summaryrefslogtreecommitdiffstats
path: root/vendor/base64/src/decode.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/base64/src/decode.rs')
-rw-r--r--vendor/base64/src/decode.rs893
1 files changed, 893 insertions, 0 deletions
diff --git a/vendor/base64/src/decode.rs b/vendor/base64/src/decode.rs
new file mode 100644
index 0000000..e349240
--- /dev/null
+++ b/vendor/base64/src/decode.rs
@@ -0,0 +1,893 @@
+use crate::{tables, Config, PAD_BYTE};
+
+#[cfg(any(feature = "alloc", feature = "std", test))]
+use crate::STANDARD;
+#[cfg(any(feature = "alloc", feature = "std", test))]
+use alloc::vec::Vec;
+use core::fmt;
+#[cfg(any(feature = "std", test))]
+use std::error;
+
+// decode logic operates on chunks of 8 input bytes without padding
+const INPUT_CHUNK_LEN: usize = 8;
+const DECODED_CHUNK_LEN: usize = 6;
+// we read a u64 and write a u64, but a u64 of input only yields 6 bytes of output, so the last
+// 2 bytes of any output u64 should not be counted as written to (but must be available in a
+// slice).
+const DECODED_CHUNK_SUFFIX: usize = 2;
+
+// how many u64's of input to handle at a time
+const CHUNKS_PER_FAST_LOOP_BLOCK: usize = 4;
+const INPUT_BLOCK_LEN: usize = CHUNKS_PER_FAST_LOOP_BLOCK * INPUT_CHUNK_LEN;
+// includes the trailing 2 bytes for the final u64 write
+const DECODED_BLOCK_LEN: usize =
+ CHUNKS_PER_FAST_LOOP_BLOCK * DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX;
+
+/// Errors that can occur while decoding.
+#[derive(Clone, Debug, PartialEq, Eq)]
+pub enum DecodeError {
+ /// An invalid byte was found in the input. The offset and offending byte are provided.
+ InvalidByte(usize, u8),
+ /// The length of the input is invalid.
+ /// A typical cause of this is stray trailing whitespace or other separator bytes.
+ /// In the case where excess trailing bytes have produced an invalid length *and* the last byte
+ /// is also an invalid base64 symbol (as would be the case for whitespace, etc), `InvalidByte`
+ /// will be emitted instead of `InvalidLength` to make the issue easier to debug.
+ InvalidLength,
+ /// The last non-padding input symbol's encoded 6 bits have nonzero bits that will be discarded.
+ /// This is indicative of corrupted or truncated Base64.
+ /// Unlike InvalidByte, which reports symbols that aren't in the alphabet, this error is for
+ /// symbols that are in the alphabet but represent nonsensical encodings.
+ InvalidLastSymbol(usize, u8),
+}
+
+impl fmt::Display for DecodeError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match *self {
+ DecodeError::InvalidByte(index, byte) => {
+ write!(f, "Invalid byte {}, offset {}.", byte, index)
+ }
+ DecodeError::InvalidLength => write!(f, "Encoded text cannot have a 6-bit remainder."),
+ DecodeError::InvalidLastSymbol(index, byte) => {
+ write!(f, "Invalid last symbol {}, offset {}.", byte, index)
+ }
+ }
+ }
+}
+
+#[cfg(any(feature = "std", test))]
+impl error::Error for DecodeError {
+ fn description(&self) -> &str {
+ match *self {
+ DecodeError::InvalidByte(_, _) => "invalid byte",
+ DecodeError::InvalidLength => "invalid length",
+ DecodeError::InvalidLastSymbol(_, _) => "invalid last symbol",
+ }
+ }
+
+ fn cause(&self) -> Option<&dyn error::Error> {
+ None
+ }
+}
+
+///Decode from string reference as octets.
+///Returns a Result containing a Vec<u8>.
+///Convenience `decode_config(input, base64::STANDARD);`.
+///
+///# Example
+///
+///```rust
+///extern crate base64;
+///
+///fn main() {
+/// let bytes = base64::decode("aGVsbG8gd29ybGQ=").unwrap();
+/// println!("{:?}", bytes);
+///}
+///```
+#[cfg(any(feature = "alloc", feature = "std", test))]
+pub fn decode<T: AsRef<[u8]>>(input: T) -> Result<Vec<u8>, DecodeError> {
+ decode_config(input, STANDARD)
+}
+
+///Decode from string reference as octets.
