diff options
Diffstat (limited to '')
-rw-r--r-- | vendor/openssl/src/bn.rs | 1518 |
1 files changed, 1518 insertions, 0 deletions
diff --git a/vendor/openssl/src/bn.rs b/vendor/openssl/src/bn.rs new file mode 100644 index 0000000..c75fac1 --- /dev/null +++ b/vendor/openssl/src/bn.rs @@ -0,0 +1,1518 @@ +//! BigNum implementation +//! +//! Large numbers are important for a cryptographic library. OpenSSL implementation +//! of BigNum uses dynamically assigned memory to store an array of bit chunks. This +//! allows numbers of any size to be compared and mathematical functions performed. +//! +//! OpenSSL wiki describes the [`BIGNUM`] data structure. +//! +//! # Examples +//! +//! ``` +//! use openssl::bn::BigNum; +//! use openssl::error::ErrorStack; +//! +//! fn main() -> Result<(), ErrorStack> { +//! let a = BigNum::new()?; // a = 0 +//! let b = BigNum::from_dec_str("1234567890123456789012345")?; +//! let c = &a * &b; +//! assert_eq!(a, c); +//! Ok(()) +//! } +//! ``` +//! +//! [`BIGNUM`]: https://wiki.openssl.org/index.php/Manual:Bn_internal(3) +use cfg_if::cfg_if; +use foreign_types::{ForeignType, ForeignTypeRef}; +use libc::c_int; +use std::cmp::Ordering; +use std::ffi::CString; +use std::ops::{Add, Deref, Div, Mul, Neg, Rem, Shl, Shr, Sub}; +use std::{fmt, ptr}; + +use crate::asn1::Asn1Integer; +use crate::error::ErrorStack; +use crate::string::OpensslString; +use crate::{cvt, cvt_n, cvt_p, LenType}; +use openssl_macros::corresponds; + +cfg_if! { + if #[cfg(any(ossl110, libressl350))] { + use ffi::{ + BN_get_rfc2409_prime_1024, BN_get_rfc2409_prime_768, BN_get_rfc3526_prime_1536, + BN_get_rfc3526_prime_2048, BN_get_rfc3526_prime_3072, BN_get_rfc3526_prime_4096, + BN_get_rfc3526_prime_6144, BN_get_rfc3526_prime_8192, BN_is_negative, + }; + } else if #[cfg(boringssl)] { + use ffi::BN_is_negative; + } else { + use ffi::{ + get_rfc2409_prime_1024 as BN_get_rfc2409_prime_1024, + get_rfc2409_prime_768 as BN_get_rfc2409_prime_768, + get_rfc3526_prime_1536 as BN_get_rfc3526_prime_1536, + get_rfc3526_prime_2048 as BN_get_rfc3526_prime_2048, + get_rfc3526_prime_3072 as BN_get_rfc3526_prime_3072, + get_rfc3526_prime_4096 as BN_get_rfc3526_prime_4096, + get_rfc3526_prime_6144 as BN_get_rfc3526_prime_6144, + get_rfc3526_prime_8192 as BN_get_rfc3526_prime_8192, + }; + + #[allow(bad_style)] + unsafe fn BN_is_negative(bn: *const ffi::BIGNUM) -> c_int { + (*bn).neg + } + } +} + +/// Options for the most significant bits of a randomly generated `BigNum`. +pub struct MsbOption(c_int); + +impl MsbOption { + /// The most significant bit of the number may be 0. + pub const MAYBE_ZERO: MsbOption = MsbOption(-1); + + /// The most significant bit of the number must be 1. + pub const ONE: MsbOption = MsbOption(0); + + /// The most significant two bits of the number must be 1. + /// + /// The number of bits in the product of two such numbers will always be exactly twice the + /// number of bits in the original numbers. + pub const TWO_ONES: MsbOption = MsbOption(1); +} + +foreign_type_and_impl_send_sync! { + type CType = ffi::BN_CTX; + fn drop = ffi::BN_CTX_free; + + /// Temporary storage for BigNums on the secure heap + /// + /// BigNum values are stored dynamically and therefore can be expensive + /// to allocate. BigNumContext and the OpenSSL [`BN_CTX`] structure are used + /// internally when passing BigNum values between subroutines. + /// + /// [`BN_CTX`]: https://www.openssl.org/docs/manmaster/crypto/BN_CTX_new.html + pub struct BigNumContext; + /// Reference to [`BigNumContext`] + /// + /// [`BigNumContext`]: struct.BigNumContext.html + pub struct BigNumContextRef; +} + +impl BigNumContext { + /// Returns a new `BigNumContext`. + #[corresponds(BN_CTX_new)] + pub fn new() -> Result<BigNumContext, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(ffi::BN_CTX_new()).map(BigNumContext) + } + } + + /// Returns a new secure `BigNumContext`. + #[corresponds(BN_CTX_secure_new)] + #[cfg(ossl110)] + pub fn new_secure() -> Result<BigNumContext, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(ffi::BN_CTX_secure_new()).map(BigNumContext) + } + } +} + +foreign_type_and_impl_send_sync! { + type CType = ffi::BIGNUM; + fn drop = ffi::BN_free; + + /// Dynamically sized large number implementation + /// + /// Perform large number mathematics. Create a new BigNum + /// with [`new`]. Perform standard mathematics on large numbers using + /// methods from [`Dref<Target = BigNumRef>`] + /// + /// OpenSSL documentation at [`BN_new`]. + /// + /// [`new`]: struct.BigNum.html#method.new + /// [`Dref<Target = BigNumRef>`]: struct.BigNum.html#deref-methods + /// [`BN_new`]: https://www.openssl.org/docs/manmaster/crypto/BN_new.html + /// + /// # Examples + /// ``` + /// use openssl::bn::BigNum; + /// # use openssl::error::ErrorStack; + /// # fn bignums() -> Result< (), ErrorStack > { + /// let little_big = BigNum::from_u32(std::u32::MAX)?; + /// assert_eq!