value: T) -> Bucket<T> { + let old_ctrl = *self.table.ctrl(slot.index); + self.table.record_item_insert_at(slot.index, old_ctrl, hash); + + let bucket = self.bucket(slot.index); + bucket.write(value); + bucket + } + + /// Searches for an element in the table. + #[inline] + pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> { + unsafe { + // SAFETY: + // 1. The [`RawTableInner`] must already have properly initialized control bytes since we + // will never expose `RawTable::new_uninitialized` in a public API. + // 1. The `find_inner` function returns the `index` of only the full bucket, which is in + // the range `0..self.buckets()`, so calling `self.bucket(index)` and `Bucket::as_ref` + // is safe. + let result = self + .table + .find_inner(hash, &mut |index| eq(self.bucket(index).as_ref())); + + // Avoid `Option::map` because it bloats LLVM IR. + match result { + // SAFETY: See explanation above. + Some(index) => Some(self.bucket(index)), + None => None, + } + } + } + + /// Gets a reference to an element in the table. + #[inline] + pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> { + // Avoid `Option::map` because it bloats LLVM IR. + match self.find(hash, eq) { + Some(bucket) => Some(unsafe { bucket.as_ref() }), + None => None, + } + } + + /// Gets a mutable reference to an element in the table. + #[inline] + pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> { + // Avoid `Option::map` because it bloats LLVM IR. + match self.find(hash, eq) { + Some(bucket) => Some(unsafe { bucket.as_mut() }), + None => None, + } + } + + /// Attempts to get mutable references to `N` entries in the table at once. + /// + /// Returns an array of length `N` with the results of each query. + /// + /// At most one mutable reference will be returned to any entry. `None` will be returned if any + /// of the hashes are duplicates. `None` will be returned if the hash is not found. + /// + /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to + /// the `i`th key to be looked up. + pub fn get_many_mut<const N: usize>( + &mut self, + hashes: [u64; N], + eq: impl FnMut(usize, &T) -> bool, + ) -> Option<[&'_ mut T; N]> { + unsafe { + let ptrs = self.get_many_mut_pointers(hashes, eq)?; + + for (i, &cur) in ptrs.iter().enumerate() { + if ptrs[..i].iter().any(|&prev| ptr::eq::<T>(prev, cur)) { + return None; + } + } + // All bucket are distinct from all previous buckets so we're clear to return the result + // of the lookup. + + // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. + Some(mem::transmute_copy(&ptrs)) + } + } + + pub unsafe fn get_many_unchecked_mut<const N: usize>( + &mut self, + hashes: [u64; N], + eq: impl FnMut(usize, &T) -> bool, + ) -> Option<[&'_ mut T; N]> { + let ptrs = self.get_many_mut_pointers(hashes, eq)?; + Some(mem::transmute_copy(&ptrs)) + } + + unsafe fn get_many_mut_pointers<const N: usize>( + &mut self, + hashes: [u64; N], + mut eq: impl FnMut(usize, &T) -> bool, + ) -> Option<[*mut T; N]> { + // TODO use `MaybeUninit::uninit_array` here instead once that's stable. + let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit(); + let outs_ptr = outs.as_mut_ptr(); + + for (i, &hash) in hashes.iter().enumerate() { + let cur = self.find(hash, |k| eq(i, k))?; + *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut(); + } + + // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. + Some(outs.assume_init()) + } + + /// Returns the number of elements the map can hold without reallocating. + /// + /// This number is a lower bound; the table might be able to hold + /// more, but is guaranteed to be able to hold at least this many. + #[inline] + pub fn capacity(&self) -> usize { + self.table.items + self.table.growth_left + } + + /// Returns the number of elements in the table. + #[inline] + pub fn len(&self) -> usize { + self.table.items + } + + /// Returns `true` if the table contains no elements. + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Returns the number of buckets in the table. + #[inline] + pub fn buckets(&self) -> usize { + self.table.bucket_mask + 1 + } + + /// Checks whether the bucket at `index` is full. + /// + /// # Safety + /// + /// The caller must ensure `index` is less than the number of buckets. + #[inline] + pub unsafe fn is_bucket_full(&self, index: usize) -> bool { + self.table.is_bucket_full(index) + } + + /// Returns an iterator over every element in the table. It is up to + /// the caller to ensure that the `RawTable` outlives the `RawIter`. + /// Because we cannot make the `next` method unsafe on the `RawIter` + /// struct, we have to make the `iter` method unsafe. + #[inline] + pub unsafe fn iter(&self) -> RawIter<T> { + // SAFETY: + // 1. The caller must uphold the safety contract for `iter` method. + // 2. The [`RawTableInner`] must already have properly initialized control bytes since + // we will never expose RawTable::new_uninitialized in a public API. + self.table.iter() + } + + /// Returns an iterator over occupied buckets that could match a given hash. + /// + /// `RawTable` only stores 7 bits of the hash value, so this iterator may + /// return items that have a hash value different than the one provided. You + /// should always validate the returned values before using them. + /// + /// It is up to the caller to ensure that the `RawTable` outlives the + /// `RawIterHash`. Because we cannot make the `next` method unsafe on the + /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe. + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "raw")] + pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<T> { + RawIterHash::new(self, hash) + } + + /// Returns an iterator which removes all elements from the table without + /// freeing the memory. + #[cfg_attr(feature = "inline-more", inline)] + pub fn drain(&mut self) -> RawDrain<'_, T, A> { + unsafe { + let iter = self.iter(); + self.drain_iter_from(iter) + } + } + + /// Returns an iterator which removes all elements from the table without + /// freeing the memory. + /// + /// Iteration starts at the provided iterator's current location. + /// + /// It is up to the caller to ensure that the iterator is valid for this + /// `RawTable` and covers all items that remain in the table. + #[cfg_attr(feature = "inline-more", inline)] + pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> { + debug_assert_eq!(iter.len(), self.len()); + RawDrain { + iter, + table: mem::replace(&mut self.table, RawTableInner::NEW), + orig_table: NonNull::from(&mut self.table), + marker: PhantomData, + } + } + + /// Returns an iterator which consumes all elements from the table. + /// + /// Iteration starts at the provided iterator's current location. + /// + /// It is up to the caller to ensure that the iterator is valid for this + /// `RawTable` and covers all items that remain in the table. + pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> { + debug_assert_eq!(iter.len(), self.len()); + + let allocation = self.into_allocation(); + RawIntoIter { + iter, + allocation, + marker: PhantomData, + } + } + + /// Converts the table into a raw allocation. The contents of the table + /// should be dropped using a `RawIter` before freeing the allocation. + #[cfg_attr(feature = "inline-more", inline)] + pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout, A)> { + let alloc = if self.table.is_empty_singleton() { + None + } else { + // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. + let (layout, ctrl_offset) = + match Self::TABLE_LAYOUT.calculate_layout_for(self.table.buckets()) { + Some(lco) => lco, + None => unsafe { hint::unreachable_unchecked() }, + }; + Some(( + unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) }, + layout, + unsafe { ptr::read(&self.alloc) }, + )) + }; + mem::forget(self); + alloc + } +} + +unsafe impl<T, A: Allocator> Send for RawTable<T, A> +where + T: Send, + A: Send, +{ +} +unsafe impl<T, A: Allocator> Sync for RawTable<T, A> +where + T: Sync, + A: Sync, +{ +} + +impl RawTableInner { + const NEW: Self = RawTableInner::new(); + + /// Creates a new empty hash table without allocating any memory. + /// + /// In effect this returns a table with exactly 1 bucket. However we can + /// leave the data pointer dangling since that bucket is never accessed + /// due to our load factor forcing us to always have at least 1 free bucket. + #[inline] + const fn new() -> Self { + Self { + // Be careful to cast the entire slice to a raw pointer. + ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) }, + bucket_mask: 0, + items: 0, + growth_left: 0, + } + } +} + +impl RawTableInner { + /// Allocates a new [`RawTableInner`] with the given number of buckets. + /// The control bytes and buckets are left uninitialized. + /// + /// # Safety + /// + /// The caller of this function must ensure that the `buckets` is power of two + /// and also initialize all control bytes of the length `self.bucket_mask + 1 + + /// Group::WIDTH` with the [`EMPTY`] bytes. + /// + /// See also [`Allocator`] API for other safety concerns. + /// + /// [`Allocator`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn new_uninitialized<A>( + alloc: &A, + table_layout: TableLayout, + buckets: usize, + fallibility: Fallibility, + ) -> Result<Self, TryReserveError> + where + A: Allocator, + { + debug_assert!(buckets.is_power_of_two()); + + // Avoid `Option::ok_or_else` because it bloats LLVM IR. + let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) { + Some(lco) => lco, + None => return Err(fallibility.capacity_overflow()), + }; + + let ptr: NonNull<u8> = match do_alloc(alloc, layout) { + Ok(block) => block.cast(), + Err(_) => return Err(fallibility.alloc_err(layout)), + }; + + // SAFETY: null pointer will be caught in above check + let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset)); + Ok(Self { + ctrl, + bucket_mask: buckets - 1, + items: 0, + growth_left: bucket_mask_to_capacity(buckets - 1), + }) + } + + /// Attempts to allocate a new [`RawTableInner`] with at least enough + /// capacity for inserting the given number of elements without reallocating. + /// + /// All the control bytes are initialized with the [`EMPTY`] bytes. + #[inline] + fn fallible_with_capacity<A>( + alloc: &A, + table_layout: TableLayout, + capacity: usize, + fallibility: Fallibility, + ) -> Result<Self, TryReserveError> + where + A: Allocator, + { + if capacity == 0 { + Ok(Self::NEW) + } else { + // SAFETY: We checked that we could successfully allocate the new table, and then + // initialized all control bytes with the constant `EMPTY` byte. + unsafe { + let buckets = + capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?; + + let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?; + // SAFETY: We checked that the table is allocated and therefore the table already has + // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for) + // so writing `self.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe. + result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes()); + + Ok(result) + } + } + } + + /// Allocates a new [`RawTableInner`] with at least enough capacity for inserting + /// the given number of elements without reallocating. + /// + /// Panics if the new capacity exceeds [`isize::MAX`] bytes and [`abort`] the program + /// in case of allocation error. Use [`fallible_with_capacity`] instead if you want to + /// handle memory allocation failure. + /// + /// All the control bytes are initialized with the [`EMPTY`] bytes. + /// + /// [`fallible_with_capacity`]: RawTableInner::fallible_with_capacity + /// [`abort`]: https://doc.rust-lang.org/alloc/alloc/fn.handle_alloc_error.html + fn with_capacity<A>(alloc: &A, table_layout: TableLayout, capacity: usize) -> Self + where + A: Allocator, + { + // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. + match Self::fallible_with_capacity(alloc, table_layout, capacity, Fallibility::Infallible) { + Ok(table_inner) => table_inner, + // SAFETY: All allocation errors will be caught inside `RawTableInner::new_uninitialized`. + Err(_) => unsafe { hint::unreachable_unchecked() }, + } + } + + /// Fixes up an insertion slot returned by the [`RawTableInner::find_insert_slot_in_group`] method. + /// + /// In tables smaller than the group width (`self.buckets() < Group::WIDTH`), trailing control + /// bytes outside the range of the table are filled with [`EMPTY`] entries. These will unfortunately + /// trigger a match of [`RawTableInner::find_insert_slot_in_group`] function. This is because + /// the `Some(bit)` returned by `group.match_empty_or_deleted().lowest_set_bit()` after masking + /// (`(probe_seq.pos + bit) & self.bucket_mask`) may point to a full bucket that is already occupied. + /// We detect this situation here and perform a second scan starting at the beginning of the table. + /// This second scan is guaranteed to find an empty slot (due to the load factor) before hitting the + /// trailing control bytes (containing [`EMPTY`] bytes). + /// + /// If this function is called correctly, it is guaranteed to return [`InsertSlot`] with an + /// index of an empty or deleted bucket in the range `0..self.buckets()` (see `Warning` and + /// `Safety`). + /// + /// # Warning + /// + /// The table must have at least 1 empty or deleted `bucket`, otherwise if the table is less than + /// the group width (`self.buckets() < Group::WIDTH`) this function returns an index outside of the + /// table indices range `0..self.buckets()` (`0..=self.bucket_mask`). Attempt to write data at that + /// index will cause immediate [`undefined behavior`]. + /// + /// # Safety + /// + /// The safety rules are directly derived from the safety rules for [`RawTableInner::ctrl`] method. + /// Thus, in order to uphold those safety contracts, as well as for the correct logic of the work + /// of this crate, the following rules are necessary and sufficient: + /// + /// * The [`RawTableInner`] must have properly initialized control bytes otherwise calling this + /// function results in [`undefined behavior`]. + /// + /// * This function must only be used on insertion slots found by [`RawTableInner::find_insert_slot_in_group`] + /// (after the `find_insert_slot_in_group` function, but before insertion into the table). + /// + /// * The `index` must not be greater than the `self.bucket_mask`, i.e. `(index + 1) <= self.buckets()` + /// (this one is provided by the [`RawTableInner::find_insert_slot_in_group`] function). + /// + /// Calling this function with an index not provided by [`RawTableInner::find_insert_slot_in_group`] + /// may result in [`undefined behavior`] even if the index satisfies the safety rules of the + /// [`RawTableInner::ctrl`] function (`index < self.bucket_mask + 1 + Group::WIDTH`). + /// + /// [`RawTableInner::ctrl`]: RawTableInner::ctrl + /// [`RawTableInner::find_insert_slot_in_group`]: RawTableInner::find_insert_slot_in_group + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn fix_insert_slot(&self, mut index: usize) -> InsertSlot { + // SAFETY: The caller of this function ensures that `index` is in the range `0..