+///Returns a Result containing a Vec<u8>.
+///
+///# Example
+///
+///```rust
+///extern crate base64;
+///
+///fn main() {
+/// let bytes = base64::decode_config("aGVsbG8gd29ybGR+Cg==", base64::STANDARD).unwrap();
+/// println!("{:?}", bytes);
+///
+/// let bytes_url = base64::decode_config("aGVsbG8gaW50ZXJuZXR-Cg==", base64::URL_SAFE).unwrap();
+/// println!("{:?}", bytes_url);
+///}
+///```
+#[cfg(any(feature = "alloc", feature = "std", test))]
+pub fn decode_config<T: AsRef<[u8]>>(input: T, config: Config) -> Result<Vec<u8>, DecodeError> {
+ let decoded_length_estimate = (input
+ .as_ref()
+ .len()
+ .checked_add(3)
+ .expect("decoded length calculation overflow"))
+ / 4
+ * 3;
+ let mut buffer = Vec::<u8>::with_capacity(decoded_length_estimate);
+
+ decode_config_buf(input, config, &mut buffer).map(|_| buffer)
+}
+
+///Decode from string reference as octets.
+///Writes into the supplied buffer to avoid allocation.
+///Returns a Result containing an empty tuple, aka ().
+///
+///# Example
+///
+///```rust
+///extern crate base64;
+///
+///fn main() {
+/// let mut buffer = Vec::<u8>::new();
+/// base64::decode_config_buf("aGVsbG8gd29ybGR+Cg==", base64::STANDARD, &mut buffer).unwrap();
+/// println!("{:?}", buffer);
+///
+/// buffer.clear();
+///
+/// base64::decode_config_buf("aGVsbG8gaW50ZXJuZXR-Cg==", base64::URL_SAFE, &mut buffer)
+/// .unwrap();
+/// println!("{:?}", buffer);
+///}
+///```
+#[cfg(any(feature = "alloc", feature = "std", test))]
+pub fn decode_config_buf<T: AsRef<[u8]>>(
+ input: T,
+ config: Config,
+ buffer: &mut Vec<u8>,
+) -> Result<(), DecodeError> {
+ let input_bytes = input.as_ref();
+
+ let starting_output_len = buffer.len();
+
+ let num_chunks = num_chunks(input_bytes);
+ let decoded_len_estimate = num_chunks
+ .checked_mul(DECODED_CHUNK_LEN)
+ .and_then(|p| p.checked_add(starting_output_len))
+ .expect("Overflow when calculating output buffer length");
+ buffer.resize(decoded_len_estimate, 0);
+
+ let bytes_written;
+ {
+ let buffer_slice = &mut buffer.as_mut_slice()[starting_output_len..];
+ bytes_written = decode_helper(input_bytes, num_chunks, config, buffer_slice)?;
+ }
+
+ buffer.truncate(starting_output_len + bytes_written);
+
+ Ok(())
+}
+
+/// Decode the input into the provided output slice.
+///
+/// This will not write any bytes past exactly what is decoded (no stray garbage bytes at the end).
+///
+/// If you don't know ahead of time what the decoded length should be, size your buffer with a
+/// conservative estimate for the decoded length of an input: 3 bytes of output for every 4 bytes of
+/// input, rounded up, or in other words `(input_len + 3) / 4 * 3`.
+///
+/// If the slice is not large enough, this will panic.
+pub fn decode_config_slice<T: AsRef<[u8]>>(
+ input: T,
+ config: Config,
+ output: &mut [u8],
+) -> Result<usize, DecodeError> {
+ let input_bytes = input.as_ref();
+
+ decode_helper(input_bytes, num_chunks(input_bytes), config, output)
+}
+
+/// Return the number of input chunks (including a possibly partial final chunk) in the input
+fn num_chunks(input: &[u8]) -> usize {
+ input
+ .len()
+ .checked_add(INPUT_CHUNK_LEN - 1)
+ .expect("Overflow when calculating number of chunks in input")
+ / INPUT_CHUNK_LEN
+}
+
+/// Helper to avoid duplicating num_chunks calculation, which is costly on short inputs.