(*&little_big.num_bytes(), 4); + /// # Ok(()) + /// # } + /// # fn main () { bignums(); } + /// ``` + pub struct BigNum; + /// Reference to a [`BigNum`] + /// + /// [`BigNum`]: struct.BigNum.html + pub struct BigNumRef; +} + +impl BigNumRef { + /// Erases the memory used by this `BigNum`, resetting its value to 0. + /// + /// This can be used to destroy sensitive data such as keys when they are no longer needed. + #[corresponds(BN_clear)] + pub fn clear(&mut self) { + unsafe { ffi::BN_clear(self.as_ptr()) } + } + + /// Adds a `u32` to `self`. + #[corresponds(BN_add_word)] + pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_add_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } + } + + /// Subtracts a `u32` from `self`. + #[corresponds(BN_sub_word)] + pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_sub_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } + } + + /// Multiplies a `u32` by `self`. + #[corresponds(BN_mul_word)] + pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_mul_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } + } + + /// Divides `self` by a `u32`, returning the remainder. + #[corresponds(BN_div_word)] + #[allow(clippy::useless_conversion)] + pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack> { + unsafe { + let r = ffi::BN_div_word(self.as_ptr(), w.into()); + if r == ffi::BN_ULONG::max_value() { + Err(ErrorStack::get()) + } else { + Ok(r.into()) + } + } + } + + /// Returns the result of `self` modulo `w`. + #[corresponds(BN_mod_word)] + #[allow(clippy::useless_conversion)] + pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack> { + unsafe { + let r = ffi::BN_mod_word(self.as_ptr(), w.into()); + if r == ffi::BN_ULONG::max_value() { + Err(ErrorStack::get()) + } else { + Ok(r.into()) + } + } + } + + /// Places a cryptographically-secure pseudo-random nonnegative + /// number less than `self` in `rnd`. + #[corresponds(BN_rand_range)] + pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } + } + + /// The cryptographically weak counterpart to `rand_in_range`. + #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] + #[corresponds(BN_pseudo_rand_range)] + pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_pseudo_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } + } + + /// Sets bit `n`. Equivalent to `self |= (1 << n)`. + /// + /// When setting a bit outside of `self`, it is expanded. + #[corresponds(BN_set_bit)] + #[allow(clippy::useless_conversion)] + pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_set_bit(self.as_ptr(), n.into())).map(|_| ()) } + } + + /// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`. + /// + /// When clearing a bit outside of `self`, an error is returned. + #[corresponds(BN_clear_bit)] + #[allow(clippy::useless_conversion)] + pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_clear_bit(self.as_ptr(), n.into())).map(|_| ()) } + } + + /// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise. + #[corresponds(BN_is_bit_set)] + #[allow(clippy::useless_conversion)] + pub fn is_bit_set(&self, n: i32) -> bool { + unsafe { ffi::BN_is_bit_set(self.as_ptr(), n.into()) == 1 } + } + + /// Truncates `self` to the lowest `n` bits. + /// + /// An error occurs if `self` is already shorter than `n` bits. + #[corresponds(BN_mask_bits)] + #[allow(clippy::useless_conversion)] + pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_mask_bits(self.as_ptr(), n.into())).map(|_| ()) } + } + + /// Places `a << 1` in `self`. Equivalent to `self * 2`. + #[corresponds(BN_lshift1)] + pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_lshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } + } + + /// Places `a >> 1` in `self`. Equivalent to `self / 2`. + #[corresponds(BN_rshift1)] + pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_rshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } + } + + /// Places `a + b` in `self`. [`core::ops::Add`] is also implemented for `BigNumRef`. + /// + /// [`core::ops::Add`]: struct.BigNumRef.html#method.add + #[corresponds(BN_add)] + pub fn checked_add(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_add(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } + } + + /// Places `a - b` in `self`. [`core::ops::Sub`] is also implemented for `BigNumRef`. + /// + /// [`core::ops::Sub`]: struct.BigNumRef.html#method.sub + #[corresponds(BN_sub)] + pub fn checked_sub(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_sub(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } + } + + /// Places `a << n` in `self`. Equivalent to `a * 2 ^ n`. + #[corresponds(BN_lshift)] + #[allow(clippy::useless_conversion)] + pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_lshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } + } + + /// Places `a >> n` in `self`. Equivalent to `a / 2 ^ n`. + #[corresponds(BN_rshift)] + #[allow(clippy::useless_conversion)] + pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_rshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } + } + + /// Creates a new BigNum with the same value. + #[corresponds(BN_dup)] + pub fn to_owned(&self) -> Result<BigNum, ErrorStack> { + unsafe { cvt_p(ffi::BN_dup(self.as_ptr())).map(|b| BigNum::from_ptr(b)) } + } + + /// Sets the sign of `self`. Pass true to set `self` to a negative. False sets + /// `self` positive. + #[corresponds(BN_set_negative)] + pub fn set_negative(&mut self, negative: bool) { + unsafe { ffi::BN_set_negative(self.as_ptr(), negative as c_int) } + } + + /// Compare the absolute values of `self` and `oth`. + /// + /// # Examples + /// + /// ``` + /// # use openssl::bn::BigNum; + /// # use std::cmp::Ordering; + /// let s = -BigNum::from_u32(8).unwrap(); + /// let o = BigNum::from_u32(8).unwrap(); + /// + /// assert_eq!(s.ucmp(&o), Ordering::Equal); + /// ``` + #[corresponds(BN_ucmp)] + pub fn ucmp(&self, oth: &BigNumRef) -> Ordering { + unsafe { ffi::BN_ucmp(self.as_ptr(), oth.as_ptr()).cmp(&0) } + } + + /// Returns `true` if `self` is negative. + #[corresponds(BN_is_negative)] + pub fn is_negative(&self) -> bool { + unsafe { BN_is_negative(self.as_ptr()) == 1 } + } + + /// Returns `true` is `self` is even. + #[corresponds(BN_is_even)] + #[cfg(any(ossl110, boringssl, libressl350))] + pub fn is_even(&self) -> bool { + !self.is_odd() + } + + /// Returns `true` is `self` is odd. + #[corresponds(BN_is_odd)] + #[cfg(any(ossl110, boringssl, libressl350))] + pub fn is_odd(&self) -> bool { + unsafe { ffi::BN_is_odd(self.as_ptr()) == 1 } + } + + /// Returns the number of significant bits in `self`. + #[corresponds(BN_num_bits)] + #[allow(clippy::unnecessary_cast)] + pub fn num_bits(&self) -> i32 { + unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 } + } + + /// Returns the size of `self` in bytes. Implemented natively. + pub fn num_bytes(&self) -> i32 { + (self.num_bits() + 7) / 8 + } + + /// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `self`. + /// + /// # Parameters + /// + /// * `bits`: Length of the number in bits. + /// * `msb`: The desired properties of the most significant bit. See [`constants`]. + /// * `odd`: If `true`, the generated number will be odd. + /// + /// # Examples + /// + /// ``` + /// use openssl::bn::{BigNum, MsbOption}; + /// use openssl::error::ErrorStack; + /// + /// fn generate_random() -> Result< BigNum, ErrorStack > { + /// let mut big = BigNum::new()?; + /// + /// // Generates a 128-bit odd random number + /// big.rand(128, MsbOption::MAYBE_ZERO, true); + /// Ok((big)) + /// } + /// ``` + /// + /// [`constants`]: index.html#constants + #[corresponds(BN_rand)] + #[allow(clippy::useless_conversion)] + pub fn rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_rand( + self.as_ptr(), + bits.into(), + msb.0, + odd as c_int, + )) + .map(|_| ()) + } + } + + /// The cryptographically weak counterpart to `rand`. Not suitable for key generation. + #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] + #[corresponds(BN_pseudo_rand)] + #[allow(clippy::useless_conversion)] + pub fn pseudo_rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_pseudo_rand( + self.as_ptr(), + bits.into(), + msb.0, + odd as c_int, + )) + .map(|_| ()) + } + } + + /// Generates a prime number, placing it in `self`. + /// + /// # Parameters + /// + /// * `bits`: The length of the prime in bits (lower bound). + /// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime. + /// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the + /// generated prime and `rem` is `1` if not specified (`None`). + /// + /// # Examples + /// + /// ``` + /// use openssl::bn::BigNum; + /// use openssl::error::ErrorStack; + /// + /// fn generate_weak_prime() -> Result< BigNum, ErrorStack > { + /// let mut big = BigNum::new()?; + /// + /// // Generates a 128-bit simple prime number + /// big.generate_prime(128, false, None, None); + /// Ok((big)) + /// } + /// ``` + #[corresponds(BN_generate_prime_ex)] + pub fn generate_prime( + &mut self, + bits: i32, + safe: bool, + add: Option<&BigNumRef>, + rem: Option<&BigNumRef>, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_generate_prime_ex( + self.as_ptr(), + bits as c_int, + safe as c_int, + add.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), + rem.