=self.bucket_mask`. + if unlikely(self.is_bucket_full(index)) { + debug_assert!(self.bucket_mask < Group::WIDTH); + // SAFETY: + // + // * Since the caller of this function ensures that the control bytes are properly + // initialized and `ptr = self.ctrl(0)` points to the start of the array of control + // bytes, therefore: `ctrl` is valid for reads, properly aligned to `Group::WIDTH` + // and points to the properly initialized control bytes (see also + // `TableLayout::calculate_layout_for` and `ptr::read`); + // + // * Because the caller of this function ensures that the index was provided by the + // `self.find_insert_slot_in_group()` function, so for for tables larger than the + // group width (self.buckets() >= Group::WIDTH), we will never end up in the given + // branch, since `(probe_seq.pos + bit) & self.bucket_mask` in `find_insert_slot_in_group` + // cannot return a full bucket index. For tables smaller than the group width, calling + // the `unwrap_unchecked` function is also safe, as the trailing control bytes outside + // the range of the table are filled with EMPTY bytes (and we know for sure that there + // is at least one FULL bucket), so this second scan either finds an empty slot (due to + // the load factor) or hits the trailing control bytes (containing EMPTY). + index = Group::load_aligned(self.ctrl(0)) + .match_empty_or_deleted() + .lowest_set_bit() + .unwrap_unchecked(); + } + InsertSlot { index } + } + + /// Finds the position to insert something in a group. + /// + /// **This may have false positives and must be fixed up with `fix_insert_slot` + /// before it's used.** + /// + /// The function is guaranteed to return the index of an empty or deleted [`Bucket`] + /// in the range `0..self.buckets()` (`0..=self.bucket_mask`). + #[inline] + fn find_insert_slot_in_group(&self, group: &Group, probe_seq: &ProbeSeq) -> Option<usize> { + let bit = group.match_empty_or_deleted().lowest_set_bit(); + + if likely(bit.is_some()) { + // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number + // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. + Some((probe_seq.pos + bit.unwrap()) & self.bucket_mask) + } else { + None + } + } + + /// Searches for an element in the table, or a potential slot where that element could + /// be inserted (an empty or deleted [`Bucket`] index). + /// + /// This uses dynamic dispatch to reduce the amount of code generated, but that is + /// eliminated by LLVM optimizations. + /// + /// This function does not make any changes to the `data` part of the table, or any + /// changes to the `items` or `growth_left` field of the table. + /// + /// The table must have at least 1 empty or deleted `bucket`, otherwise, if the + /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`, this function + /// will never return (will go into an infinite loop) for tables larger than the group + /// width, or return an index outside of the table indices range if the table is less + /// than the group width. + /// + /// This function is guaranteed to provide the `eq: &mut dyn FnMut(usize) -> bool` + /// function with only `FULL` buckets' indices and return the `index` of the found + /// element (as `Ok(index)`). If the element is not found and there is at least 1 + /// empty or deleted [`Bucket`] in the table, the function is guaranteed to return + /// [InsertSlot] with an index in the range `0..self.buckets()`, but in any case, + /// if this function returns [`InsertSlot`], it will contain an index in the range + /// `0..=self.buckets()`. + /// + /// # Safety + /// + /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling + /// this function results in [`undefined behavior`]. + /// + /// Attempt to write data at the [`InsertSlot`] returned by this function when the table is + /// less than the group width and if there was not at least one empty or deleted bucket in + /// the table will cause immediate [`undefined behavior`]. This is because in this case the + /// function will return `self.bucket_mask + 1` as an index due to the trailing [`EMPTY] + /// control bytes outside the table range. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn find_or_find_insert_slot_inner( + &self, + hash: u64, + eq: &mut dyn FnMut(usize) -> bool, + ) -> Result<usize, InsertSlot> { + let mut insert_slot = None; + + let h2_hash = h2(hash); + let mut probe_seq = self.probe_seq(hash); + + loop { + // SAFETY: + // * Caller of this function ensures that the control bytes are properly initialized. + // + // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` + // of the table due to masking with `self.bucket_mask` and also because mumber of + // buckets is a power of two (see `self.probe_seq` function). + // + // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to + // call `Group::load` due to the extended control bytes range, which is + // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control + // byte will never be read for the allocated table); + // + // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will + // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` + // bytes, which is safe (see RawTableInner::new). + let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; + + for bit in group.match_byte(h2_hash) { + let index = (probe_seq.pos + bit) & self.bucket_mask; + + if likely(eq(index)) { + return Ok(index); + } + } + + // We didn't find the element we were looking for in the group, try to get an + // insertion slot from the group if we don't have one yet. + if likely(insert_slot.is_none()) { + insert_slot = self.find_insert_slot_in_group(&group, &probe_seq); + } + + // Only stop the search if the group contains at least one empty element. + // Otherwise, the element that we are looking for might be in a following group. + if likely(group.match_empty().any_bit_set()) { + // We must have found a insert slot by now, since the current group contains at + // least one. For tables smaller than the group width, there will still be an + // empty element in the current (and only) group due to the load factor. + unsafe { + // SAFETY: + // * Caller of this function ensures that the control bytes are properly initialized. + // + // * We use this function with the slot / index found by `self.find_insert_slot_in_group` + return Err(self.fix_insert_slot(insert_slot.unwrap_unchecked())); + } + } + + probe_seq.move_next(self.bucket_mask); + } + } + + /// Searches for an empty or deleted bucket which is suitable for inserting a new + /// element and sets the hash for that slot. Returns an index of that slot and the + /// old control byte stored in the found index. + /// + /// This function does not check if the given element exists in the table. Also, + /// this function does not check if there is enough space in the table to insert + /// a new element. Caller of the funtion must make ensure that the table has at + /// least 1 empty or deleted `bucket`, otherwise this function will never return + /// (will go into an infinite loop) for tables larger than the group width, or + /// return an index outside of the table indices range if the table is less than + /// the group width. + /// + /// If there is at least 1 empty or deleted `bucket` in the table, the function is + /// guaranteed to return an `index` in the range `0..self.buckets()`, but in any case, + /// if this function returns an `index` it will be in the range `0..=self.buckets()`. + /// + /// This function does not make any changes to the `data` parts of the table, + /// or any changes to the the `items` or `growth_left` field of the table. + /// + /// # Safety + /// + /// The safety rules are directly derived from the safety rules for the + /// [`RawTableInner::set_ctrl_h2`] and [`RawTableInner::find_insert_slot`] methods. + /// Thus, in order to uphold the safety contracts for that methods, as well as for + /// the correct logic of the work of this crate, you must observe the following rules + /// when calling this function: + /// + /// * The [`RawTableInner`] has already been allocated and has properly initialized + /// control bytes otherwise calling this function results in [`undefined behavior`]. + /// + /// * The caller of this function must ensure that the "data" parts of the table + /// will have an entry in the returned index (matching the given hash) right + /// after calling this function. + /// + /// Attempt to write data at the `index` returned by this function when the table is + /// less than the group width and if there was not at least one empty or deleted bucket in + /// the table will cause immediate [`undefined behavior`]. This is because in this case the + /// function will return `self.bucket_mask + 1` as an index due to the trailing [`EMPTY] + /// control bytes outside the table range. + /// + /// The caller must independently increase the `items` field of the table, and also, + /// if the old control byte was [`EMPTY`], then decrease the table's `growth_left` + /// field, and do not change it if the old control byte was [`DELETED`]. + /// + /// See also [`Bucket::as_ptr`] method, for more information about of properly removing + /// or saving `element` from / into the [`RawTable`] / [`RawTableInner`]. + /// + /// [`Bucket::as_ptr`]: Bucket::as_ptr + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + /// [`RawTableInner::ctrl`]: RawTableInner::ctrl + /// [`RawTableInner::set_ctrl_h2`]: RawTableInner::set_ctrl_h2 + /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot + #[inline] + unsafe fn prepare_insert_slot(&mut self, hash: u64) -> (usize, u8) { + // SAFETY: Caller of this function ensures that the control bytes are properly initialized. + let index: usize = self.find_insert_slot(hash).index; + // SAFETY: + // 1. The `find_insert_slot` function either returns an `index` less than or + // equal to `self.buckets() = self.bucket_mask + 1` of the table, or never + // returns if it cannot find an empty or deleted slot. + // 2. The caller of this function guarantees that the table has already been + // allocated + let old_ctrl = *self.ctrl(index); + self.set_ctrl_h2(index, hash); + (index, old_ctrl) + } + + /// Searches for an empty or deleted bucket which is suitable for inserting + /// a new element, returning the `index` for the new [`Bucket`]. + /// + /// This function does not make any changes to the `data` part of the table, or any + /// changes to the `items` or `growth_left` field of the table. + /// + /// The table must have at least 1 empty or deleted `bucket`, otherwise this function + /// will never return (will go into an infinite loop) for tables larger than the group + /// width, or return an index outside of the table indices range if the table is less + /// than the group width. + /// + /// If there is at least 1 empty or deleted `bucket` in the table, the function is + /// guaranteed to return [`InsertSlot`] with an index in the range `0..self.buckets()`, + /// but in any case, if this function returns [`InsertSlot`], it will contain an index + /// in the range `0..=self.buckets()`. + /// + /// # Safety + /// + /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling + /// this function results in [`undefined behavior`]. + /// + /// Attempt to write data at the [`InsertSlot`] returned by this function when the table is + /// less than the group width and if there was not at least one empty or deleted bucket in + /// the table will cause immediate [`undefined behavior`]. This is because in this case the + /// function will return `self.bucket_mask + 1` as an index due to the trailing [`EMPTY] + /// control bytes outside the table range. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn find_insert_slot(&self, hash: u64) -> InsertSlot { + let mut probe_seq = self.probe_seq(hash); + loop { + // SAFETY: + // * Caller of this function ensures that the control bytes are properly initialized. + // + // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` + // of the table due to masking with `self.bucket_mask` and also because mumber of + // buckets is a power of two (see `self.probe_seq` function). + // + // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to + // call `Group::load` due to the extended control bytes range, which is + // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control + // byte will never be read for the allocated table); + // + // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will + // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` + // bytes, which is safe (see RawTableInner::new). + let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; + + let index = self.find_insert_slot_in_group(&group, &probe_seq); + if likely(index.is_some()) { + // SAFETY: + // * Caller of this function ensures that the control bytes are properly initialized. + // + // * We use this function with the slot / index found by `self.find_insert_slot_in_group` + unsafe { + return self.fix_insert_slot(index.unwrap_unchecked()); + } + } + probe_seq.move_next(self.bucket_mask); + } + } + + /// Searches for an element in a table, returning the `index` of the found element. + /// This uses dynamic dispatch to reduce the amount of code generated, but it is + /// eliminated by LLVM optimizations. + /// + /// This function does not make any changes to the `data` part of the table, or any + /// changes to the `items` or `growth_left` field of the table. + /// + /// The table must have at least 1 empty `bucket`, otherwise, if the + /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`, + /// this function will also never return (will go into an infinite loop). + /// + /// This function is guaranteed to provide the `eq: &mut dyn FnMut(usize) -> bool` + /// function with only `FULL` buckets' indices and return the `index` of the found + /// element as `Some(index)`, so the index will always be in the range + /// `0..self.buckets()`. + /// + /// # Safety + /// + /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling + /// this function results in [`undefined behavior`]. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline(always)] + unsafe fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> { + let h2_hash = h2(hash); + let mut probe_seq = self.probe_seq(hash); + + loop { + // SAFETY: + // * Caller of this function ensures that the control bytes are properly initialized. + // + // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` + // of the table due to masking with `self.bucket_mask`. + // + // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to + // call `Group::load` due to the extended control bytes range, which is + // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control + // byte will never be read for the allocated table); + // + // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will + // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` + // bytes, which is safe (see RawTableInner::new_in). + let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; + + for bit in group.match_byte(h2_hash) { + // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number + // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. + let index = (probe_seq.pos + bit) & self.bucket_mask; + + if likely(eq(index)) { + return Some(index); + } + } + + if likely(group.match_empty().any_bit_set()) { + return None; + } + + probe_seq.move_next(self.bucket_mask); + } + } + + /// Prepares for rehashing data in place (that is, without allocating new memory). + /// Converts all full index `control bytes` to `DELETED` and all `DELETED` control + /// bytes to `EMPTY`, i.e. performs the following conversion: + /// + /// - `EMPTY` control bytes -> `EMPTY`; + /// - `DELETED` control bytes -> `EMPTY`; + /// - `FULL` control bytes -> `DELETED`. + /// + /// This function does not make any changes to the `data` parts of the table, + /// or any changes to the the `items` or `growth_left` field of the table. + /// + /// # Safety + /// + /// You must observe the following safety rules when calling this function: + /// + /// * The [`RawTableInner`] has already been allocated; + /// + /// * The caller of this function must convert the `DELETED` bytes back to `FULL` + /// bytes when re-inserting them into their ideal position (which was impossible + /// to do during the first insert due to tombstones). If the caller does not do + /// this, then calling this function may result in a memory leak. + /// + /// * The [`RawTableInner`] must have properly initialized control bytes otherwise + /// calling this function results in [`undefined behavior`]. + /// + /// Calling this function on a table that has not been allocated results in + /// [`undefined behavior`]. + /// + /// See also [`Bucket::as_ptr`] method, for more information about of properly removing + /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. + /// + /// [`Bucket::as_ptr`]: Bucket::as_ptr + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[allow(clippy::mut_mut)] + #[inline] + unsafe fn prepare_rehash_in_place(&mut self) { + // Bulk convert all full control bytes to DELETED, and all DELETED control bytes to EMPTY. + // This effectively frees up all buckets containing a DELETED entry. + // + // SAFETY: + // 1. `i` is guaranteed to be within bounds since we are iterating from zero to `buckets - 1`; + // 2. Even if `i` will be `i == self.bucket_mask`, it is safe to call `Group::load_aligned` + // due to the extended control bytes range, which is `self.bucket_mask + 1 + Group::WIDTH`; + // 3. The caller of this function guarantees that [`RawTableInner`] has already been allocated; + // 4. We can use `Group::load_aligned` and `Group::store_aligned` here since we start from 0 + // and go to the end with a step equal to `Group::WIDTH` (see TableLayout::calculate_layout_for). + for i in (0..self.buckets()).step_by(Group::WIDTH) { + let group = Group::load_aligned(self.ctrl(i)); + let group = group.convert_special_to_empty_and_full_to_deleted(); + group.store_aligned(self.ctrl(i)); + } + + // Fix up the trailing control bytes. See the comments in set_ctrl + // for the handling of tables smaller than the group width. + // + // SAFETY: The caller of this function guarantees that [`RawTableInner`] + // has already been allocated + if unlikely(self.buckets() < Group::WIDTH) { + // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes, + // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to + // `Group::WIDTH` is safe + self.ctrl(0) + .copy_to(self.ctrl(Group::WIDTH), self.buckets()); + } else { + // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of + // control bytes,so copying `Group::WIDTH` bytes with offset equal + // to `self.buckets() == self.bucket_mask + 1` is safe + self.ctrl(0) + .copy_to(self.ctrl(self.buckets()), Group::WIDTH); + } + } + + /// Returns an iterator over every element in the table. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result + /// is [`undefined behavior`]: + /// + /// * The caller has to ensure that the `RawTableInner` outlives the + /// `RawIter`. Because we cannot make the `next` method unsafe on + /// the `RawIter` struct, we have to make the `iter` method unsafe. + /// + /// * The [`RawTableInner`] must have properly initialized control bytes. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn iter<T>(&self) -> RawIter<T> { + // SAFETY: + // 1. Since the caller of this function ensures that the control bytes + // are properly initialized and `self.data_end()` points to the start + // of the array of control bytes, therefore: `ctrl` is valid for reads, + // properly aligned to `Group::WIDTH` and points to the properly initialized + // control bytes. + // 2. `data` bucket index in the table is equal to the `ctrl` index (i.e. + // equal to zero). + // 3. We pass the exact value of buckets of the table to the function. + // + // `ctrl` points here (to the start + // of the first control byte `CT0`) + // ∨ + // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, Group::WIDTH + // \________ ________/ + // \/ + // `n = buckets - 1`, i.e. `RawIndexTableInner::buckets() - 1` + // + // where: T0...T_n - our stored data; + // CT0...CT_n - control bytes or metadata for `data`. + let data = Bucket::from_base_index(self.data_end(), 0); + RawIter { + // SAFETY: See explanation above + iter: RawIterRange::new(self.ctrl.as_ptr(), data, self.buckets()), + items: self.items, + } + } + + /// Executes the destructors (if any) of the values stored in the table. + /// + /// # Note + /// + /// This function does not erase the control bytes of the table and does + /// not make any changes to the `items` or `growth_left` fields of the + /// table. If necessary, the caller of this function must manually set + /// up these table fields, for example using the [`clear_no_drop`] function. + /// + /// Be careful during calling this function, because drop function of + /// the elements can panic, and this can leave table in an inconsistent + /// state. + /// + /// # Safety + /// + /// If `T` is a type that should be dropped and **the table is not empty**, + /// calling this function more than once results in [`undefined behavior`]. + /// + /// If `T` is not [`Copy`], attempting to use values stored in the table after + /// calling this function may result in [`undefined behavior`]. + /// + /// It is safe to call this function on a table that has not been allocated, + /// on a table with uninitialized control bytes, and on a table with no actual + /// data but with `Full` control bytes if `self.items == 0`. + /// + /// See also [`Bucket::drop`] / [`Bucket::as_ptr`] methods, for more information + /// about of properly removing or saving `element` from / into the [`RawTable`] / + /// [`RawTableInner`]. + /// + /// [`Bucket::drop`]: Bucket::drop + /// [`Bucket::as_ptr`]: Bucket::as_ptr + /// [`clear_no_drop`]: RawTableInner::clear_no_drop + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + unsafe fn drop_elements<T>(&mut self) { + // Check that `self.items != 0`. Protects against the possibility + // of creating an iterator on an table with uninitialized control bytes. + if T::NEEDS_DROP && self.items != 0 { + // SAFETY: We know for sure that RawTableInner will outlive the + // returned `RawIter` iterator, and the caller of this function + // must uphold the safety contract for `drop_elements` method. + for item in self.iter::<T>() { + // SAFETY: The caller must uphold the safety contract for + // `drop_elements` method. + item.drop(); + } + } + } + + /// Executes the destructors (if any) of the values stored in the table and than + /// deallocates the table. + /// + /// # Note + /// + /// Calling this function automatically makes invalid (dangling) all instances of + /// buckets ([`Bucket`]) and makes invalid (dangling) the `ctrl` field of the table. + /// + /// This function does not make any changes to the `bucket_mask`, `items` or `growth_left` + /// fields of the table. If necessary, the caller of this function must manually set + /// up these table fields. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result is [`undefined behavior`]: + /// + /// * Calling this function more than once; + /// + /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used + /// to allocate this table. + /// + /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that + /// was used to allocate this table. + /// + /// The caller of this function should pay attention to the possibility of the + /// elements' drop function panicking, because this: + /// + /// * May leave the table in an inconsistent state; + /// + /// * Memory is never deallocated, so a memory leak may occur. + /// + /// Attempt to use the `ctrl` field of the table (dereference) after calling this + /// function results in [`undefined behavior`]. + /// + /// It is safe to call this function on a table that has not been allocated, + /// on a table with uninitialized control bytes, and on a table with no actual + /// data but with `Full` control bytes if `self.items == 0`. + /// + /// See also [`RawTableInner::drop_elements`] or [`RawTableInner::free_buckets`] + /// for more information. + /// + /// [`RawTableInner::drop_elements`]: RawTableInner::drop_elements + /// [`RawTableInner::free_buckets`]: RawTableInner::free_buckets + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + unsafe fn drop_inner_table<T, A: Allocator>(&mut self, alloc: &A, table_layout: TableLayout) { + if !self.is_empty_singleton() { + unsafe { + // SAFETY: The caller must uphold the safety contract for `drop_inner_table` method. + self.drop_elements::<T>(); + // SAFETY: + // 1. We have checked that our table is allocated. + // 2. The caller must uphold the safety contract for `drop_inner_table` method. + self.free_buckets(alloc, table_layout); + } + } + } + + #[inline] + unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> { + debug_assert_ne!(self.bucket_mask, 0); + debug_assert!(index < self.buckets()); + Bucket::from_base_index(self.data_end(), index) + } + + #[inline] + unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 { + debug_assert_ne!(self.bucket_mask, 0); + debug_assert!(index < self.buckets()); + let base: *mut u8 = self.data_end().as_ptr(); + base.sub((index + 1) * size_of) + } + + #[inline] + unsafe fn data_end<T>(&self) -> NonNull<T> { + NonNull::new_unchecked(self.ctrl.as_ptr().cast()) + } + + /// Returns an iterator-like object for a probe sequence on the table. + /// + /// This iterator never terminates, but is guaranteed to visit each bucket + /// group exactly once. The loop using `probe_seq` must terminate upon + /// reaching a group containing an empty bucket. + #[inline] + fn probe_seq(&self, hash: u64) -> ProbeSeq { + ProbeSeq { + // This is the same as `hash as usize % self.buckets()` because the number + // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. + pos: h1(hash) & self.bucket_mask, + stride: 0, + } + } + + /// Returns the index of a bucket for which a value must be inserted if there is enough rooom + /// in the table, otherwise returns error + #[cfg(feature = "raw")] + #[inline] + unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> { + let index = self.find_insert_slot(hash).index; + let old_ctrl = *self.ctrl(index); + if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) { + Err(()) + } else { + self.record_item_insert_at(index, old_ctrl, hash); + Ok(index) + } + } + + #[inline] + unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) { + self.growth_left -= usize::from(special_is_empty(old_ctrl)); + self.set_ctrl_h2(index, hash); + self.items += 1; + } + + #[inline] + fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool { + let probe_seq_pos = self.probe_seq(hash).pos; + let probe_index = + |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH; + probe_index(i) == probe_index(new_i) + } + + /// Sets a control byte to the hash, and possibly also the replicated control byte at + /// the end of the array. + /// + /// This function does not make any changes to the `data` parts of the table, + /// or any changes to the the `items` or `growth_left` field of the table. + /// + /// # Safety + /// + /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl`] + /// method. Thus, in order to uphold the safety contracts for the method, you must observe the + /// following rules when calling this function: + /// + /// * The [`RawTableInner`] has already been allocated; + /// + /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. + /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must + /// be no greater than the number returned by the function [`RawTableInner::buckets`]. + /// + /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. + /// + /// See also [`Bucket::as_ptr`] method, for more information about of properly removing + /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. + /// + /// [`RawTableInner::set_ctrl`]: RawTableInner::set_ctrl + /// [`RawTableInner::buckets`]: RawTableInner::buckets + /// [`Bucket::as_ptr`]: Bucket::as_ptr + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn set_ctrl_h2(&mut self, index: usize, hash: u64) { + // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl_h2`] + self.set_ctrl(index, h2(hash)); + } + + /// Replaces the hash in the control byte at the given index with the provided one, + /// and possibly also replicates the new control byte at the end of the array of control + /// bytes, returning the old control byte. + /// + /// This function does not make any changes to the `data` parts of the table, + /// or any changes to the the `items` or `growth_left` field of the table. + /// + /// # Safety + /// + /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl_h2`] + /// and [`RawTableInner::ctrl`] methods. Thus, in order to uphold the safety contracts for both + /// methods, you must observe the following rules when calling this function: + /// + /// * The [`RawTableInner`] has already been allocated; + /// + /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. + /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must + /// be no greater than the number returned by the function [`RawTableInner::buckets`]. + /// + /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. + /// + /// See also [`Bucket::as_ptr`] method, for more information about of properly removing + /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. + /// + /// [`RawTableInner::set_ctrl_h2`]: RawTableInner::set_ctrl_h2 + /// [`RawTableInner::buckets`]: RawTableInner::buckets + /// [`Bucket::as_ptr`]: Bucket::as_ptr + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn replace_ctrl_h2(&mut self, index: usize, hash: u64) -> u8 { + // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::replace_ctrl_h2`] + let prev_ctrl = *self.ctrl(index); + self.set_ctrl_h2(index, hash); + prev_ctrl + } + + /// Sets a control byte, and possibly also the replicated control byte at + /// the end of the array. + /// + /// This function does not make any changes to the `data` parts of the table, + /// or any changes to the the `items` or `growth_left` field of the table. + /// + /// # Safety + /// + /// You must observe the following safety rules when calling this function: + /// + /// * The [`RawTableInner`] has already been allocated; + /// + /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. + /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must + /// be no greater than the number returned by the function [`RawTableInner::buckets`]. + /// + /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. + /// + /// See also [`Bucket::as_ptr`] method, for more information about of properly removing + /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. + /// + /// [`RawTableInner::buckets`]: RawTableInner::buckets + /// [`Bucket::as_ptr`]: Bucket::as_ptr + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn set_ctrl(&mut self, index: usize, ctrl: u8) { + // Replicate the first Group::WIDTH control bytes at the end of + // the array without using a branch. If the tables smaller than + // the group width (self.buckets() < Group::WIDTH), + // `index2 = Group::WIDTH + index`, otherwise `index2` is: + // + // - If index >= Group::WIDTH then index == index2. + // - Otherwise index2 == self.bucket_mask + 1 + index. + // + // The very last replicated control byte is never actually read because + // we mask the initial index for unaligned loads, but we write it + // anyways because it makes the set_ctrl implementation simpler. + // + // If there are fewer buckets than Group::WIDTH then this code will + // replicate the buckets at the end of the trailing group. For example + // with 2 buckets and a group size of 4, the control bytes will look + // like this: + // + // Real | Replicated + // --------------------------------------------- + // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] | + // --------------------------------------------- + + // This is the same as `(index.wrapping_sub(Group::WIDTH)) % self.buckets() + Group::WIDTH` + // because the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. + let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH; + + // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl`] + *self.ctrl(index) = ctrl; + *self.ctrl(index2) = ctrl; + } + + /// Returns a pointer to a control byte. + /// + /// # Safety + /// + /// For the allocated [`RawTableInner`], the result is [`Undefined Behavior`], + /// if the `index` is greater than the `self.bucket_mask + 1 + Group::WIDTH`. + /// In that case, calling this function with `index == self.bucket_mask + 1 + Group::WIDTH` + /// will return a pointer to the end of the allocated table and it is useless on its own. + /// + /// Calling this function with `index >= self.bucket_mask + 1 + Group::WIDTH` on a + /// table that has not been allocated results in [`Undefined Behavior`]. + /// + /// So to satisfy both requirements you should always follow the rule that + /// `index < self.bucket_mask + 1 + Group::WIDTH` + /// + /// Calling this function on [`RawTableInner`] that are not already allocated is safe + /// for read-only purpose. + /// + /// See also [`Bucket::as_ptr()`] method, for more information about of properly removing + /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. + /// + /// [`Bucket::as_ptr()`]: Bucket::as_ptr() + /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn ctrl(&self, index: usize) -> *mut u8 { + debug_assert!(index < self.num_ctrl_bytes()); + // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::ctrl`] + self.ctrl.as_ptr().add(index) + } + + #[inline] + fn buckets(&self) -> usize { + self.bucket_mask + 1 + } + + /// Checks whether the bucket at `index` is full. + /// + /// # Safety + /// + /// The caller must ensure `index` is less than the number of buckets. + #[inline] + unsafe fn is_bucket_full(&self, index: usize) -> bool { + debug_assert!(index < self.buckets()); + is_full(*self.ctrl(index)) + } + + #[inline] + fn num_ctrl_bytes(&self) -> usize { + self.bucket_mask + 1 + Group::WIDTH + } + + #[inline] + fn is_empty_singleton(&self) -> bool { + self.bucket_mask == 0 + } + + /// Attempts to allocate a new hash table with at least enough capacity + /// for inserting the given number of elements without reallocating, + /// and return it inside ScopeGuard to protect against panic in the hash + /// function. + /// + /// # Note + /// + /// It is recommended (but not required): + /// + /// * That the new table's `capacity` be greater than or equal to `self.items`. + /// + /// * The `alloc` is the same [`Allocator`] as the `Allocator` used + /// to allocate this table. + /// + /// * The `table_layout` is the same [`TableLayout`] as the `TableLayout` used + /// to allocate this table. + /// + /// If `table_layout` does not match the `TableLayout` that was used to allocate + /// this table, then using `mem::swap` with the `self` and the new table returned + /// by this function results in [`undefined behavior`]. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[allow(clippy::mut_mut)] + #[inline] + fn prepare_resize<'a, A>( + &self, + alloc: &'a A, + table_layout: TableLayout, + capacity: usize, + fallibility: Fallibility, + ) -> Result<crate::scopeguard::ScopeGuard<Self, impl FnMut(&mut Self) + 'a>, TryReserveError> + where + A: Allocator, + { + debug_assert!(self.items <= capacity); + + // Allocate and initialize the new table. + let new_table = + RawTableInner::fallible_with_capacity(alloc, table_layout, capacity, fallibility)?; + + // The hash function may panic, in which case we simply free the new + // table without dropping any elements that may have been copied into + // it. + // + // This guard is also used to free the old table on success, see + // the comment at the bottom of this function. + Ok(guard(new_table, move |self_| { + if !self_.is_empty_singleton() { + // SAFETY: + // 1. We have checked that our table is allocated. + // 2. We know for sure that the `alloc` and `table_layout` matches the + // [`Allocator`] and [`TableLayout`] used to allocate this table. + unsafe { self_.free_buckets(alloc, table_layout) }; + } + })) + } + + /// Reserves or rehashes to make room for `additional` more elements. + /// + /// This uses dynamic dispatch to reduce the amount of + /// code generated, but it is eliminated by LLVM optimizations when inlined. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result is + /// [`undefined behavior`]: + /// + /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used + /// to allocate this table. + /// + /// * The `layout` must be the same [`TableLayout`] as the `TableLayout` + /// used to allocate this table. + /// + /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of + /// the elements stored in the table. + /// + /// * The [`RawTableInner`] must have properly initialized control bytes. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[allow(clippy::inline_always)] + #[inline(always)] + unsafe fn reserve_rehash_inner<A>( + &mut self, + alloc: &A, + additional: usize, + hasher: &dyn Fn(&mut Self, usize) -> u64, + fallibility: Fallibility, + layout: TableLayout, + drop: Option<fn(*mut u8)>, + ) -> Result<(), TryReserveError> + where + A: Allocator, + { + // Avoid `Option::ok_or_else` because it bloats LLVM IR. + let new_items = match self.items.checked_add(additional) { + Some(new_items) => new_items, + None => return Err(fallibility.capacity_overflow()), + }; + let full_capacity = bucket_mask_to_capacity(self.bucket_mask); + if new_items <= full_capacity / 2 { + // Rehash in-place without re-allocating if we have plenty of spare + // capacity that is locked up due to DELETED entries. + + // SAFETY: + // 1. We know for sure that `[`RawTableInner`]` has already been allocated + // (since new_items <= full_capacity / 2); + // 2. The caller ensures that `drop` function is the actual drop function of + // the elements stored in the table. + // 3. The caller ensures that `layout` matches the [`TableLayout`] that was + // used to allocate this table. + // 4. The caller ensures that the control bytes of the `RawTableInner` + // are already initialized. + self.rehash_in_place(hasher, layout.size, drop); + Ok(()) + } else { + // Otherwise, conservatively resize to at least the next size up + // to avoid churning deletes into frequent rehashes. + // + // SAFETY: + // 1. We know for sure that `capacity >= self.items`. + // 2. The caller ensures that `alloc` and `layout` matches the [`Allocator`] and + // [`TableLayout`] that were used to allocate this table. + // 3. The caller ensures that the control bytes of the `RawTableInner` + // are already initialized. + self.resize_inner( + alloc, + usize::max(new_items, full_capacity + 1), + hasher, + fallibility, + layout, + ) + } + } + + /// Returns an iterator over full buckets indices in the table. + /// + /// # Safety + /// + /// Behavior is undefined if any of the following conditions are violated: + /// + /// * The caller has to ensure that the `RawTableInner` outlives the + /// `FullBucketsIndices`. Because we cannot make the `next` method + /// unsafe on the `FullBucketsIndices` struct, we have to make the + /// `full_buckets_indices` method unsafe. + /// + /// * The [`RawTableInner`] must have properly initialized control bytes. + #[inline(always)] + unsafe fn full_buckets_indices(&self) -> FullBucketsIndices { + // SAFETY: + // 1. Since the caller of this function ensures that the control bytes + // are properly initialized and `self.ctrl(0)` points to the start + // of the array of control bytes, therefore: `ctrl` is valid for reads, + // properly aligned to `Group::WIDTH` and points to the properly initialized + // control bytes. + // 2. The value of `items` is equal to the amount of data (values) added + // to the table. + // + // `ctrl` points here (to the start + // of the first control byte `CT0`) + // ∨ + // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, Group::WIDTH + // \________ ________/ + // \/ + // `n = buckets - 1`, i.e. `RawIndexTableInner::buckets() - 1` + // + // where: T0...T_n - our stored data; + // CT0...CT_n - control bytes or metadata for `data`. + let ctrl = NonNull::new_unchecked(self.ctrl(0)); + + FullBucketsIndices { + // Load the first group + // SAFETY: See explanation above. + current_group: Group::load_aligned(ctrl.as_ptr()).match_full().into_iter(), + group_first_index: 0, + ctrl, + items: self.items, + } + } + + /// Allocates a new table of a different size and moves the contents of the + /// current table into it. + /// + /// This uses dynamic dispatch to reduce the amount of + /// code generated, but it is eliminated by LLVM optimizations when inlined. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result is + /// [`undefined behavior`]: + /// + /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used + /// to allocate this table; + /// + /// * The `layout` must be the same [`TableLayout`] as the `TableLayout` + /// used to allocate this table; + /// + /// * The [`RawTableInner`] must have properly initialized control bytes. + /// + /// The caller of this function must ensure that `capacity >= self.items` + /// otherwise: + /// + /// * If `self.items != 0`, calling of this function with `capacity == 0` + /// results in [`undefined behavior`]. + /// + /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and + /// `self.items > capacity_to_buckets(capacity)` calling this function + /// results in [`undefined behavior`]. + /// + /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and + /// `self.items > capacity_to_buckets(capacity)` calling this function + /// are never return (will go into an infinite loop). + /// + /// Note: It is recommended (but not required) that the new table's `capacity` + /// be greater than or equal to `self.items`. In case if `capacity <= self.items` + /// this function can never return. See [`RawTableInner::find_insert_slot`] for + /// more information. + /// + /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[allow(clippy::inline_always)] + #[inline(always)] + unsafe fn resize_inner<A>( + &mut self, + alloc: &A, + capacity: usize, + hasher: &dyn Fn(&mut Self, usize) -> u64, + fallibility: Fallibility, + layout: TableLayout, + ) -> Result<(), TryReserveError> + where + A: Allocator, + { + // SAFETY: We know for sure that `alloc` and `layout` matches the [`Allocator`] and [`TableLayout`] + // that were used to allocate this table. + let mut new_table = self.prepare_resize(alloc, layout, capacity, fallibility)?; + + // SAFETY: We know for sure that RawTableInner will outlive the + // returned `FullBucketsIndices` iterator, and the caller of this + // function ensures that the control bytes are properly initialized. + for full_byte_index in self.full_buckets_indices() { + // This may panic. + let hash = hasher(self, full_byte_index); + + // SAFETY: + // We can use a simpler version of insert() here since: + // 1. There are no DELETED entries. + // 2. We know there is enough space in the table. + // 3. All elements are unique. + // 4. The caller of this function guarantees that `capacity > 0` + // so `new_table` must already have some allocated memory. + // 5. We set `growth_left` and `items` fields of the new table + // after the loop. + // 6. We insert into the table, at the returned index, the data + // matching the given hash immediately after calling this function. + let (new_index, _) = new_table.prepare_insert_slot(hash); + + // SAFETY: + // + // * `src` is valid for reads of `layout.size` bytes, since the + // table is alive and the `full_byte_index` is guaranteed to be + // within bounds (see `FullBucketsIndices::next_impl`); + // + // * `dst` is valid for writes of `layout.size` bytes, since the + // caller ensures that `table_layout` matches the [`TableLayout`] + // that was used to allocate old table and we have the `new_index` + // returned by `prepare_insert_slot`. + // + // * Both `src` and `dst` are properly aligned. + // + // * Both `src` and `dst` point to different region of memory. + ptr::copy_nonoverlapping( + self.bucket_ptr(full_byte_index, layout.size), + new_table.bucket_ptr(new_index, layout.size), + layout.size, + ); + } + + // The hash function didn't panic, so we can safely set the + // `growth_left` and `items` fields of the new table. + new_table.growth_left -= self.items; + new_table.items = self.items; + + // We successfully copied all elements without panicking. Now replace + // self with the new table. The old table will have its memory freed but + // the items will not be dropped (since they have been moved into the + // new table). + // SAFETY: The caller ensures that `table_layout` matches the [`TableLayout`] + // that was used to allocate this table. + mem::swap(self, &mut new_table); + + Ok(()) + } + + /// Rehashes the contents of the table in place (i.e. without changing the + /// allocation). + /// + /// If `hasher` panics then some the table's contents may be lost. + /// + /// This uses dynamic dispatch to reduce the amount of + /// code generated, but it is eliminated by LLVM optimizations when inlined. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result is [`undefined behavior`]: + /// + /// * The `size_of` must be equal to the size of the elements stored in the table; + /// + /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of + /// the elements stored in the table. + /// + /// * The [`RawTableInner`] has already been allocated; + /// + /// * The [`RawTableInner`] must have properly initialized control bytes. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[allow(clippy::inline_always)] + #[cfg_attr(feature = "inline-more", inline(always))] + #[cfg_attr(not(feature = "inline-more"), inline)] + unsafe fn rehash_in_place( + &mut self, + hasher: &dyn Fn(&mut Self, usize) -> u64, + size_of: usize, + drop: Option<fn(*mut u8)>, + ) { + // If the hash function panics then properly clean up any elements + // that we haven't rehashed yet. We unfortunately can't preserve the + // element since we lost their hash and have no way of recovering it + // without risking another panic. + self.prepare_rehash_in_place(); + + let mut guard = guard(self, move |self_| { + if let Some(drop) = drop { + for i in 0..self_.buckets() { + if *self_.ctrl(i) == DELETED { + self_.set_ctrl(i, EMPTY); + drop(self_.bucket_ptr(i, size_of)); + self_.items -= 1; + } + } + } + self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items; + }); + + // At this point, DELETED elements are elements that we haven't + // rehashed yet. Find them and re-insert them at their ideal + // position. + 'outer: for i in 0..guard.buckets() { + if *guard.ctrl(i) != DELETED { + continue; + } + + let i_p = guard.bucket_ptr(i, size_of); + + 'inner: loop { + // Hash the current item + let hash = hasher(*guard, i); + + // Search for a suitable place to put it + // + // SAFETY: Caller of this function ensures that the control bytes + // are properly initialized. + let new_i = guard.find_insert_slot(hash).index; + + // Probing works by scanning through all of the control + // bytes in groups, which may not be aligned to the group + // size. If both the new and old position fall within the + // same unaligned group, then there is no benefit in moving + // it and we can just continue to the next item. + if likely(guard.is_in_same_group(i, new_i, hash)) { + guard.set_ctrl_h2(i, hash); + continue 'outer; + } + + let new_i_p = guard.bucket_ptr(new_i, size_of); + + // We are moving the current item to a new position. Write + // our H2 to the control byte of the new position. + let prev_ctrl = guard.replace_ctrl_h2(new_i, hash); + if prev_ctrl == EMPTY { + guard.set_ctrl(i, EMPTY); + // If the target slot is empty, simply move the current + // element into the new slot and clear the old control + // byte. + ptr::copy_nonoverlapping(i_p, new_i_p, size_of); + continue 'outer; + } else { + // If the target slot is occupied, swap the two elements + // and then continue processing the element that we just + // swapped into the old slot. + debug_assert_eq!(prev_ctrl, DELETED); + ptr::swap_nonoverlapping(i_p, new_i_p, size_of); + continue 'inner; + } + } + } + + guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items; + + mem::forget(guard); + } + + /// Deallocates the table without dropping any entries. + /// + /// # Note + /// + /// This function must be called only after [`drop_elements`](RawTable::drop_elements), + /// else it can lead to leaking of memory. Also calling this function automatically + /// makes invalid (dangling) all instances of buckets ([`Bucket`]) and makes invalid + /// (dangling) the `ctrl` field of the table. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result is [`Undefined Behavior`]: + /// + /// * The [`RawTableInner`] has already been allocated; + /// + /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used + /// to allocate this table. + /// + /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that was used + /// to allocate this table. + /// + /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. + /// + /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc + /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate + #[inline] + unsafe fn free_buckets<A>(&mut self, alloc: &A, table_layout: TableLayout) + where + A: Allocator, + { + // SAFETY: The caller must uphold the safety contract for `free_buckets` + // method. + let (ptr, layout) = self.allocation_info(table_layout); + alloc.deallocate(ptr, layout); + } + + /// Returns a pointer to the allocated memory and the layout that was used to + /// allocate the table. + /// + /// # Safety + /// + /// Caller of this function must observe the following safety rules: + /// + /// * The [`RawTableInner`] has already been allocated, otherwise + /// calling this function results in [`undefined behavior`] + /// + /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` + /// that was used to allocate this table. Failure to comply with this condition + /// may result in [`undefined behavior`]. + /// + /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc + /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate + #[inline] + unsafe fn allocation_info(&self, table_layout: TableLayout) -> (NonNull<u8>, Layout) { + debug_assert!( + !self.is_empty_singleton(), + "this function can only be called on non-empty tables" + ); + + // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. + let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) { + Some(lco) => lco, + None => unsafe { hint::unreachable_unchecked() }, + }; + ( + // SAFETY: The caller must uphold the safety contract for `allocation_info` method. + unsafe { NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)) }, + layout, + ) + } + + /// Returns a pointer to the allocated memory and the layout that was used to + /// allocate the table. If [`RawTableInner`] has not been allocated, this + /// function return `dangling` pointer and `()` (unit) layout. + /// + /// # Safety + /// + /// The `table_layout` must be the same [`TableLayout`] as the `TableLayout` + /// that was used to allocate this table. Failure to comply with this condition + /// may result in [`undefined behavior`]. + /// + /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc + /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate + #[cfg(feature = "raw")] + unsafe fn allocation_info_or_zero(&self, table_layout: TableLayout) -> (NonNull<u8>, Layout) { + if self.is_empty_singleton() { + (NonNull::dangling(), Layout::new::<()>()) + } else { + // SAFETY: + // 1. We have checked that our table is allocated. + // 2. The caller ensures that `table_layout` matches the [`TableLayout`] + // that was used to allocate this table. + unsafe { self.allocation_info(table_layout) } + } + } + + /// Marks all table buckets as empty without dropping their contents. + #[inline] + fn clear_no_drop(&mut self) { + if !self.is_empty_singleton() { + unsafe { + self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes()); + } + } + self.items = 0; + self.growth_left = bucket_mask_to_capacity(self.bucket_mask); + } + + /// Erases the [`Bucket`]'s control byte at the given index so that it does not + /// triggered as full, decreases the `items` of the table and, if it can be done, + /// increases `self.growth_left`. + /// + /// This function does not actually erase / drop the [`Bucket`] itself, i.e. it + /// does not make any changes to the `data` parts of the table. The caller of this + /// function must take care to properly drop the `data`, otherwise calling this + /// function may result in a memory leak. + /// + /// # Safety + /// + /// You must observe the following safety rules when calling this function: + /// + /// * The [`RawTableInner`] has already been allocated; + /// + /// * It must be the full control byte at the given position; + /// + /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. + /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must + /// be no greater than the number returned by the function [`RawTableInner::buckets`]. + /// + /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. + /// + /// Calling this function on a table with no elements is unspecified, but calling subsequent + /// functions is likely to result in [`undefined behavior`] due to overflow subtraction + /// (`self.items -= 1 cause overflow when self.items == 0`). + /// + /// See also [`Bucket::as_ptr`] method, for more information about of properly removing + /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. + /// + /// [`RawTableInner::buckets`]: RawTableInner::buckets + /// [`Bucket::as_ptr`]: Bucket::as_ptr + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline] + unsafe fn erase(&mut self, index: usize) { + debug_assert!(self.is_bucket_full(index)); + + // This is the same as `index.wrapping_sub(Group::WIDTH) % self.buckets()` because + // the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. + let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask; + // SAFETY: + // - The caller must uphold the safety contract for `erase` method; + // - `index_before` is guaranteed to be in range due to masking with `self.bucket_mask` + let empty_before = Group::load(self.ctrl(index_before)).match_empty(); + let empty_after = Group::load(self.ctrl(index)).match_empty(); + + // Inserting and searching in the map is performed by two key functions: + // + // - The `find_insert_slot` function that looks up the index of any `EMPTY` or `DELETED` + // slot in a group to be able to insert. If it doesn't find an `EMPTY` or `DELETED` + // slot immediately in the first group, it jumps to the next `Group` looking for it, + // and so on until it has gone through all the groups in the control bytes. + // + // - The `find_inner` function that looks for the index of the desired element by looking + // at all the `FULL` bytes in the group. If it did not find the element right away, and + // there is no `EMPTY` byte in the group, then this means that the `find_insert_slot` + // function may have found a suitable slot in the next group. Therefore, `find_inner` + // jumps further, and if it does not find the desired element and again there is no `EMPTY` + // byte, then it jumps further, and so on. The search stops only if `find_inner` function + // finds the desired element or hits an `EMPTY` slot/byte. + // + // Accordingly, this leads to two consequences: + // + // - The map must have `EMPTY` slots (bytes); + // + // - You can't just mark the byte to be erased as `EMPTY`, because otherwise the `find_inner` + // function may stumble upon an `EMPTY` byte before finding the desired element and stop + // searching. + // + // Thus it is necessary to check all bytes after and before the erased element. If we are in + // a contiguous `Group` of `FULL` or `DELETED` bytes (the number of `FULL` or `DELETED` bytes + // before and after is greater than or equal to `Group::WIDTH`), then we must mark our byte as + // `DELETED` in order for the `find_inner` function to go further. On the other hand, if there + // is at least one `EMPTY` slot in the `Group`, then the `find_inner` function will still stumble + // upon an `EMPTY` byte, so we can safely mark our erased byte as `EMPTY` as well. + // + // Finally, since `index_before == (index.wrapping_sub(Group::WIDTH) & self.bucket_mask) == index` + // and given all of the above, tables smaller than the group width (self.buckets() < Group::WIDTH) + // cannot have `DELETED` bytes. + // + // Note that in this context `leading_zeros` refers to the bytes at the end of a group, while + // `trailing_zeros` refers to the bytes at the beginning of a group. + let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH { + DELETED + } else { + self.growth_left += 1; + EMPTY + }; + // SAFETY: the caller must uphold the safety contract for `erase` method. + self.set_ctrl(index, ctrl); + self.items -= 1; + } +} + +impl<T: Clone, A: Allocator + Clone> Clone for RawTable<T, A> { + fn clone(&self) -> Self { + if self.table.is_empty_singleton() { + Self::new_in(self.alloc.clone()) + } else { + unsafe { + // Avoid `Result::ok_or_else` because it bloats LLVM IR. + // + // SAFETY: This is safe as we are taking the size of an already allocated table + // and therefore сapacity overflow cannot occur, `self.table.buckets()` is power + // of two and all allocator errors will be caught inside `RawTableInner::new_uninitialized`. + let mut new_table = match Self::new_uninitialized( + self.alloc.clone(), + self.table.buckets(), + Fallibility::Infallible, + ) { + Ok(table) => table, + Err(_) => hint::unreachable_unchecked(), + }; + + // Cloning elements may fail (the clone function may panic). But we don't + // need to worry about uninitialized control bits, since: + // 1. The number of items (elements) in the table is zero, which means that + // the control bits will not be readed by Drop function. + // 2. The `clone_from_spec` method will first copy all control bits from + // `self` (thus initializing them). But this will not affect the `Drop` + // function, since the `clone_from_spec` function sets `items` only after + // successfully clonning all elements. + new_table.clone_from_spec(self); + new_table + } + } + } + + fn clone_from(&mut self, source: &Self) { + if source.table.is_empty_singleton() { + let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW); + unsafe { + // SAFETY: + // 1. We call the function only once; + // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] + // and [`TableLayout`] that were used to allocate this table. + // 3. If any elements' drop function panics, then there will only be a memory leak, + // because we have replaced the inner table with a new one. + old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); + } + } else { + unsafe { + // Make sure that if any panics occurs, we clear the table and + // leave it in an empty state. + let mut self_ = guard(self, |self_| { + self_.clear_no_drop(); + }); + + // First, drop all our elements without clearing the control + // bytes. If this panics then the scope guard will clear the + // table, leaking any elements that were not dropped yet. + // + // This leak is unavoidable: we can't try dropping more elements + // since this could lead to another panic and abort the process. + // + // SAFETY: If something gets wrong we clear our table right after + // dropping the elements, so there is no double drop, since `items` + // will be equal to zero. + self_.table.drop_elements::<T>(); + + // If necessary, resize our table to match the source. + if self_.buckets() != source.buckets() { + let new_inner = match RawTableInner::new_uninitialized( + &self_.alloc, + Self::TABLE_LAYOUT, + source.buckets(), + Fallibility::Infallible, + ) { + Ok(table) => table, + Err(_) => hint::unreachable_unchecked(), + }; + // Replace the old inner with new uninitialized one. It's ok, since if something gets + // wrong `ScopeGuard` will initialize all control bytes and leave empty table. + let mut old_inner = mem::replace(&mut self_.table, new_inner); + if !old_inner.is_empty_singleton() { + // SAFETY: + // 1. We have checked that our table is allocated. + // 2. We know for sure that `alloc` and `table_layout` matches + // the [`Allocator`] and [`TableLayout`] that were used to allocate this table. + old_inner.free_buckets(&self_.alloc, Self::TABLE_LAYOUT); + } + } + + // Cloning elements may fail (the clone function may panic), but the `ScopeGuard` + // inside the `clone_from_impl` function will take care of that, dropping all + // cloned elements if necessary. Our `ScopeGuard` will clear the table. + self_.clone_from_spec(source); + + // Disarm the scope guard if cloning was successful. + ScopeGuard::into_inner(self_); + } + } + } +} + +/// Specialization of `clone_from` for `Copy` types +trait RawTableClone { + unsafe fn clone_from_spec(&mut self, source: &Self); +} +impl<T: Clone, A: Allocator + Clone> RawTableClone for RawTable<T, A> { + default_fn! { + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn clone_from_spec(&mut self, source: &Self) { + self.clone_from_impl(source); + } + } +} +#[cfg(feature = "nightly")] +impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn clone_from_spec(&mut self, source: &Self) { + source + .table + .ctrl(0) + .