+/// Returns the number of bytes written, or an error.
+// We're on the fragile edge of compiler heuristics here. If this is not inlined, slow. If this is
+// inlined(always), a different slow. plain ol' inline makes the benchmarks happiest at the moment,
+// but this is fragile and the best setting changes with only minor code modifications.
+#[inline]
+fn decode_helper(
+ input: &[u8],
+ num_chunks: usize,
+ config: Config,
+ output: &mut [u8],
+) -> Result<usize, DecodeError> {
+ let char_set = config.char_set;
+ let decode_table = char_set.decode_table();
+
+ let remainder_len = input.len() % INPUT_CHUNK_LEN;
+
+ // Because the fast decode loop writes in groups of 8 bytes (unrolled to
+ // CHUNKS_PER_FAST_LOOP_BLOCK times 8 bytes, where possible) and outputs 8 bytes at a time (of
+ // which only 6 are valid data), we need to be sure that we stop using the fast decode loop
+ // soon enough that there will always be 2 more bytes of valid data written after that loop.
+ let trailing_bytes_to_skip = match remainder_len {
+ // if input is a multiple of the chunk size, ignore the last chunk as it may have padding,
+ // and the fast decode logic cannot handle padding
+ 0 => INPUT_CHUNK_LEN,
+ // 1 and 5 trailing bytes are illegal: can't decode 6 bits of input into a byte
+ 1 | 5 => {
+ // trailing whitespace is so common that it's worth it to check the last byte to
+ // possibly return a better error message
+ if let Some(b) = input.last() {
+ if *b != PAD_BYTE && decode_table[*b as usize] == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(input.len() - 1, *b));
+ }
+ }
+
+ return Err(DecodeError::InvalidLength);
+ }
+ // This will decode to one output byte, which isn't enough to overwrite the 2 extra bytes
+ // written by the fast decode loop. So, we have to ignore both these 2 bytes and the
+ // previous chunk.
+ 2 => INPUT_CHUNK_LEN + 2,
+ // If this is 3 unpadded chars, then it would actually decode to 2 bytes. However, if this
+ // is an erroneous 2 chars + 1 pad char that would decode to 1 byte, then it should fail
+ // with an error, not panic from going past the bounds of the output slice, so we let it
+ // use stage 3 + 4.
+ 3 => INPUT_CHUNK_LEN + 3,
+ // This can also decode to one output byte because it may be 2 input chars + 2 padding
+ // chars, which would decode to 1 byte.
+ 4 => INPUT_CHUNK_LEN + 4,
+ // Everything else is a legal decode len (given that we don't require padding), and will
+ // decode to at least 2 bytes of output.
+ _ => remainder_len,
+ };
+
+ // rounded up to include partial chunks
+ let mut remaining_chunks = num_chunks;
+
+ let mut input_index = 0;
+ let mut output_index = 0;
+
+ {
+ let length_of_fast_decode_chunks = input.len().saturating_sub(trailing_bytes_to_skip);
+
+ // Fast loop, stage 1
+ // manual unroll to CHUNKS_PER_FAST_LOOP_BLOCK of u64s to amortize slice bounds checks
+ if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_BLOCK_LEN) {
+ while input_index <= max_start_index {
+ let input_slice = &input[input_index..(input_index + INPUT_BLOCK_LEN)];
+ let output_slice = &mut output[output_index..(output_index + DECODED_BLOCK_LEN)];
+
+ decode_chunk(
+ &input_slice[0..],
+ input_index,
+ decode_table,
+ &mut output_slice[0..],
+ )?;
+ decode_chunk(
+ &input_slice[8..],
+ input_index + 8,
+ decode_table,
+ &mut output_slice[6..],
+ )?;
+ decode_chunk(
+ &input_slice[16..],
+ input_index + 16,
+ decode_table,
+ &mut output_slice[12..],
+ )?;
+ decode_chunk(
+ &input_slice[24..],
+ input_index + 24,
+ decode_table,
+ &mut output_slice[18..],
+ )?;
+
+ input_index += INPUT_BLOCK_LEN;
+ output_index += DECODED_BLOCK_LEN - DECODED_CHUNK_SUFFIX;
+ remaining_chunks -= CHUNKS_PER_FAST_LOOP_BLOCK;
+ }
+ }
+
+ // Fast loop, stage 2 (aka still pretty fast loop)
+ // 8 bytes at a time for whatever we didn't do in stage 1.