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), + ptr::null_mut(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a * b` in `self`. + /// [`core::ops::Mul`] is also implemented for `BigNumRef`. + /// + /// [`core::ops::Mul`]: struct.BigNumRef.html#method.mul + #[corresponds(BN_mul)] + pub fn checked_mul( + &mut self, + a: &BigNumRef, + b: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_mul( + self.as_ptr(), + a.as_ptr(), + b.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a / b` in `self`. The remainder is discarded. + /// [`core::ops::Div`] is also implemented for `BigNumRef`. + /// + /// [`core::ops::Div`]: struct.BigNumRef.html#method.div + #[corresponds(BN_div)] + pub fn checked_div( + &mut self, + a: &BigNumRef, + b: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_div( + self.as_ptr(), + ptr::null_mut(), + a.as_ptr(), + b.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a % b` in `self`. + #[corresponds(BN_div)] + pub fn checked_rem( + &mut self, + a: &BigNumRef, + b: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_div( + ptr::null_mut(), + self.as_ptr(), + a.as_ptr(), + b.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a / b` in `self` and `a % b` in `rem`. + #[corresponds(BN_div)] + pub fn div_rem( + &mut self, + rem: &mut BigNumRef, + a: &BigNumRef, + b: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_div( + self.as_ptr(), + rem.as_ptr(), + a.as_ptr(), + b.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a²` in `self`. + #[corresponds(BN_sqr)] + pub fn sqr(&mut self, a: &BigNumRef, ctx: &mut BigNumContextRef) -> Result<(), ErrorStack> { + unsafe { cvt(ffi::BN_sqr(self.as_ptr(), a.as_ptr(), ctx.as_ptr())).map(|_| ()) } + } + + /// Places the result of `a mod m` in `self`. As opposed to `div_rem` + /// the result is non-negative. + #[corresponds(BN_nnmod)] + pub fn nnmod( + &mut self, + a: &BigNumRef, + m: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_nnmod( + self.as_ptr(), + a.as_ptr(), + m.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `(a + b) mod m` in `self`. + #[corresponds(BN_mod_add)] + pub fn mod_add( + &mut self, + a: &BigNumRef, + b: &BigNumRef, + m: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_mod_add( + self.as_ptr(), + a.as_ptr(), + b.as_ptr(), + m.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `(a - b) mod m` in `self`. + #[corresponds(BN_mod_sub)] + pub fn mod_sub( + &mut self, + a: &BigNumRef, + b: &BigNumRef, + m: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_mod_sub( + self.as_ptr(), + a.as_ptr(), + b.as_ptr(), + m.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `(a * b) mod m` in `self`. + #[corresponds(BN_mod_mul)] + pub fn mod_mul( + &mut self, + a: &BigNumRef, + b: &BigNumRef, + m: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_mod_mul( + self.as_ptr(), + a.as_ptr(), + b.as_ptr(), + m.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a² mod m` in `self`. + #[corresponds(BN_mod_sqr)] + pub fn mod_sqr( + &mut self, + a: &BigNumRef, + m: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_mod_sqr( + self.as_ptr(), + a.as_ptr(), + m.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places into `self` the modular square root of `a` such that `self^2 = a (mod p)` + #[corresponds(BN_mod_sqrt)] + #[cfg(ossl110)] + pub fn mod_sqrt( + &mut self, + a: &BigNumRef, + p: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt_p(ffi::BN_mod_sqrt( + self.as_ptr(), + a.as_ptr(), + p.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a^p` in `self`. + #[corresponds(BN_exp)] + pub fn exp( + &mut self, + a: &BigNumRef, + p: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_exp( + self.as_ptr(), + a.as_ptr(), + p.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the result of `a^p mod m` in `self`. + #[corresponds(BN_mod_exp)] + pub fn mod_exp( + &mut self, + a: &BigNumRef, + p: &BigNumRef, + m: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_mod_exp( + self.as_ptr(), + a.as_ptr(), + p.as_ptr(), + m.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the inverse of `a` modulo `n` in `self`. + #[corresponds(BN_mod_inverse)] + pub fn mod_inverse( + &mut self, + a: &BigNumRef, + n: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt_p(ffi::BN_mod_inverse( + self.as_ptr(), + a.as_ptr(), + n.