use super::Uint; use crate::CtChoice; impl Uint { /// Computes 1/`self` mod `2^k`. /// This method is constant-time w.r.t. `self` but not `k`. /// /// Conditions: `self` < 2^k and `self` must be odd pub const fn inv_mod2k_vartime(&self, k: usize) -> Self { // Using the Algorithm 3 from "A Secure Algorithm for Inversion Modulo 2k" // by Sadiel de la Fe and Carles Ferrer. // See . // Note that we are not using Alrgorithm 4, since we have a different approach // of enforcing constant-timeness w.r.t. `self`. let mut x = Self::ZERO; // keeps `x` during iterations let mut b = Self::ONE; // keeps `b_i` during iterations let mut i = 0; while i < k { // X_i = b_i mod 2 let x_i = b.limbs[0].0 & 1; let x_i_choice = CtChoice::from_lsb(x_i); // b_{i+1} = (b_i - a * X_i) / 2 b = Self::ct_select(&b, &b.wrapping_sub(self), x_i_choice).shr_vartime(1); // Store the X_i bit in the result (x = x | (1 << X_i)) x = x.bitor(&Uint::from_word(x_i).shl_vartime(i)); i += 1; } x } /// Computes 1/`self` mod `2^k`. /// /// Conditions: `self` < 2^k and `self` must be odd pub const fn inv_mod2k(&self, k: usize) -> Self { // This is the same algorithm as in `inv_mod2k_vartime()`, // but made constant-time w.r.t `k` as well. let mut x = Self::ZERO; // keeps `x` during iterations let mut b = Self::ONE; // keeps `b_i` during iterations let mut i = 0; while i < Self::BITS { // Only iterations for i = 0..k need to change `x`, // the rest are dummy ones performed for the sake of constant-timeness. let within_range = CtChoice::from_usize_lt(i, k); // X_i = b_i mod 2 let x_i = b.limbs[0].0 & 1; let x_i_choice = CtChoice::from_lsb(x_i); // b_{i+1} = (b_i - a * X_i) / 2 b = Self::ct_select(&b, &b.wrapping_sub(self), x_i_choice).shr_vartime(1); // Store the X_i bit in the result (x = x | (1 << X_i)) // Don't change the result in dummy iterations. let x_i_choice = x_i_choice.and(within_range); x = x.set_bit(i, x_i_choice); i += 1; } x } /// Computes the multiplicative inverse of `self` mod `modulus`, where `modulus` is odd. /// In other words `self^-1 mod modulus`. /// `bits` and `modulus_bits` are the bounds on the bit size /// of `self` and `modulus`, respectively /// (the inversion speed will be proportional to `bits + modulus_bits`). /// The second element of the tuple is the truthy value if an inverse exists, /// otherwise it is a falsy value. /// /// **Note:** variable time in `bits` and `modulus_bits`. /// /// The algorithm is the same as in GMP 6.2.1's `mpn_sec_invert`. pub const fn inv_odd_mod_bounded( &self, modulus: &Self, bits: usize, modulus_bits: usize, ) -> (Self, CtChoice) { debug_assert!(modulus.ct_is_odd().is_true_vartime()); let mut a = *self; let mut u = Uint::ONE; let mut v = Uint::ZERO; let mut b = *modulus; // `bit_size` can be anything >= `self.bits()` + `modulus.bits()`, setting to the minimum. let bit_size = bits + modulus_bits; let mut m1hp = *modulus; let (m1hp_new, carry) = m1hp.shr_1(); debug_assert!(carry.is_true_vartime()); m1hp = m1hp_new.wrapping_add(&Uint::ONE); let mut i = 0; while i < bit_size { debug_assert!(b.ct_is_odd().is_true_vartime()); let self_odd = a.ct_is_odd(); // Set `self -= b` if `self` is odd. let (new_a, swap) = a.conditional_wrapping_sub(&b, self_odd); // Set `b += self` if `swap` is true. b = Uint::ct_select(&b, &b.wrapping_add(&new_a), swap); // Negate `self` if `swap` is true. a = new_a.conditional_wrapping_neg(swap); let (new_u, new_v) = Uint::ct_swap(&u, &v, swap); let (new_u, cy) = new_u.conditional_wrapping_sub(&new_v, self_odd); let (new_u, cyy) = new_u.conditional_wrapping_add(modulus, cy); debug_assert!(cy.is_true_vartime() == cyy.is_true_vartime()); let (new_a, overflow) = a.shr_1(); debug_assert!(!overflow.is_true_vartime()); let (new_u, cy) = new_u.shr_1(); let (new_u, cy) = new_u.conditional_wrapping_add(&m1hp, cy); debug_assert!(!cy.is_true_vartime()); a = new_a; u = new_u; v = new_v; i += 1; } debug_assert!(!a.ct_is_nonzero().is_true_vartime()); (v, Uint::ct_eq(&b, &Uint::ONE)) } /// Computes the multiplicative inverse of `self` mod `modulus`, where `modulus` is odd. /// Returns `(inverse, CtChoice::TRUE)` if an inverse exists, /// otherwise `(undefined, CtChoice::FALSE)`. pub const fn inv_odd_mod(&self, modulus: &Self) -> (Self, CtChoice) { self.inv_odd_mod_bounded(modulus, Uint::::BITS, Uint::::BITS) } /// Computes the multiplicative inverse of `self` mod `modulus`. /// Returns `(inverse, CtChoice::TRUE)` if an inverse exists, /// otherwise `(undefined, CtChoice::FALSE)`. pub const fn inv_mod(&self, modulus: &Self) -> (Self, CtChoice) { // Decompose `modulus = s * 2^k` where `s` is odd let k = modulus.trailing_zeros(); let s = modulus.shr(k); // Decompose `self` into RNS with moduli `2^k` and `s` and calculate the inverses. // Using the fact that `(z^{-1} mod (m1 * m2)) mod m1 == z^{-1} mod