+ if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_CHUNK_LEN) {
+ while input_index < max_start_index {
+ decode_chunk(
+ &input[input_index..(input_index + INPUT_CHUNK_LEN)],
+ input_index,
+ decode_table,
+ &mut output
+ [output_index..(output_index + DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX)],
+ )?;
+
+ output_index += DECODED_CHUNK_LEN;
+ input_index += INPUT_CHUNK_LEN;
+ remaining_chunks -= 1;
+ }
+ }
+ }
+
+ // Stage 3
+ // If input length was such that a chunk had to be deferred until after the fast loop
+ // because decoding it would have produced 2 trailing bytes that wouldn't then be
+ // overwritten, we decode that chunk here. This way is slower but doesn't write the 2
+ // trailing bytes.
+ // However, we still need to avoid the last chunk (partial or complete) because it could
+ // have padding, so we always do 1 fewer to avoid the last chunk.
+ for _ in 1..remaining_chunks {
+ decode_chunk_precise(
+ &input[input_index..],
+ input_index,
+ decode_table,
+ &mut output[output_index..(output_index + DECODED_CHUNK_LEN)],
+ )?;
+
+ input_index += INPUT_CHUNK_LEN;
+ output_index += DECODED_CHUNK_LEN;
+ }
+
+ // always have one more (possibly partial) block of 8 input
+ debug_assert!(input.len() - input_index > 1 || input.is_empty());
+ debug_assert!(input.len() - input_index <= 8);
+
+ // Stage 4
+ // Finally, decode any leftovers that aren't a complete input block of 8 bytes.
+ // Use a u64 as a stack-resident 8 byte buffer.
+ let mut leftover_bits: u64 = 0;
+ let mut morsels_in_leftover = 0;
+ let mut padding_bytes = 0;
+ let mut first_padding_index: usize = 0;
+ let mut last_symbol = 0_u8;
+ let start_of_leftovers = input_index;
+ for (i, b) in input[start_of_leftovers..].iter().enumerate() {
+ // '=' padding
+ if *b == PAD_BYTE {
+ // There can be bad padding in a few ways:
+ // 1 - Padding with non-padding characters after it
+ // 2 - Padding after zero or one non-padding characters before it
+ // in the current quad.
+ // 3 - More than two characters of padding. If 3 or 4 padding chars
+ // are in the same quad, that implies it will be caught by #2.
+ // If it spreads from one quad to another, it will be caught by
+ // #2 in the second quad.
+
+ if i % 4 < 2 {
+ // Check for case #2.
+ let bad_padding_index = start_of_leftovers
+ + if padding_bytes > 0 {
+ // If we've already seen padding, report the first padding index.
+ // This is to be consistent with the faster logic above: it will report an
+ // error on the first padding character (since it doesn't expect to see
+ // anything but actual encoded data).
+ first_padding_index
+ } else {
+ // haven't seen padding before, just use where we are now
+ i
+ };
+ return Err(DecodeError::InvalidByte(bad_padding_index, *b));
+ }
+
+ if padding_bytes == 0 {
+ first_padding_index = i;
+ }
+
+ padding_bytes += 1;
+ continue;
+ }
+
+ // Check for case #1.
+ // To make '=' handling consistent with the main loop, don't allow
+ // non-suffix '=' in trailing chunk either. Report error as first
+ // erroneous padding.
+ if padding_bytes > 0 {
+ return Err(DecodeError::InvalidByte(
+ start_of_leftovers + first_padding_index,
+ PAD_BYTE,
+ ));
+ }
+ last_symbol = *b;
+
+ // can use up to 8 * 6 = 48 bits of the u64, if last chunk has no padding.
+ // To minimize shifts, pack the leftovers from left to right.