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); + source + .data_start() + .as_ptr() + .copy_to_nonoverlapping(self.data_start().as_ptr(), self.table.buckets()); + + self.table.items = source.table.items; + self.table.growth_left = source.table.growth_left; + } +} + +impl<T: Clone, A: Allocator + Clone> RawTable<T, A> { + /// Common code for clone and clone_from. Assumes: + /// - `self.buckets() == source.buckets()`. + /// - Any existing elements have been dropped. + /// - The control bytes are not initialized yet. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn clone_from_impl(&mut self, source: &Self) { + // Copy the control bytes unchanged. We do this in a single pass + source + .table + .ctrl(0) + .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); + + // The cloning of elements may panic, in which case we need + // to make sure we drop only the elements that have been + // cloned so far. + let mut guard = guard((0, &mut *self), |(index, self_)| { + if T::NEEDS_DROP { + for i in 0..=*index { + if self_.is_bucket_full(i) { + self_.bucket(i).drop(); + } + } + } + }); + + for from in source.iter() { + let index = source.bucket_index(&from); + let to = guard.1.bucket(index); + to.write(from.as_ref().clone()); + + // Update the index in case we need to unwind. + guard.0 = index; + } + + // Successfully cloned all items, no need to clean up. + mem::forget(guard); + + self.table.items = source.table.items; + self.table.growth_left = source.table.growth_left; + } + + /// Variant of `clone_from` to use when a hasher is available. + #[cfg(feature = "raw")] + pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) { + // If we have enough capacity in the table, just clear it and insert + // elements one by one. We don't do this if we have the same number of + // buckets as the source since we can just copy the contents directly + // in that case. + if self.table.buckets() != source.table.buckets() + && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len() + { + self.clear(); + + let mut guard_self = guard(&mut *self, |self_| { + // Clear the partially copied table if a panic occurs, otherwise + // items and growth_left will be out of sync with the contents + // of the table. + self_.clear(); + }); + + unsafe { + for item in source.iter() { + // This may panic. + let item = item.as_ref().clone(); + let hash = hasher(&item); + + // We can use a simpler version of insert() here since: + // - there are no DELETED entries. + // - we know there is enough space in the table. + // - all elements are unique. + let (index, _) = guard_self.table.prepare_insert_slot(hash); + guard_self.bucket(index).write(item); + } + } + + // Successfully cloned all items, no need to clean up. + mem::forget(guard_self); + + self.table.items = source.table.items; + self.table.growth_left -= source.table.items; + } else { + self.clone_from(source); + } + } +} + +impl<T, A: Allocator + Default> Default for RawTable<T, A> { + #[inline] + fn default() -> Self { + Self::new_in(Default::default()) + } +} + +#[cfg(feature = "nightly")] +unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawTable<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // SAFETY: + // 1. We call the function only once; + // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] + // and [`TableLayout`] that were used to allocate this table. + // 3. If the drop function of any elements fails, then only a memory leak will occur, + // and we don't care because we are inside the `Drop` function of the `RawTable`, + // so there won't be any table left in an inconsistent state. + self.table + .drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); + } + } +} +#[cfg(not(feature = "nightly"))] +impl<T, A: Allocator> Drop for RawTable<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // SAFETY: + // 1. We call the function only once; + // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] + // and [`TableLayout`] that were used to allocate this table. + // 3. If the drop function of any elements fails, then only a memory leak will occur, + // and we don't care because we are inside the `Drop` function of the `RawTable`, + // so there won't be any table left in an inconsistent state. + self.table + .drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); + } + } +} + +impl<T, A: Allocator> IntoIterator for RawTable<T, A> { + type Item = T; + type IntoIter = RawIntoIter<T, A>; + + #[cfg_attr(feature = "inline-more", inline)] + fn into_iter(self) -> RawIntoIter<T, A> { + unsafe { + let iter = self.iter(); + self.into_iter_from(iter) + } + } +} + +/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does +/// not track an item count. +pub(crate) struct RawIterRange<T> { + // Mask of full buckets in the current group. Bits are cleared from this + // mask as each element is processed. + current_group: BitMaskIter, + + // Pointer to the buckets for the current group. + data: Bucket<T>, + + // Pointer to the next group of control bytes, + // Must be aligned to the group size. + next_ctrl: *const u8, + + // Pointer one past the last control byte of this range. + end: *const u8, +} + +impl<T> RawIterRange<T> { + /// Returns a `RawIterRange` covering a subset of a table. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result is + /// [`undefined behavior`]: + /// + /// * `ctrl` must be [valid] for reads, i.e. table outlives the `RawIterRange`; + /// + /// * `ctrl` must be properly aligned to the group size (Group::WIDTH); + /// + /// * `ctrl` must point to the array of properly initialized control bytes; + /// + /// * `data` must be the [`Bucket`] at the `ctrl` index in the table; + /// + /// * the value of `len` must be less than or equal to the number of table buckets, + /// and the returned value of `ctrl.as_ptr().add(len).offset_from(ctrl.as_ptr())` + /// must be positive. + /// + /// * The `ctrl.add(len)` pointer must be either in bounds or one + /// byte past the end of the same [allocated table]. + /// + /// * The `len` must be a power of two. + /// + /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self { + debug_assert_ne!(len, 0); + debug_assert_eq!(ctrl as usize % Group::WIDTH, 0); + // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`] + let end = ctrl.add(len); + + // Load the first group and advance ctrl to point to the next group + // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`] + let current_group = Group::load_aligned(ctrl).match_full(); + let next_ctrl = ctrl.add(Group::WIDTH); + + Self { + current_group: current_group.into_iter(), + data, + next_ctrl, + end, + } + } + + /// Splits a `RawIterRange` into two halves. + /// + /// Returns `None` if the remaining range is smaller than or equal to the + /// group width. + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "rayon")] + pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) { + unsafe { + if self.end <= self.next_ctrl { + // Nothing to split if the group that we are current processing + // is the last one. + (self, None) + } else { + // len is the remaining number of elements after the group that + // we are currently processing. It must be a multiple of the + // group size (small tables are caught by the check above). + let len = offset_from(self.end, self.next_ctrl); + debug_assert_eq!(len % Group::WIDTH, 0); + + // Split the remaining elements into two halves, but round the + // midpoint down in case there is an odd number of groups + // remaining. This ensures that: + // - The tail is at least 1 group long. + // - The split is roughly even considering we still have the + // current group to process. + let mid = (len / 2) & !(Group::WIDTH - 1); + + let tail = Self::new( + self.next_ctrl.add(mid), + self.data.next_n(Group::WIDTH).next_n(mid), + len - mid, + ); + debug_assert_eq!( + self.data.next_n(Group::WIDTH).next_n(mid).ptr, + tail.data.ptr + ); + debug_assert_eq!(self.end, tail.end); + self.end = self.next_ctrl.add(mid); + debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl); + (self, Some(tail)) + } + } + } + + /// # Safety + /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate + /// after yielding all elements. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> { + loop { + if let Some(index) = self.current_group.next() { + return Some(self.data.next_n(index)); + } + + if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end { + return None; + } + + // We might read past self.end up to the next group boundary, + // but this is fine because it only occurs on tables smaller + // than the group size where the trailing control bytes are all + // EMPTY. On larger tables self.end is guaranteed to be aligned + // to the group size (since tables are power-of-two sized). + self.current_group = Group::load_aligned(self.next_ctrl).match_full().into_iter(); + self.data = self.data.next_n(Group::WIDTH); + self.next_ctrl = self.next_ctrl.add(Group::WIDTH); + } + } +} + +// We make raw iterators unconditionally Send and Sync, and let the PhantomData +// in the actual iterator implementations determine the real Send/Sync bounds. +unsafe impl<T> Send for RawIterRange<T> {} +unsafe impl<T> Sync for RawIterRange<T> {} + +impl<T> Clone for RawIterRange<T> { + #[cfg_attr(feature = "inline-more", inline)] + fn clone(&self) -> Self { + Self { + data: self.data.clone(), + next_ctrl: self.next_ctrl, + current_group: self.current_group, + end: self.end, + } + } +} + +impl<T> Iterator for RawIterRange<T> { + type Item = Bucket<T>; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<Bucket<T>> { + unsafe { + // SAFETY: We set checker flag to true. + self.next_impl::<true>() + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + // We don't have an item count, so just guess based on the range size. + let remaining_buckets = if self.end > self.next_ctrl { + unsafe { offset_from(self.end, self.next_ctrl) } + } else { + 0 + }; + + // Add a group width to include the group we are currently processing. + (0, Some(Group::WIDTH + remaining_buckets)) + } +} + +impl<T> FusedIterator for RawIterRange<T> {} + +/// Iterator which returns a raw pointer to every full bucket in the table. +/// +/// For maximum flexibility this iterator is not bound by a lifetime, but you +/// must observe several rules when using it: +/// - You must not free the hash table while iterating (including via growing/shrinking). +/// - It is fine to erase a bucket that has been yielded by the iterator. +/// - Erasing a bucket that has not yet been yielded by the iterator may still +/// result in the iterator yielding that bucket (unless `reflect_remove` is called). +/// - It is unspecified whether an element inserted after the iterator was +/// created will be yielded by that iterator (unless `reflect_insert` is called). +/// - The order in which the iterator yields bucket is unspecified and may +/// change in the future. +pub struct RawIter<T> { + pub(crate) iter: RawIterRange<T>, + items: usize, +} + +impl<T> RawIter<T> { + /// Refresh the iterator so that it reflects a removal from the given bucket. + /// + /// For the iterator to remain valid, this method must be called once + /// for each removed bucket before `next` is called again. + /// + /// This method should be called _before_ the removal is made. It is not necessary to call this + /// method if you are removing an item that this iterator yielded in the past. + #[cfg(feature = "raw")] + pub unsafe fn reflect_remove(&mut self, b: &Bucket<T>) { + self.reflect_toggle_full(b, false); + } + + /// Refresh the iterator so that it reflects an insertion into the given bucket. + /// + /// For the iterator to remain valid, this method must be called once + /// for each insert before `next` is called again. + /// + /// This method does not guarantee that an insertion of a bucket with a greater + /// index than the last one yielded will be reflected in the iterator. + /// + /// This method should be called _after_ the given insert is made. + #[cfg(feature = "raw")] + pub unsafe fn reflect_insert(&mut self, b: &Bucket<T>) { + self.reflect_toggle_full(b, true); + } + + /// Refresh the iterator so that it reflects a change to the state of the given bucket. + #[cfg(feature = "raw")] + unsafe fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) { + if b.as_ptr() > self.iter.data.as_ptr() { + // The iterator has already passed the bucket's group. + // So the toggle isn't relevant to this iterator. + return; + } + + if self.iter.next_ctrl < self.iter.end + && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr() + { + // The iterator has not yet reached the bucket's group. + // We don't need to reload anything, but we do need to adjust the item count. + + if cfg!