m1` let (a, a_is_some) = self.inv_odd_mod(&s); let b = self.inv_mod2k(k); // inverse modulo 2^k exists either if `k` is 0 or if `self` is odd. let b_is_some = CtChoice::from_usize_being_nonzero(k) .not() .or(self.ct_is_odd()); // Restore from RNS: // self^{-1} = a mod s = b mod 2^k // => self^{-1} = a + s * ((b - a) * s^(-1) mod 2^k) // (essentially one step of the Garner's algorithm for recovery from RNS). let m_odd_inv = s.inv_mod2k(k); // `s` is odd, so this always exists // This part is mod 2^k let mask = Uint::ONE.shl(k).wrapping_sub(&Uint::ONE); let t = (b.wrapping_sub(&a).wrapping_mul(&m_odd_inv)).bitand(&mask); // Will not overflow since `a <= s - 1`, `t <= 2^k - 1`, // so `a + s * t <= s * 2^k - 1 == modulus - 1`. let result = a.wrapping_add(&s.wrapping_mul(&t)); (result, a_is_some.and(b_is_some)) } } #[cfg(test)] mod tests { use crate::{U1024, U256, U64}; #[test] fn inv_mod2k() { let v = U256::from_be_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"); let e = U256::from_be_hex("3642e6faeaac7c6663b93d3d6a0d489e434ddc0123db5fa627c7f6e22ddacacf"); let a = v.inv_mod2k(256); assert_eq!(e, a); let v = U256::from_be_hex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"); let e = U256::from_be_hex("261776f29b6b106c7680cf3ed83054a1af5ae537cb4613dbb4f20099aa774ec1"); let a = v.inv_mod2k(256); assert_eq!(e, a); } #[test] fn test_invert_odd() { let a = U1024::from_be_hex(concat![ "000225E99153B467A5B451979A3F451DAEF3BF8D6C6521D2FA24BBB17F29544E", "347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8", "BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8", "382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985" ]); let m = U1024::from_be_hex(concat![ "D509E7854ABDC81921F669F1DC6F61359523F3949803E58ED4EA8BC16483DC6F", "37BFE27A9AC9EEA2969B357ABC5C0EE214BE16A7D4C58FC620D5B5A20AFF001A", "D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C", "558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156767" ]); let expected = U1024::from_be_hex(concat![ "B03623284B0EBABCABD5C5881893320281460C0A8E7BF4BFDCFFCBCCBF436A55", "D364235C8171E46C7D21AAD0680676E57274A8FDA6D12768EF961CACDD2DAE57", "88D93DA5EB8EDC391EE3726CDCF4613C539F7D23E8702200CB31B5ED5B06E5CA", "3E520968399B4017BF98A864FABA2B647EFC4998B56774D4F2CB026BC024A336" ]); let (res, is_some) = a.inv_odd_mod(&m); assert!(is_some.is_true_vartime()); assert_eq!(res, expected); // Even though it is less efficient, it still works let (res, is_some) = a.inv_mod(&m); assert!(is_some.is_true_vartime()); assert_eq!(res, expected); } #[test] fn test_invert_even() { let a = U1024::from_be_hex(concat![ "000225E99153B467A5B451979A3F451DAEF3BF8D6C6521D2FA24BBB17F29544E", "347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8", "BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8", "382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985" ]); let m = U1024::from_be_hex(concat![ "D509E7854ABDC81921F669F1DC6F61359523F3949803E58ED4EA8BC16483DC6F", "37BFE27A9AC9EEA2969B357ABC5C0EE214BE16A7D4C58FC620D5B5A20AFF001A", "D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C", "558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156000" ]); let expected = U1024::from_be_hex(concat![ "1EBF391306817E1BC610E213F4453AD70911CCBD59A901B2A468A4FC1D64F357", "DBFC6381EC5635CAA664DF280028AF4651482C77A143DF38D6BFD4D64B6C0225", "FC0E199B15A64966FB26D88A86AD144271F6BDCD3D63193AB2B3CC53B99F21A3", "5B9BFAE5D43C6BC6E7A9856C71C7318C76530E9E5AE35882D5ABB02F1696874D", ]); let (res, is_some) = a.inv_mod(&m); assert!(is_some.is_true_vartime()); assert_eq!(res, expected); } #[test] fn test_invert_bounded() { let a = U1024::from_be_hex(concat![ "0000000000000000000000000000000000000000000000000000000000000000", "347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8", "BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8", "382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985" ]); let m = U1024::from_be_hex(concat![ "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C", "558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156767" ]); let (res, is_some) = a.inv_odd_mod_bounded(&m, 768, 512); let expected = U1024::from_be_hex(concat![ "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000", "0DCC94E2FE509E6EBBA0825645A38E73EF85D5927C79C1AD8FFE7C8DF9A822FA", "09EB396A21B1EF05CBE51E1A8EF284EF01EBDD36A9A4EA17039D8EEFDD934768" ]); assert!(is_some.is_true_vartime()); assert_eq!(res, expected); } #[test] fn test_invert_small() { let a = U64::from(3u64); let m = U64::from(13u64); let (res, is_some) = a.inv_odd_mod(&m); assert!(is_some.is_true_vartime()); assert_eq!(U64::from(9u64), res); } #[test] fn test_no_inverse_small() { let a = U64::from(14u64); let m = U64::from(49u64); let (_res, is_some) = a.inv_odd_mod(&m); assert!(!is_some.is_true_vartime()); } }