+ let shift = 64 - (morsels_in_leftover + 1) * 6;
+ // tables are all 256 elements, lookup with a u8 index always succeeds
+ let morsel = decode_table[*b as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(start_of_leftovers + i, *b));
+ }
+
+ leftover_bits |= (morsel as u64) << shift;
+ morsels_in_leftover += 1;
+ }
+
+ let leftover_bits_ready_to_append = match morsels_in_leftover {
+ 0 => 0,
+ 2 => 8,
+ 3 => 16,
+ 4 => 24,
+ 6 => 32,
+ 7 => 40,
+ 8 => 48,
+ _ => unreachable!(
+ "Impossible: must only have 0 to 8 input bytes in last chunk, with no invalid lengths"
+ ),
+ };
+
+ // if there are bits set outside the bits we care about, last symbol encodes trailing bits that
+ // will not be included in the output
+ let mask = !0 >> leftover_bits_ready_to_append;
+ if !config.decode_allow_trailing_bits && (leftover_bits & mask) != 0 {
+ // last morsel is at `morsels_in_leftover` - 1
+ return Err(DecodeError::InvalidLastSymbol(
+ start_of_leftovers + morsels_in_leftover - 1,
+ last_symbol,
+ ));
+ }
+
+ let mut leftover_bits_appended_to_buf = 0;
+ while leftover_bits_appended_to_buf < leftover_bits_ready_to_append {
+ // `as` simply truncates the higher bits, which is what we want here
+ let selected_bits = (leftover_bits >> (56 - leftover_bits_appended_to_buf)) as u8;
+ output[output_index] = selected_bits;
+ output_index += 1;
+
+ leftover_bits_appended_to_buf += 8;
+ }
+
+ Ok(output_index)
+}
+
+#[inline]
+fn write_u64(output: &mut [u8], value: u64) {
+ output[..8].copy_from_slice(&value.to_be_bytes());
+}
+
+/// Decode 8 bytes of input into 6 bytes of output. 8 bytes of output will be written, but only the
+/// first 6 of those contain meaningful data.
+///
+/// `input` is the bytes to decode, of which the first 8 bytes will be processed.
+/// `index_at_start_of_input` is the offset in the overall input (used for reporting errors
+/// accurately)
+/// `decode_table` is the lookup table for the particular base64 alphabet.
+/// `output` will have its first 8 bytes overwritten, of which only the first 6 are valid decoded
+/// data.
+// yes, really inline (worth 30-50% speedup)
+#[inline(always)]
+fn decode_chunk(
+ input: &[u8],
+ index_at_start_of_input: usize,
+ decode_table: &[u8; 256],
+ output: &mut [u8],
+) -> Result<(), DecodeError> {
+ let mut accum: u64;
+
+ let morsel = decode_table[input[0] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(index_at_start_of_input, input[0]));
+ }
+ accum = (morsel as u64) << 58;
+
+ let morsel = decode_table[input[1] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(
+ index_at_start_of_input + 1,
+ input[1],
+ ));
+ }
+ accum |= (morsel as u64) << 52;
+
+ let morsel = decode_table[input[2] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(
+ index_at_start_of_input + 2,
+ input[2],
+ ));
+ }
+ accum |= (morsel as u64) << 46;
+
+ let morsel = decode_table[input[3] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(
+ index_at_start_of_input + 3,
+ input[3],
+ ));
+ }
+ accum |= (morsel as u64) << 40;
+
+ let morsel = decode_table[input[4] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(
+ index_at_start_of_input + 4,
+ input[4],
+ ));
+ }
+ accum |= (morsel as u64) << 34;
+
+ let morsel = decode_table[input[5] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(
+ index_at_start_of_input + 5,
+ input[5],
+ ));
+ }
+ accum |= (morsel as u64) << 28;
+
+ let morsel = decode_table[input[6] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(
+ index_at_start_of_input + 6,
+ input[6],
+ ));
+ }
+ accum |= (morsel as u64) << 22;
+
+ let morsel = decode_table[input[7] as usize];
+ if morsel == tables::INVALID_VALUE {
+ return Err(DecodeError::InvalidByte(
+ index_at_start_of_input + 7,
+ input[7],
+ ));
+ }
+ accum |= (morsel as u64) << 16;
+
+ write_u64(output, accum);
+
+ Ok(())
+}
+
+/// Decode an 8-byte chunk, but only write the 6 bytes actually decoded instead of including 2
+/// trailing garbage bytes.