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Places the greatest common denominator of `a` and `b` in `self`. + #[corresponds(BN_gcd)] + pub fn gcd( + &mut self, + a: &BigNumRef, + b: &BigNumRef, + ctx: &mut BigNumContextRef, + ) -> Result<(), ErrorStack> { + unsafe { + cvt(ffi::BN_gcd( + self.as_ptr(), + a.as_ptr(), + b.as_ptr(), + ctx.as_ptr(), + )) + .map(|_| ()) + } + } + + /// Checks whether `self` is prime. + /// + /// Performs a Miller-Rabin probabilistic primality test with `checks` iterations. + /// + /// # Return Value + /// + /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. + #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] + #[corresponds(BN_is_prime_ex)] + #[allow(clippy::useless_conversion)] + pub fn is_prime(&self, checks: i32, ctx: &mut BigNumContextRef) -> Result<bool, ErrorStack> { + unsafe { + cvt_n(ffi::BN_is_prime_ex( + self.as_ptr(), + checks.into(), + ctx.as_ptr(), + ptr::null_mut(), + )) + .map(|r| r != 0) + } + } + + /// Checks whether `self` is prime with optional trial division. + /// + /// If `do_trial_division` is `true`, first performs trial division by a number of small primes. + /// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks` + /// iterations. + /// + /// # Return Value + /// + /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. + #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] + #[corresponds(BN_is_prime_fasttest_ex)] + #[allow(clippy::useless_conversion)] + pub fn is_prime_fasttest( + &self, + checks: i32, + ctx: &mut BigNumContextRef, + do_trial_division: bool, + ) -> Result<bool, ErrorStack> { + unsafe { + cvt_n(ffi::BN_is_prime_fasttest_ex( + self.as_ptr(), + checks.into(), + ctx.as_ptr(), + do_trial_division as c_int, + ptr::null_mut(), + )) + .map(|r| r != 0) + } + } + + /// Returns a big-endian byte vector representation of the absolute value of `self`. + /// + /// `self` can be recreated by using `from_slice`. + /// + /// ``` + /// # use openssl::bn::BigNum; + /// let s = -BigNum::from_u32(4543).unwrap(); + /// let r = BigNum::from_u32(4543).unwrap(); + /// + /// let s_vec = s.to_vec(); + /// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r); + /// ``` + #[corresponds(BN_bn2bin)] + pub fn to_vec(&self) -> Vec<u8> { + let size = self.num_bytes() as usize; + let mut v = Vec::with_capacity(size); + unsafe { + ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr()); + v.set_len(size); + } + v + } + + /// Returns a big-endian byte vector representation of the absolute value of `self` padded + /// to `pad_to` bytes. + /// + /// If `pad_to` is less than `self.num_bytes()` then an error is returned. + /// + /// `self` can be recreated by using `from_slice`. + /// + /// ``` + /// # use openssl::bn::BigNum; + /// let bn = BigNum::from_u32(0x4543).unwrap(); + /// + /// let bn_vec = bn.to_vec_padded(4).unwrap(); + /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]); + /// + /// let r = bn.to_vec_padded(1); + /// assert!(r.is_err()); + /// + /// let bn = -BigNum::from_u32(0x4543).unwrap(); + /// let bn_vec = bn.to_vec_padded(4).unwrap(); + /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]); + /// ``` + #[corresponds(BN_bn2binpad)] + #[cfg(any(ossl110, libressl340, boringssl))] + pub fn to_vec_padded(&self, pad_to: i32) -> Result<Vec<u8>, ErrorStack> { + let mut v = Vec::with_capacity(pad_to as usize); + unsafe { + cvt(ffi::BN_bn2binpad(self.as_ptr(), v.as_mut_ptr(), pad_to))?; + v.set_len(pad_to as usize); + } + Ok(v) + } + + /// Returns a decimal string representation of `self`. + /// + /// ``` + /// # use openssl::bn::BigNum; + /// let s = -BigNum::from_u32(12345).unwrap(); + /// + /// assert_eq!(&**s.to_dec_str().unwrap(), "-12345"); + /// ``` + #[corresponds(BN_bn2dec)] + pub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack> { + unsafe { + let buf = cvt_p(ffi::BN_bn2dec(self.as_ptr()))?; + Ok(OpensslString::from_ptr(buf)) + } + } + + /// Returns a hexadecimal string representation of `self`. + /// + /// ``` + /// # use openssl::bn::BigNum; + /// let s = -BigNum::from_u32(0x99ff).unwrap(); + /// + /// assert_eq!(s.to_hex_str().unwrap().to_uppercase(), "-99FF"); + /// ``` + #[corresponds(BN_bn2hex)] + pub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack> { + unsafe { + let buf = cvt_p(ffi::BN_bn2hex(self.as_ptr()))?; + Ok(OpensslString::from_ptr(buf)) + } + } + + /// Returns an `Asn1Integer` containing the value of `self`. + #[corresponds(BN_to_ASN1_INTEGER)] + pub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack> { + unsafe { + cvt_p(ffi::BN_to_ASN1_INTEGER(self.as_ptr(), ptr::null_mut())) + .map(|p| Asn1Integer::from_ptr(p)) + } + } + + /// Force constant time computation on this value. + #[corresponds(BN_set_flags)] + #[cfg(ossl110)] + pub fn set_const_time(&mut self) { + unsafe { ffi::BN_set_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME) } + } + + /// Returns true if `self` is in const time mode. + #[corresponds(BN_get_flags)] + #[cfg(ossl110)] + pub fn is_const_time(&self) -> bool { + unsafe { + let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME); + ret == ffi::BN_FLG_CONSTTIME + } + } + + /// Returns true if `self` was created with [`BigNum::new_secure`]. + #[corresponds(BN_get_flags)] + #[cfg(ossl110)] + pub fn is_secure(&self) -> bool { + unsafe { + let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_SECURE); + ret == ffi::BN_FLG_SECURE + } + } +} + +impl BigNum { + /// Creates a new `BigNum` with the value 0. + #[corresponds(BN_new)] + pub fn new() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + let v = cvt_p(ffi::BN_new())?; + Ok(BigNum::from_ptr(v)) + } + } + + /// Returns a new secure `BigNum`. + #[corresponds(BN_secure_new)] + #[cfg(ossl110)] + pub fn new_secure() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + let v = cvt_p(ffi::BN_secure_new())?; + Ok(BigNum::from_ptr(v)) + } + } + + /// Creates a new `BigNum` with the given value. + #[corresponds(BN_set_word)] + pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack> { + BigNum::new().and_then(|v| unsafe { + cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v) + }) + } + + /// Creates a `BigNum` from a decimal string. + #[corresponds(BN_dec2bn)] + pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + let c_str = CString::new(s.as_bytes()).unwrap(); + let mut bn = ptr::null_mut(); + cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _))?; + Ok(BigNum::from_ptr(bn)) + } + } + + /// Creates a `BigNum` from a hexadecimal string. + #[corresponds(BN_hex2bn)] + pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + let c_str = CString::new(s.as_bytes()).unwrap(); + let mut bn = ptr::null_mut(); + cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _))?; + Ok(BigNum::from_ptr(bn)) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in + /// the order of magnitude of `2 ^ 768`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1. + /// + /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 + #[corresponds(BN_get_rfc2409_prime_768)] + #[cfg(not(boringssl))] + pub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc2409_prime_768(ptr::null_mut())).map(BigNum) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in + /// the order of magnitude of `2 ^ 1024`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled Oakly group 2. + /// + /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 + #[corresponds(BN_get_rfc2409_prime_1024)] + #[cfg(not(boringssl))] + pub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc2409_prime_1024(ptr::null_mut())).map(BigNum) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order + /// of magnitude of `2 ^ 1536`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled MODP group 5. + /// + /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 + #[corresponds(BN_get_rfc3526_prime_1536)] + #[cfg(not(boringssl))] + pub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc3526_prime_1536(ptr::null_mut())).map(BigNum) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order + /// of magnitude of `2 ^ 2048`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled MODP group 14. + /// + /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 + #[corresponds(BN_get_rfc3526_prime_2048)] + #[cfg(not(boringssl))] + pub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc3526_prime_2048(ptr::null_mut())).map(BigNum) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order + /// of magnitude of `2 ^ 3072`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled MODP group 15. + /// + /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 + #[corresponds(BN_get_rfc3526_prime_3072)] + #[cfg(not(boringssl))] + pub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc3526_prime_3072(ptr::null_mut())).map(BigNum) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order + /// of magnitude of `2 ^ 4096`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled MODP group 16. + /// + /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 + #[corresponds(BN_get_rfc3526_prime_4096)] + #[cfg(not(boringssl))] + pub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc3526_prime_4096(ptr::null_mut())).map(BigNum) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order + /// of magnitude of `2 ^ 6144`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled MODP group 17. + /// + /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 + #[corresponds(BN_get_rfc3526_prime_6114)] + #[cfg(not(boringssl))] + pub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc3526_prime_6144(ptr::null_mut())).map(BigNum) + } + } + + /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order + /// of magnitude of `2 ^ 8192`. This number is used during calculated key + /// exchanges such as Diffie-Hellman. This number is labeled MODP group 18. + /// + /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 + #[corresponds(BN_get_rfc3526_prime_8192)] + #[cfg(not(boringssl))] + pub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + cvt_p(BN_get_rfc3526_prime_8192(ptr::null_mut())).map(BigNum) + } + } + + /// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length. + /// + /// OpenSSL documentation at [`BN_bin2bn`] + /// + /// [`BN_bin2bn`]: https://www.openssl.org/docs/manmaster/crypto/BN_bin2bn.html + /// + /// ``` + /// # use openssl::bn::BigNum; + /// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap(); + /// + /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); + /// ``` + #[corresponds(BN_bin2bn)] + pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> { + unsafe { + ffi::init(); + assert!