(debug_assertions) { + // Double-check that the user isn't lying to us by checking the bucket state. + // To do that, we need to find its control byte. We know that self.iter.data is + // at self.iter.next_ctrl - Group::WIDTH, so we work from there: + let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr()); + let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset); + // This method should be called _before_ a removal, or _after_ an insert, + // so in both cases the ctrl byte should indicate that the bucket is full. + assert!(is_full(*ctrl)); + } + + if is_insert { + self.items += 1; + } else { + self.items -= 1; + } + + return; + } + + // The iterator is at the bucket group that the toggled bucket is in. + // We need to do two things: + // + // - Determine if the iterator already yielded the toggled bucket. + // If it did, we're done. + // - Otherwise, update the iterator cached group so that it won't + // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket. + // We'll also need to update the item count accordingly. + if let Some(index) = self.iter.current_group.0.lowest_set_bit() { + let next_bucket = self.iter.data.next_n(index); + if b.as_ptr() > next_bucket.as_ptr() { + // The toggled bucket is "before" the bucket the iterator would yield next. We + // therefore don't need to do anything --- the iterator has already passed the + // bucket in question. + // + // The item count must already be correct, since a removal or insert "prior" to + // the iterator's position wouldn't affect the item count. + } else { + // The removed bucket is an upcoming bucket. We need to make sure it does _not_ + // get yielded, and also that it's no longer included in the item count. + // + // NOTE: We can't just reload the group here, both since that might reflect + // inserts we've already passed, and because that might inadvertently unset the + // bits for _other_ removals. If we do that, we'd have to also decrement the + // item count for those other bits that we unset. But the presumably subsequent + // call to reflect for those buckets might _also_ decrement the item count. + // Instead, we _just_ flip the bit for the particular bucket the caller asked + // us to reflect. + let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr()); + let was_full = self.iter.current_group.flip(our_bit); + debug_assert_ne!(was_full, is_insert); + + if is_insert { + self.items += 1; + } else { + self.items -= 1; + } + + if cfg!(debug_assertions) { + if b.as_ptr() == next_bucket.as_ptr() { + // The removed bucket should no longer be next + debug_assert_ne!(self.iter.current_group.0.lowest_set_bit(), Some(index)); + } else { + // We should not have changed what bucket comes next. + debug_assert_eq!(self.iter.current_group.0.lowest_set_bit(), Some(index)); + } + } + } + } else { + // We must have already iterated past the removed item. + } + } + + unsafe fn drop_elements(&mut self) { + if T::NEEDS_DROP && self.items != 0 { + for item in self { + item.drop(); + } + } + } +} + +impl<T> Clone for RawIter<T> { + #[cfg_attr(feature = "inline-more", inline)] + fn clone(&self) -> Self { + Self { + iter: self.iter.clone(), + items: self.items, + } + } +} + +impl<T> Iterator for RawIter<T> { + type Item = Bucket<T>; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<Bucket<T>> { + // Inner iterator iterates over buckets + // so it can do unnecessary work if we already yielded all items. + if self.items == 0 { + return None; + } + + let nxt = unsafe { + // SAFETY: We check number of items to yield using `items` field. + self.iter.next_impl::<false>() + }; + + debug_assert!(nxt.is_some()); + self.items -= 1; + + nxt + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + (self.items, Some(self.items)) + } +} + +impl<T> ExactSizeIterator for RawIter<T> {} +impl<T> FusedIterator for RawIter<T> {} + +/// Iterator which returns an index of every full bucket in the table. +/// +/// For maximum flexibility this iterator is not bound by a lifetime, but you +/// must observe several rules when using it: +/// - You must not free the hash table while iterating (including via growing/shrinking). +/// - It is fine to erase a bucket that has been yielded by the iterator. +/// - Erasing a bucket that has not yet been yielded by the iterator may still +/// result in the iterator yielding index of that bucket. +/// - It is unspecified whether an element inserted after the iterator was +/// created will be yielded by that iterator. +/// - The order in which the iterator yields indices of the buckets is unspecified +/// and may change in the future. +pub(crate) struct FullBucketsIndices { + // Mask of full buckets in the current group. Bits are cleared from this + // mask as each element is processed. + current_group: BitMaskIter, + + // Initial value of the bytes' indices of the current group (relative + // to the start of the control bytes). + group_first_index: usize, + + // Pointer to the current group of control bytes, + // Must be aligned to the group size (Group::WIDTH). + ctrl: NonNull<u8>, + + // Number of elements in the table. + items: usize, +} + +impl FullBucketsIndices { + /// Advances the iterator and returns the next value. + /// + /// # Safety + /// + /// If any of the following conditions are violated, the result is + /// [`Undefined Behavior`]: + /// + /// * The [`RawTableInner`] / [`RawTable`] must be alive and not moved, + /// i.e. table outlives the `FullBucketsIndices`; + /// + /// * It never tries to iterate after getting all elements. + /// + /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html + #[inline(always)] + unsafe fn next_impl(&mut self) -> Option<usize> { + loop { + if let Some(index) = self.current_group.next() { + // The returned `self.group_first_index + index` will always + // be in the range `0..self.buckets()`. See explanation below. + return Some(self.group_first_index + index); + } + + // SAFETY: The caller of this function ensures that: + // + // 1. It never tries to iterate after getting all the elements; + // 2. The table is alive and did not moved; + // 3. The first `self.ctrl` pointed to the start of the array of control bytes. + // + // Taking the above into account, we always stay within the bounds, because: + // + // 1. For tables smaller than the group width (self.buckets() <= Group::WIDTH), + // we will never end up in the given branch, since we should have already + // yielded all the elements of the table. + // + // 2. For tables larger than the group width. The the number of buckets is a + // power of two (2 ^ n), Group::WIDTH is also power of two (2 ^ k). Sinse + // `(2 ^ n) > (2 ^ k)`, than `(2 ^ n) % (2 ^ k) = 0`. As we start from the + // the start of the array of control bytes, and never try to iterate after + // getting all the elements, the last `self.ctrl` will be equal to + // the `self.buckets() - Group::WIDTH`, so `self.current_group.next()` + // will always contains indices within the range `0..Group::WIDTH`, + // and subsequent `self.group_first_index + index` will always return a + // number less than `self.buckets()`. + self.ctrl = NonNull::new_unchecked(self.ctrl.as_ptr().add(Group::WIDTH)); + + // SAFETY: See explanation above. + self.current_group = Group::load_aligned(self.ctrl.as_ptr()) + .match_full() + .into_iter(); + self.group_first_index += Group::WIDTH; + } + } +} + +impl Iterator for FullBucketsIndices { + type Item = usize; + + /// Advances the iterator and returns the next value. It is up to + /// the caller to ensure that the `RawTable` outlives the `FullBucketsIndices`, + /// because we cannot make the `next` method unsafe. + #[inline(always)] + fn next(&mut self) -> Option<usize> { + // Return if we already yielded all items. + if self.items == 0 { + return None; + } + + let nxt = unsafe { + // SAFETY: + // 1. We check number of items to yield using `items` field. + // 2. The caller ensures that the table is alive and has not moved. + self.next_impl() + }; + + debug_assert!(nxt.is_some()); + self.items -= 1; + + nxt + } + + #[inline(always)] + fn size_hint(&self) -> (usize, Option<usize>) { + (self.items, Some(self.items)) + } +} + +impl ExactSizeIterator for FullBucketsIndices {} +impl FusedIterator for FullBucketsIndices {} + +/// Iterator which consumes a table and returns elements. +pub struct RawIntoIter<T, A: Allocator = Global> { + iter: RawIter<T>, + allocation: Option<(NonNull<u8>, Layout, A)>, + marker: PhantomData<T>, +} + +impl<T, A: Allocator> RawIntoIter<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + pub fn iter(&self) -> RawIter<T> { + self.iter.clone() + } +} + +unsafe impl<T, A: Allocator> Send for RawIntoIter<T, A> +where + T: Send, + A: Send, +{ +} +unsafe impl<T, A: Allocator> Sync for RawIntoIter<T, A> +where + T: Sync, + A: Sync, +{ +} + +#[cfg(feature = "nightly")] +unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawIntoIter<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // Drop all remaining elements + self.iter.drop_elements(); + + // Free the table + if let Some((ptr, layout, ref alloc)) = self.allocation { + alloc.deallocate(ptr, layout); + } + } + } +} +#[cfg(not(feature = "nightly"))] +impl<T, A: Allocator> Drop for RawIntoIter<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // Drop all remaining elements + self.iter.drop_elements(); + + // Free the table + if let Some((ptr, layout, ref alloc)) = self.allocation { + alloc.deallocate(ptr, layout); + } + } + } +} + +impl<T, A: Allocator> Iterator for RawIntoIter<T, A> { + type Item = T; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<T> { + unsafe { Some(self.iter.next()?.read()) } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +impl<T, A: Allocator> ExactSizeIterator for RawIntoIter<T, A> {} +impl<T, A: Allocator> FusedIterator for RawIntoIter<T, A> {} + +/// Iterator which consumes elements without freeing the table storage. +pub struct RawDrain<'a, T, A: Allocator = Global> { + iter: RawIter<T>, + + // The table is moved into the iterator for the duration of the drain. This + // ensures that an empty table is left if the drain iterator is leaked + // without dropping. + table: RawTableInner, + orig_table: NonNull<RawTableInner>, + + // We don't use a &'a mut RawTable<T> because we want RawDrain to be + // covariant over T. + marker: PhantomData<&'a RawTable<T, A>>, +} + +impl<T, A: Allocator> RawDrain<'_, T, A> { + #[cfg_attr(feature = "inline-more", inline)] + pub fn iter(&self) -> RawIter<T> { + self.iter.clone() + } +} + +unsafe impl<T, A: Allocator> Send for RawDrain<'_, T, A> +where + T: Send, + A: Send, +{ +} +unsafe impl<T, A: Allocator> Sync for RawDrain<'_, T, A> +where + T: Sync, + A: Sync, +{ +} + +impl<T, A: Allocator> Drop for RawDrain<'_, T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // Drop all remaining elements. Note that this may panic. + self.iter.drop_elements(); + + // Reset the contents of the table now that all elements have been + // dropped. + self.table.clear_no_drop(); + + // Move the now empty table back to its original location. + self.orig_table + .as_ptr() + .copy_from_nonoverlapping(&self.table, 1); + } + } +} + +impl<T, A: Allocator> Iterator for RawDrain<'_, T, A> { + type Item = T; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<T> { + unsafe { + let item = self.iter.next()?; + Some(item.read()) + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +impl<T, A: Allocator> ExactSizeIterator for RawDrain<'_, T, A> {} +impl<T, A: Allocator> FusedIterator for RawDrain<'_, T, A> {} + +/// Iterator over occupied buckets that could match a given hash. +/// +/// `RawTable` only stores 7 bits of the hash value, so this iterator may return +/// items that have a hash value different than the one provided. You should +/// always validate the returned values before using them. +/// +/// For maximum flexibility this iterator is not bound by a lifetime, but you +/// must observe several rules when using it: +/// - You must not free the hash table while iterating (including via growing/shrinking). +/// - It is fine to erase a bucket that has been yielded by the iterator. +/// - Erasing a bucket that has not yet been yielded by the iterator may still +/// result in the iterator yielding that bucket. +/// - It is unspecified whether an element inserted after the iterator was +/// created will be yielded by that iterator. +/// - The order in which the iterator yields buckets is unspecified and may +/// change in the future. +pub struct RawIterHash<T> { + inner: RawIterHashInner, + _marker: PhantomData<T>, +} + +struct RawIterHashInner { + // See `RawTableInner`'s corresponding fields for details. + // We can't store a `*const RawTableInner` as it would get + // invalidated by the user calling `&mut` methods on `RawTable`. + bucket_mask: usize, + ctrl: NonNull<u8>, + + // The top 7 bits of the hash. + h2_hash: u8, + + // The sequence of groups to probe in the search. + probe_seq: ProbeSeq, + + group: Group, + + // The elements within the group with a matching h2-hash. + bitmask: BitMaskIter, +} + +impl<T> RawIterHash<T> { + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "raw")] + unsafe fn new<A: Allocator>(table: &RawTable<T, A>, hash: u64) -> Self { + RawIterHash { + inner: RawIterHashInner::new(&table.table, hash), + _marker: PhantomData, + } + } +} +impl RawIterHashInner { + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "raw")] + unsafe fn new(table: &RawTableInner, hash: u64) -> Self { + let h2_hash = h2(hash); + let probe_seq = table.probe_seq(hash); + let group = Group::load(table.ctrl(probe_seq.pos)); + let bitmask = group.match_byte(h2_hash).into_iter(); + + RawIterHashInner { + bucket_mask: table.bucket_mask, + ctrl: table.ctrl, + h2_hash, + probe_seq, + group, + bitmask, + } + } +} + +impl<T> Iterator for RawIterHash<T> { + type Item = Bucket<T>; + + fn next(&mut self) -> Option<Bucket<T>> { + unsafe { + match self.inner.next() { + Some(index) => { + // Can't use `RawTable::bucket` here as we don't have + // an actual `RawTable` reference to use. + debug_assert!(index <= self.inner.bucket_mask); + let bucket = Bucket::from_base_index(self.inner.ctrl.cast(), index); + Some(bucket) + } + None => None, + } + } + } +} + +impl Iterator for RawIterHashInner { + type Item = usize; + + fn next(&mut self) -> Option<Self::Item> { + unsafe { + loop { + if let Some(bit) = self.bitmask.next() { + let index = (self.probe_seq.pos + bit) & self.bucket_mask; + return Some(index); + } + if likely(self.group.match_empty().any_bit_set()) { + return None; + } + self.probe_seq.move_next(self.bucket_mask); + + // Can't use `RawTableInner::ctrl` here as we don't have + // an actual `RawTableInner` reference to use. + let index = self.probe_seq.pos; + debug_assert!