+#[inline]
+fn decode_chunk_precise(
+ input: &[u8],
+ index_at_start_of_input: usize,
+ decode_table: &[u8; 256],
+ output: &mut [u8],
+) -> Result<(), DecodeError> {
+ let mut tmp_buf = [0_u8; 8];
+
+ decode_chunk(
+ input,
+ index_at_start_of_input,
+ decode_table,
+ &mut tmp_buf[..],
+ )?;
+
+ output[0..6].copy_from_slice(&tmp_buf[0..6]);
+
+ Ok(())
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::{
+ encode::encode_config_buf,
+ encode::encode_config_slice,
+ tests::{assert_encode_sanity, random_config},
+ };
+
+ use rand::{
+ distributions::{Distribution, Uniform},
+ FromEntropy, Rng,
+ };
+
+ #[test]
+ fn decode_chunk_precise_writes_only_6_bytes() {
+ let input = b"Zm9vYmFy"; // "foobar"
+ let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7];
+ decode_chunk_precise(&input[..], 0, tables::STANDARD_DECODE, &mut output).unwrap();
+ assert_eq!(&vec![b'f', b'o', b'o', b'b', b'a', b'r', 6, 7], &output);
+ }
+
+ #[test]
+ fn decode_chunk_writes_8_bytes() {
+ let input = b"Zm9vYmFy"; // "foobar"
+ let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7];
+ decode_chunk(&input[..], 0, tables::STANDARD_DECODE, &mut output).unwrap();
+ assert_eq!(&vec![b'f', b'o', b'o', b'b', b'a', b'r', 0, 0], &output);
+ }
+
+ #[test]
+ fn decode_into_nonempty_vec_doesnt_clobber_existing_prefix() {
+ let mut orig_data = Vec::new();
+ let mut encoded_data = String::new();
+ let mut decoded_with_prefix = Vec::new();
+ let mut decoded_without_prefix = Vec::new();
+ let mut prefix = Vec::new();
+
+ let prefix_len_range = Uniform::new(0, 1000);
+ let input_len_range = Uniform::new(0, 1000);
+
+ let mut rng = rand::rngs::SmallRng::from_entropy();
+
+ for _ in 0..10_000 {
+ orig_data.clear();
+ encoded_data.clear();
+ decoded_with_prefix.clear();
+ decoded_without_prefix.clear();
+ prefix.clear();
+
+ let input_len = input_len_range.sample(&mut rng);
+
+ for _ in 0..input_len {
+ orig_data.push(rng.gen());
+ }
+
+ let config = random_config(&mut rng);
+ encode_config_buf(&orig_data, config, &mut encoded_data);
+ assert_encode_sanity(&encoded_data, config, input_len);
+
+ let prefix_len = prefix_len_range.sample(&mut rng);
+
+ // fill the buf with a prefix
+ for _ in 0..prefix_len {
+ prefix.push(rng.gen());
+ }
+
+ decoded_with_prefix.resize(prefix_len, 0);
+ decoded_with_prefix.copy_from_slice(&prefix);
+
+ // decode into the non-empty buf
+ decode_config_buf(&encoded_data, config, &mut decoded_with_prefix).unwrap();
+ // also decode into the empty buf
+ decode_config_buf(&encoded_data, config, &mut decoded_without_prefix).unwrap();
+
+ assert_eq!(
+ prefix_len + decoded_without_prefix.len(),
+ decoded_with_prefix.len()
+ );
+ assert_eq!(orig_data, decoded_without_prefix);
+
+ // append plain decode onto prefix
+ prefix.append(&mut decoded_without_prefix);
+
+ assert_eq!(prefix, decoded_with_prefix);
+ }
+ }
+
+ #[test]
+ fn decode_into_slice_doesnt_clobber_existing_prefix_or_suffix() {
+ let mut orig_data = Vec::new();
+ let mut encoded_data = String::new();
+ let mut decode_buf = Vec::new();
+ let mut decode_buf_copy: Vec<u8> = Vec::new();
+
+ let input_len_range = Uniform::new(0, 1000);
+
+ let mut rng = rand::rngs::SmallRng::from_entropy();
+
+ for _ in 0..10_000 {