(n.len() <= LenType::max_value() as usize); + + cvt_p(ffi::BN_bin2bn( + n.as_ptr(), + n.len() as LenType, + ptr::null_mut(), + )) + .map(|p| BigNum::from_ptr(p)) + } + } + + /// Copies data from a slice overwriting what was in the BigNum. + /// + /// This function can be used to copy data from a slice to a + /// [secure BigNum][`BigNum::new_secure`]. + /// + /// # Examples + /// + /// ``` + /// # use openssl::bn::BigNum; + /// let mut bignum = BigNum::new().unwrap(); + /// bignum.copy_from_slice(&[0x12, 0x00, 0x34]).unwrap(); + /// + /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); + /// ``` + #[corresponds(BN_bin2bn)] + pub fn copy_from_slice(&mut self, n: &[u8]) -> Result<(), ErrorStack> { + unsafe { + assert!(n.len() <= LenType::max_value() as usize); + + cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as LenType, self.0))?; + Ok(()) + } + } +} + +impl fmt::Debug for BigNumRef { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self.to_dec_str() { + Ok(s) => f.write_str(&s), + Err(e) => Err(e.into()), + } + } +} + +impl fmt::Debug for BigNum { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self.to_dec_str() { + Ok(s) => f.write_str(&s), + Err(e) => Err(e.into()), + } + } +} + +impl fmt::Display for BigNumRef { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self.to_dec_str() { + Ok(s) => f.write_str(&s), + Err(e) => Err(e.into()), + } + } +} + +impl fmt::Display for BigNum { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self.to_dec_str() { + Ok(s) => f.write_str(&s), + Err(e) => Err(e.into()), + } + } +} + +impl PartialEq<BigNumRef> for BigNumRef { + fn eq(&self, oth: &BigNumRef) -> bool { + self.cmp(oth) == Ordering::Equal + } +} + +impl PartialEq<BigNum> for BigNumRef { + fn eq(&self, oth: &BigNum) -> bool { + self.eq(oth.deref()) + } +} + +impl Eq for BigNumRef {} + +impl PartialEq for BigNum { + fn eq(&self, oth: &BigNum) -> bool { + self.deref().eq(oth) + } +} + +impl PartialEq<BigNumRef> for BigNum { + fn eq(&self, oth: &BigNumRef) -> bool { + self.deref().eq(oth) + } +} + +impl Eq for BigNum {} + +impl PartialOrd<BigNumRef> for BigNumRef { + fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> { + Some(self.cmp(oth)) + } +} + +impl PartialOrd<BigNum> for BigNumRef { + fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> { + Some(self.cmp(oth.deref())) + } +} + +impl Ord for BigNumRef { + fn cmp(&self, oth: &BigNumRef) -> Ordering { + unsafe { ffi::BN_cmp(self.as_ptr(), oth.as_ptr()).cmp(&0) } + } +} + +impl PartialOrd for BigNum { + fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> { + self.deref().partial_cmp(oth.deref()) + } +} + +impl PartialOrd<BigNumRef> for BigNum { + fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> { + self.deref().partial_cmp(oth) + } +} + +impl Ord for BigNum { + fn cmp(&self, oth: &BigNum) -> Ordering { + self.deref().cmp(oth.deref()) + } +} + +macro_rules! delegate { + ($t:ident, $m:ident) => { + impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef { + type Output = BigNum; + + fn $m(self, oth: &BigNum) -> BigNum { + $t::$m(self, oth.deref()) + } + } + + impl<'a, 'b> $t<&'b BigNumRef> for &'a BigNum { + type Output = BigNum; + + fn $m(self, oth: &BigNumRef) -> BigNum { + $t::$m(self.deref(), oth) + } + } + + impl<'a, 'b> $t<&'b BigNum> for &'a BigNum { + type Output = BigNum; + + fn $m(self, oth: &BigNum) -> BigNum { + $t::$m(self.deref(), oth.deref()) + } + } + }; +} + +impl<'a, 'b> Add<&'b BigNumRef> for &'a BigNumRef { + type Output = BigNum; + + fn add(self, oth: &BigNumRef) -> BigNum { + let mut r = BigNum::new().unwrap(); + r.checked_add(self, oth).unwrap(); + r + } +} + +delegate!(Add, add); + +impl<'a, 'b> Sub<&'b BigNumRef> for &'a BigNumRef { + type Output = BigNum; + + fn sub(self, oth: &BigNumRef) -> BigNum { + let mut r = BigNum::new().unwrap(); + r.checked_sub(self, oth).unwrap(); + r + } +} + +delegate!(Sub, sub); + +impl<'a, 'b> Mul<&'b BigNumRef> for &'a BigNumRef { + type Output = BigNum; + + fn mul(self, oth: &BigNumRef) -> BigNum { + let mut ctx = BigNumContext::new().unwrap(); + let mut r = BigNum::new().unwrap(); + r.checked_mul(self, oth, &mut ctx).unwrap(); + r + } +} + +delegate!