(index < self.bucket_mask + 1 + Group::WIDTH); + let group_ctrl = self.ctrl.as_ptr().add(index); + + self.group = Group::load(group_ctrl); + self.bitmask = self.group.match_byte(self.h2_hash).into_iter(); + } + } + } +} + +#[cfg(test)] +mod test_map { + use super::*; + + fn rehash_in_place<T>(table: &mut RawTable<T>, hasher: impl Fn(&T) -> u64) { + unsafe { + table.table.rehash_in_place( + &|table, index| hasher(table.bucket::<T>(index).as_ref()), + mem::size_of::<T>(), + if mem::needs_drop::<T>() { + Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) + } else { + None + }, + ); + } + } + + #[test] + fn rehash() { + let mut table = RawTable::new(); + let hasher = |i: &u64| *i; + for i in 0..100 { + table.insert(i, i, hasher); + } + + for i in 0..100 { + unsafe { + assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); + } + assert!(table.find(i + 100, |x| *x == i + 100).is_none()); + } + + rehash_in_place(&mut table, hasher); + + for i in 0..100 { + unsafe { + assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); + } + assert!(table.find(i + 100, |x| *x == i + 100).is_none()); + } + } + + /// CHECKING THAT WE ARE NOT TRYING TO READ THE MEMORY OF + /// AN UNINITIALIZED TABLE DURING THE DROP + #[test] + fn test_drop_uninitialized() { + use ::alloc::vec::Vec; + + let table = unsafe { + // SAFETY: The `buckets` is power of two and we're not + // trying to actually use the returned RawTable. + RawTable::<(u64, Vec<i32>)>::new_uninitialized(Global, 8, Fallibility::Infallible) + .unwrap() + }; + drop(table); + } + + /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS` + /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES. + #[test] + fn test_drop_zero_items() { + use ::alloc::vec::Vec; + unsafe { + // SAFETY: The `buckets` is power of two and we're not + // trying to actually use the returned RawTable. + let table = + RawTable::<(u64, Vec<i32>)>::new_uninitialized(Global, 8, Fallibility::Infallible) + .unwrap(); + + // WE SIMULATE, AS IT WERE, A FULL TABLE. + + // SAFETY: We checked that the table is allocated and therefore the table already has + // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for) + // so writing `table.table.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe. + table + .table + .ctrl(0) + .write_bytes(EMPTY, table.table.num_ctrl_bytes()); + + // SAFETY: table.capacity() is guaranteed to be smaller than table.buckets() + table.table.ctrl(0).write_bytes(0, table.capacity()); + + // Fix up the trailing control bytes. See the comments in set_ctrl + // for the handling of tables smaller than the group width. + if table.buckets() < Group::WIDTH { + // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes, + // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to + // `Group::WIDTH` is safe + table + .table + .ctrl(0) + .copy_to(table.table.ctrl(Group::WIDTH), table.table.buckets()); + } else { + // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of + // control bytes,so copying `Group::WIDTH` bytes with offset equal + // to `self.buckets() == self.bucket_mask + 1` is safe + table + .table + .ctrl(0) + .copy_to(table.table.ctrl(table.table.buckets()), Group::WIDTH); + } + drop(table); + } + } + + /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS` + /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES. + #[test] + fn test_catch_panic_clone_from() { + use ::alloc::sync::Arc; + use ::alloc::vec::Vec; + use allocator_api2::alloc::{AllocError, Allocator, Global}; + use core::sync::atomic::{AtomicI8, Ordering}; + use std::thread; + + struct MyAllocInner { + drop_count: Arc<AtomicI8>, + } + + #[derive(Clone)] + struct MyAlloc { + _inner: Arc<MyAllocInner>, + } + + impl Drop for MyAllocInner { + fn drop(&mut self) { + println!("MyAlloc freed."); + self.drop_count.fetch_sub(1, Ordering::SeqCst); + } + } + + unsafe impl Allocator for MyAlloc { + fn allocate(&self, layout: Layout) -> std::result::Result<NonNull<[u8]>, AllocError> { + let g = Global; + g.allocate(layout) + } + + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { + let g = Global; + g.deallocate(ptr, layout) + } + } + + const DISARMED: bool = false; + const ARMED: bool = true; + + struct CheckedCloneDrop { + panic_in_clone: bool, + dropped: bool, + need_drop: Vec<u64>, + } + + impl Clone for CheckedCloneDrop { + fn clone(&self) -> Self { + if self.panic_in_clone { + panic!("panic in clone") + } + Self { + panic_in_clone: self.panic_in_clone, + dropped: self.dropped, + need_drop: self.need_drop.clone(), + } + } + } + + impl Drop for CheckedCloneDrop { + fn drop(&mut self) { + if self.dropped { + panic!("double drop"); + } + self.dropped = true; + } + } + + let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(2)); + + let mut table = RawTable::new_in(MyAlloc { + _inner: Arc::new(MyAllocInner { + drop_count: dropped.clone(), + }), + }); + + for (idx, panic_in_clone) in core::iter::repeat(DISARMED).take(7).enumerate() { + let idx = idx as u64; + table.insert( + idx, + ( + idx, + CheckedCloneDrop { + panic_in_clone, + dropped: false, + need_drop: vec![idx], + }, + ), + |(k, _)| *k, + ); + } + + assert_eq!(table.len(), 7); + + thread::scope(|s| { + let result = s.spawn(|| { + let armed_flags = [ + DISARMED, DISARMED, ARMED, DISARMED, DISARMED, DISARMED, DISARMED, + ]; + let mut scope_table = RawTable::new_in(MyAlloc { + _inner: Arc::new(MyAllocInner { + drop_count: dropped.clone(), + }), + }); + for (idx, &panic_in_clone) in armed_flags.iter().enumerate() { + let idx = idx as u64; + scope_table.insert( + idx, + ( + idx, + CheckedCloneDrop { + panic_in_clone, + dropped: false, + need_drop: vec![idx + 100], + }, + ), + |(k, _)| *k, + ); + } + table.clone_from(&scope_table); + }); + assert!(result.join().is_err()); + }); + + // Let's check that all iterators work fine and do not return elements + // (especially `RawIterRange`, which does not depend on the number of + // elements in the table, but looks directly at the control bytes) + // + // SAFETY: We know for sure that `RawTable` will outlive + // the returned `RawIter / RawIterRange` iterator. + assert_eq!(table.len(), 0); + assert_eq!(unsafe { table.iter().count() }, 0); + assert_eq!(unsafe { table.iter().iter.count() }, 0); + + for idx in 0..table.buckets() { + let idx = idx as u64; + assert!( + table.find(idx, |(k, _)| *k == idx).is_none(), + "Index: {idx}" + ); + } + + // All allocator clones should already be dropped. + assert_eq!(dropped.load(Ordering::SeqCst), 1); + } +} diff --git a/vendor/hashbrown/src/raw/neon.rs b/vendor/hashbrown/src/raw/neon.rs new file mode 100644 index 0000000..44e82d5 --- /dev/null +++ b/vendor/hashbrown/src/raw/neon.rs @@ -0,0 +1,124 @@ +use super::bitmask::BitMask; +use super::EMPTY; +use core::arch::aarch64 as neon; +use core::mem; +use core::num::NonZeroU64; + +pub(crate) type BitMaskWord = u64; +pub(crate) type NonZeroBitMaskWord = NonZeroU64; +pub(crate) const BITMASK_STRIDE: usize = 8; +pub(crate) const BITMASK_MASK: BitMaskWord = !0; +pub(crate) const BITMASK_ITER_MASK: BitMaskWord = 0x8080_8080_8080_8080; + +/// Abstraction over a group of control bytes which can be scanned in +/// parallel. +/// +/// This implementation uses a 64-bit NEON value. +#[derive(Copy, Clone)] +pub(crate) struct Group(neon::uint8x8_t); + +#[allow(clippy::use_self)] +impl Group { + /// Number of bytes in the group. + pub(crate) const WIDTH: usize = mem::size_of::<Self>(); + + /// Returns a full group of empty bytes, suitable for use as the initial + /// value for an empty hash table. + /// + /// This is guaranteed to be aligned to the group size. + #[inline] + pub(crate) const fn static_empty() -> &'static [u8; Group::WIDTH] { + #[repr(C)] + struct AlignedBytes { + _align: [Group; 0], + bytes: [u8; Group::WIDTH], + } + const ALIGNED_BYTES: AlignedBytes = AlignedBytes { + _align: [], + bytes: [EMPTY; Group::WIDTH], + }; + &ALIGNED_BYTES.bytes + } + + /// Loads a group of bytes starting at the given address. + #[inline] + #[allow(clippy::cast_ptr_alignment)] // unaligned load + pub(crate) unsafe fn load(ptr: *const u8) -> Self { + Group(neon::vld1_u8(ptr)) + } + + /// Loads a group of bytes starting at the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub(crate) unsafe fn load_aligned(ptr: *const u8) -> Self { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + Group(neon::vld1_u8(ptr)) + } + + /// Stores the group of bytes to the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub(crate) unsafe fn store_aligned(self, ptr: *mut u8) { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + neon::vst1_u8(ptr, self.0); + } + + /// Returns a `BitMask` indicating all bytes in the group which *may* + /// have the given value. + #[inline] + pub(crate) fn match_byte(self, byte: u8) -> BitMask { + unsafe { + let cmp = neon::vceq_u8(self.0, neon::vdup_n_u8(byte)); + BitMask(neon::vget_lane_u64(neon::vreinterpret_u64_u8(cmp), 0)) + } + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY`. + #[inline] + pub(crate) fn match_empty(self) -> BitMask { + self.match_byte(EMPTY) + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY` or `DELETED`. + #[inline] + pub(crate) fn match_empty_or_deleted(self) -> BitMask { + unsafe { + let cmp = neon::vcltz_s8(neon::vreinterpret_s8_u8(self.0)); + BitMask(neon::vget_lane_u64(neon::vreinterpret_u64_u8(cmp), 0)) + } + } + + /// Returns a `BitMask` indicating all bytes in the group which are full. + #[inline] + pub(crate) fn match_full(self) -> BitMask { + unsafe { + let cmp = neon::vcgez_s8(neon::vreinterpret_s8_u8(self.0)); + BitMask(neon::vget_lane_u64(neon::vreinterpret_u64_u8(cmp), 0)) + } + } + + /// Performs the following transformation on all bytes in the group: + /// - `EMPTY => EMPTY` + /// - `DELETED => EMPTY` + /// - `FULL => DELETED` + #[inline] + pub(crate) fn convert_special_to_empty_and_full_to_deleted(self) -> Self { + // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111 + // and high_bit = 0 (FULL) to 1000_0000 + // + // Here's this logic expanded to concrete values: + // let special = 0 > byte = 1111_1111 (true) or 0000_0000 (false) + // 1111_1111 | 1000_0000 = 1111_1111 + // 0000_0000 | 1000_0000 = 1000_0000 + unsafe { + let special = neon::vcltz_s8(neon::vreinterpret_s8_u8(self.0)); + Group(neon::vorr_u8(special, neon::vdup_n_u8(0x80))) + } + } +} diff --git a/vendor/hashbrown/src/raw/sse2.rs b/vendor/hashbrown/src/raw/sse2.rs new file mode 100644 index 0000000..956ba5d --- /dev/null +++ b/vendor/hashbrown/src/raw/sse2.rs @@ -0,0 +1,149 @@ +use super::bitmask::BitMask; +use super::EMPTY; +use core::mem; +use core::num::NonZeroU16; + +#[cfg(target_arch = "x86")] +use core::arch::x86; +#[cfg(target_arch = "x86_64")] +use core::arch::x86_64 as x86; + +pub(crate) type BitMaskWord = u16; +pub(crate) type NonZeroBitMaskWord = NonZeroU16; +pub(crate) const BITMASK_STRIDE: usize = 1; +pub(crate) const BITMASK_MASK: BitMaskWord = 0xffff; +pub(crate) const BITMASK_ITER_MASK: BitMaskWord = !0; + +/// Abstraction over a group of control bytes which can be scanned in +/// parallel. +/// +/// This implementation uses a 128-bit SSE value. +#[derive(Copy, Clone)] +pub(crate) struct Group(x86::__m128i); + +// FIXME: https://github.com/rust-lang/rust-clippy/issues/3859 +#[allow(clippy::use_self)] +impl Group { + /// Number of bytes in the group. + pub(crate) const WIDTH: usize = mem::size_of::<Self>(); + + /// Returns a full group of empty bytes, suitable for use as the initial + /// value for an empty hash table. + /// + /// This is guaranteed to be aligned to the group size. + #[inline] + #[allow(clippy::items_after_statements)] + pub(crate) const fn static_empty() -> &'static [u8; Group::WIDTH] { + #[repr(C)] + struct AlignedBytes { + _align: [Group; 0], + bytes: [u8; Group::WIDTH], + } + const ALIGNED_BYTES: AlignedBytes = AlignedBytes { + _align: [], + bytes: [EMPTY; Group::WIDTH], + }; + &ALIGNED_BYTES.bytes + } + + /// Loads a group of bytes starting at the given address. + #[inline] + #[allow(clippy::cast_ptr_alignment)] // unaligned load + pub(crate) unsafe fn load(ptr: *const u8) -> Self { + Group(x86::_mm_loadu_si128(ptr.cast())) + } + + /// Loads a group of bytes starting at the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub(crate) unsafe fn load_aligned(ptr: *const u8) -> Self { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + Group(x86::_mm_load_si128(ptr.cast())) + } + + /// Stores the group of bytes to the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub(crate) unsafe fn store_aligned(self, ptr: *mut u8) { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + x86::_mm_store_si128(ptr.cast(), self.0); + } + + /// Returns a `BitMask` indicating all bytes in the group which have + /// the given value. + #[inline] + pub(crate) fn match_byte(self, byte: u8) -> BitMask { + #[allow( + clippy::cast_possible_wrap, // byte: u8 as i8 + // byte: i32 as u16 + // note: _mm_movemask_epi8 returns a 16-bit mask in a i32, the + // upper 16-bits of the i32 are zeroed: + clippy::cast_sign_loss, + clippy::cast_possible_truncation + )] + unsafe { + let cmp = x86::_mm_cmpeq_epi8(self.0, x86::_mm_set1_epi8(byte as i8)); + BitMask(x86::_mm_movemask_epi8(cmp) as u16) + } + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY`. + #[inline] + pub(crate) fn match_empty(self) -> BitMask { + self.match_byte(EMPTY) + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY` or `DELETED`. + #[inline] + pub(crate) fn match_empty_or_deleted(self) -> BitMask { + #[allow( + // byte: i32 as u16 + // note: _mm_movemask_epi8 returns a 16-bit mask in a i32, the + // upper 16-bits of the i32 are zeroed: + clippy::cast_sign_loss, + clippy::cast_possible_truncation + )] + unsafe { + // A byte is EMPTY or DELETED iff the high bit is set + BitMask(x86::_mm_movemask_epi8(self.0) as u16) + } + } + + /// Returns a `BitMask` indicating all bytes in the group which are full. + #[inline] + pub(crate) fn match_full(&self) -> BitMask { + self.match_empty_or_deleted().invert() + } + + /// Performs the following transformation on all bytes in the group: + /// - `EMPTY => EMPTY` + /// - `DELETED => EMPTY` + /// - `FULL => DELETED` + #[inline] + pub(crate) fn convert_special_to_empty_and_full_to_deleted(self) -> Self { + // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111 + // and high_bit = 0 (FULL) to 1000_0000 + // + // Here's this logic expanded to concrete values: + // let special = 0 > byte = 1111_1111 (true) or 0000_0000 (false) + // 1111_1111 | 1000_0000 = 1111_1111 + // 0000_0000 | 1000_0000 = 1000_0000 + #[allow( + clippy::cast_possible_wrap, // byte: 0x80_u8 as i8 + )] + unsafe { + let zero = x86::_mm_setzero_si128(); + let special = x86::_mm_cmpgt_epi8(zero, self.0); + Group(x86::_mm_or_si128( + special, + x86::_mm_set1_epi8(0x80_u8 as i8), + )) + } + } +} |