+ orig_data.clear();
+ encoded_data.clear();
+ decode_buf.clear();
+ decode_buf_copy.clear();
+
+ let input_len = input_len_range.sample(&mut rng);
+
+ for _ in 0..input_len {
+ orig_data.push(rng.gen());
+ }
+
+ let config = random_config(&mut rng);
+ encode_config_buf(&orig_data, config, &mut encoded_data);
+ assert_encode_sanity(&encoded_data, config, input_len);
+
+ // fill the buffer with random garbage, long enough to have some room before and after
+ for _ in 0..5000 {
+ decode_buf.push(rng.gen());
+ }
+
+ // keep a copy for later comparison
+ decode_buf_copy.extend(decode_buf.iter());
+
+ let offset = 1000;
+
+ // decode into the non-empty buf
+ let decode_bytes_written =
+ decode_config_slice(&encoded_data, config, &mut decode_buf[offset..]).unwrap();
+
+ assert_eq!(orig_data.len(), decode_bytes_written);
+ assert_eq!(
+ orig_data,
+ &decode_buf[offset..(offset + decode_bytes_written)]
+ );
+ assert_eq!(&decode_buf_copy[0..offset], &decode_buf[0..offset]);
+ assert_eq!(
+ &decode_buf_copy[offset + decode_bytes_written..],
+ &decode_buf[offset + decode_bytes_written..]
+ );
+ }
+ }
+
+ #[test]
+ fn decode_into_slice_fits_in_precisely_sized_slice() {
+ let mut orig_data = Vec::new();
+ let mut encoded_data = String::new();
+ let mut decode_buf = Vec::new();
+
+ let input_len_range = Uniform::new(0, 1000);
+
+ let mut rng = rand::rngs::SmallRng::from_entropy();
+
+ for _ in 0..10_000 {
+ orig_data.clear();
+ encoded_data.clear();
+ decode_buf.clear();
+
+ let input_len = input_len_range.sample(&mut rng);
+
+ for _ in 0..input_len {
+ orig_data.push(rng.gen());
+ }
+
+ let config = random_config(&mut rng);
+ encode_config_buf(&orig_data, config, &mut encoded_data);
+ assert_encode_sanity(&encoded_data, config, input_len);
+
+ decode_buf.resize(input_len, 0);
+
+ // decode into the non-empty buf
+ let decode_bytes_written =
+ decode_config_slice(&encoded_data, config, &mut decode_buf[..]).unwrap();
+
+ assert_eq!(orig_data.len(), decode_bytes_written);
+ assert_eq!(orig_data, decode_buf);
+ }
+ }
+
+ #[test]
+ fn detect_invalid_last_symbol_two_bytes() {
+ let decode =
+ |input, forgiving| decode_config(input, STANDARD.decode_allow_trailing_bits(forgiving));
+
+ // example from https://github.com/marshallpierce/rust-base64/issues/75
+ assert!(decode("iYU=", false).is_ok());
+ // trailing 01
+ assert_eq!(
+ Err(DecodeError::InvalidLastSymbol(2, b'V')),
+ decode("iYV=", false)
+ );
+ assert_eq!(Ok(vec![137, 133]), decode("iYV=", true));
+ // trailing 10
+ assert_eq!(
+ Err(DecodeError::InvalidLastSymbol(2, b'W')),
+ decode("iYW=", false)
+ );
+ assert_eq!(Ok(vec![137, 133]), decode("iYV=", true));
+ // trailing 11
+ assert_eq!(
+ Err(DecodeError::InvalidLastSymbol(2, b'X')),
+ decode("iYX=", false)
+ );
+ assert_eq!(Ok(vec![137, 133]), decode("iYV=", true));
+
+ // also works when there are 2 quads in the last block
+ assert_eq!(
+ Err(DecodeError::InvalidLastSymbol(6, b'X')),
+ decode("AAAAiYX=", false)
+ );
+ assert_eq!(Ok(vec![0, 0, 0, 137, 133]), decode("AAAAiYX=", true));
+ }
+
+ #[test]
+ fn detect_invalid_last_symbol_one_byte() {
+ // 0xFF -> "/w==", so all letters > w, 0-9, and '+', '/' should get InvalidLastSymbol
+
+ assert!(decode("/w==").is_ok());