(Mul, mul); + +impl<'a, 'b> Div<&'b BigNumRef> for &'a BigNumRef { + type Output = BigNum; + + fn div(self, oth: &'b BigNumRef) -> BigNum { + let mut ctx = BigNumContext::new().unwrap(); + let mut r = BigNum::new().unwrap(); + r.checked_div(self, oth, &mut ctx).unwrap(); + r + } +} + +delegate!(Div, div); + +impl<'a, 'b> Rem<&'b BigNumRef> for &'a BigNumRef { + type Output = BigNum; + + fn rem(self, oth: &'b BigNumRef) -> BigNum { + let mut ctx = BigNumContext::new().unwrap(); + let mut r = BigNum::new().unwrap(); + r.checked_rem(self, oth, &mut ctx).unwrap(); + r + } +} + +delegate!(Rem, rem); + +impl<'a> Shl<i32> for &'a BigNumRef { + type Output = BigNum; + + fn shl(self, n: i32) -> BigNum { + let mut r = BigNum::new().unwrap(); + r.lshift(self, n).unwrap(); + r + } +} + +impl<'a> Shl<i32> for &'a BigNum { + type Output = BigNum; + + fn shl(self, n: i32) -> BigNum { + self.deref().shl(n) + } +} + +impl<'a> Shr<i32> for &'a BigNumRef { + type Output = BigNum; + + fn shr(self, n: i32) -> BigNum { + let mut r = BigNum::new().unwrap(); + r.rshift(self, n).unwrap(); + r + } +} + +impl<'a> Shr<i32> for &'a BigNum { + type Output = BigNum; + + fn shr(self, n: i32) -> BigNum { + self.deref().shr(n) + } +} + +impl<'a> Neg for &'a BigNumRef { + type Output = BigNum; + + fn neg(self) -> BigNum { + self.to_owned().unwrap().neg() + } +} + +impl<'a> Neg for &'a BigNum { + type Output = BigNum; + + fn neg(self) -> BigNum { + self.deref().neg() + } +} + +impl Neg for BigNum { + type Output = BigNum; + + fn neg(mut self) -> BigNum { + let negative = self.is_negative(); + self.set_negative(!negative); + self + } +} + +#[cfg(test)] +mod tests { + use crate::bn::{BigNum, BigNumContext}; + + #[test] + fn test_to_from_slice() { + let v0 = BigNum::from_u32(10_203_004).unwrap(); + let vec = v0.to_vec(); + let v1 = BigNum::from_slice(&vec).unwrap(); + + assert_eq!(v0, v1); + } + + #[test] + fn test_negation() { + let a = BigNum::from_u32(909_829_283).unwrap(); + + assert!(!a.is_negative()); + assert!((-a).is_negative()); + } + + #[test] + fn test_shift() { + let a = BigNum::from_u32(909_829_283).unwrap(); + + assert_eq!(a, &(&a << 1) >> 1); + } + + #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] + #[test] + fn test_rand_range() { + let range = BigNum::from_u32(909_829_283).unwrap(); + let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); + range.rand_range(&mut result).unwrap(); + assert!(result >= BigNum::from_u32(0).unwrap() && result < range); + } + + #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] + #[test] + fn test_pseudo_rand_range() { + let range = BigNum::from_u32(909_829_283).unwrap(); + let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); + range.pseudo_rand_range(&mut result).unwrap(); + assert!(result >= BigNum::from_u32(0).unwrap() && result < range); + } + + #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] + #[test] + fn test_prime_numbers() { + let a = BigNum::from_u32(19_029_017).unwrap(); + let mut p = BigNum::new().unwrap(); + p.generate_prime(128, true, None, Some(&a)).unwrap(); + + let mut ctx = BigNumContext::new().unwrap(); + assert!(p.is_prime(100, &mut ctx).unwrap()); + assert!(p.is_prime_fasttest(100, &mut ctx, true).unwrap()); + } + + #[cfg(ossl110)] + #[test] + fn test_secure_bn_ctx() { + let mut cxt = BigNumContext::new_secure().unwrap(); + let a = BigNum::from_u32(8).unwrap(); + let b = BigNum::from_u32(3).unwrap(); + + let mut remainder = BigNum::new().unwrap(); + remainder.nnmod(&a, &b, &mut cxt).unwrap(); + + assert!(remainder.eq(&BigNum::from_u32(2).unwrap())); + } + + #[cfg(ossl110)] + #[test] + fn test_secure_bn() { + let a = BigNum::new().unwrap(); + assert!(!a.is_secure()); + + let b = BigNum::new_secure().unwrap(); + assert!(b.is_secure()) + } + + #[cfg(ossl110)] + #[test] + fn test_const_time_bn() { + let a = BigNum::new().unwrap(); + assert!(!a.is_const_time()); + + let mut b = BigNum::new().unwrap(); + b.set_const_time(); + assert!(b.is_const_time()) + } + + #[cfg(ossl110)] + #[test] + fn test_mod_sqrt() { + let mut ctx = BigNumContext::new().unwrap(); + + let s = BigNum::from_hex_str("47A8DD7626B9908C80ACD7E0D3344D69").unwrap(); + let p = BigNum::from_hex_str("81EF47265B58BCE5").unwrap(); + let mut out = BigNum::new().unwrap(); + + out.mod_sqrt(&s, &p, &mut ctx).unwrap(); + assert_eq!(out, BigNum::from_hex_str("7C6D179E19B97BDD").unwrap()); + } + + #[test] + #[cfg(any(ossl110, boringssl, libressl350))] + fn test_odd_even() { + let a = BigNum::from_u32(17).unwrap(); + let b = BigNum::from_u32(18).unwrap(); + + assert!(a.is_odd()); + assert!(!b.is_odd()); + + assert!(!a.is_even()); + assert!(b.is_even()); + } +} |