+ // trailing 01
+ assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'x')), decode("/x=="));
+ assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'z')), decode("/z=="));
+ assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'0')), decode("/0=="));
+ assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'9')), decode("/9=="));
+ assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'+')), decode("/+=="));
+ assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'/')), decode("//=="));
+
+ // also works when there are 2 quads in the last block
+ assert_eq!(
+ Err(DecodeError::InvalidLastSymbol(5, b'x')),
+ decode("AAAA/x==")
+ );
+ }
+
+ #[test]
+ fn detect_invalid_last_symbol_every_possible_three_symbols() {
+ let mut base64_to_bytes = ::std::collections::HashMap::new();
+
+ let mut bytes = [0_u8; 2];
+ for b1 in 0_u16..256 {
+ bytes[0] = b1 as u8;
+ for b2 in 0_u16..256 {
+ bytes[1] = b2 as u8;
+ let mut b64 = vec![0_u8; 4];
+ assert_eq!(4, encode_config_slice(&bytes, STANDARD, &mut b64[..]));
+ let mut v = ::std::vec::Vec::with_capacity(2);
+ v.extend_from_slice(&bytes[..]);
+
+ assert!(base64_to_bytes.insert(b64, v).is_none());
+ }
+ }
+
+ // every possible combination of symbols must either decode to 2 bytes or get InvalidLastSymbol
+
+ let mut symbols = [0_u8; 4];
+ for &s1 in STANDARD.char_set.encode_table().iter() {
+ symbols[0] = s1;
+ for &s2 in STANDARD.char_set.encode_table().iter() {
+ symbols[1] = s2;
+ for &s3 in STANDARD.char_set.encode_table().iter() {
+ symbols[2] = s3;
+ symbols[3] = PAD_BYTE;
+
+ match base64_to_bytes.get(&symbols[..]) {
+ Some(bytes) => {
+ assert_eq!(Ok(bytes.to_vec()), decode_config(&symbols, STANDARD))
+ }
+ None => assert_eq!(
+ Err(DecodeError::InvalidLastSymbol(2, s3)),
+ decode_config(&symbols[..], STANDARD)
+ ),
+ }
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn detect_invalid_last_symbol_every_possible_two_symbols() {
+ let mut base64_to_bytes = ::std::collections::HashMap::new();
+
+ for b in 0_u16..256 {
+ let mut b64 = vec![0_u8; 4];
+ assert_eq!(4, encode_config_slice(&[b as u8], STANDARD, &mut b64[..]));
+ let mut v = ::std::vec::Vec::with_capacity(1);
+ v.push(b as u8);
+
+ assert!(base64_to_bytes.insert(b64, v).is_none());
+ }
+
+ // every possible combination of symbols must either decode to 1 byte or get InvalidLastSymbol
+
+ let mut symbols = [0_u8; 4];
+ for &s1 in STANDARD.char_set.encode_table().iter() {
+ symbols[0] = s1;
+ for &s2 in STANDARD.char_set.encode_table().iter() {
+ symbols[1] = s2;
+ symbols[2] = PAD_BYTE;
+ symbols[3] = PAD_BYTE;
+
+ match base64_to_bytes.get(&symbols[..]) {
+ Some(bytes) => {
+ assert_eq!(Ok(bytes.to_vec()), decode_config(&symbols, STANDARD))
+ }
+ None => assert_eq!(
+ Err(DecodeError::InvalidLastSymbol(1, s2)),
+ decode_config(&symbols[..], STANDARD)
+ ),
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn decode_config_estimation_works_for_various_lengths() {
+ for num_prefix_quads in 0..100 {
+ for suffix in &["AA", "AAA", "AAAA"] {
+ let mut prefix = "AAAA".repeat(num_prefix_quads);
+ prefix.push_str(suffix);
+ // make sure no overflow (and thus a panic) occurs
+ let res = decode_config(prefix, STANDARD);
+ assert!(res.is_ok());
+ }
+ }
+ }
+}