use crate::{Limb, Uint, Word}; use super::mul::{mul_montgomery_form, square_montgomery_form}; /// Performs modular exponentiation using Montgomery's ladder. /// `exponent_bits` represents the number of bits to take into account for the exponent. /// /// NOTE: this value is leaked in the time pattern. pub const fn pow_montgomery_form( x: &Uint, exponent: &Uint, exponent_bits: usize, modulus: &Uint, r: &Uint, mod_neg_inv: Limb, ) -> Uint { if exponent_bits == 0 { return *r; // 1 in Montgomery form } const WINDOW: usize = 4; const WINDOW_MASK: Word = (1 << WINDOW) - 1; // powers[i] contains x^i let mut powers = [*r; 1 << WINDOW]; powers[1] = *x; let mut i = 2; while i < powers.len() { powers[i] = mul_montgomery_form(&powers[i - 1], x, modulus, mod_neg_inv); i += 1; } let starting_limb = (exponent_bits - 1) / Limb::BITS; let starting_bit_in_limb = (exponent_bits - 1) % Limb::BITS; let starting_window = starting_bit_in_limb / WINDOW; let starting_window_mask = (1 << (starting_bit_in_limb % WINDOW + 1)) - 1; let mut z = *r; // 1 in Montgomery form let mut limb_num = starting_limb + 1; while limb_num > 0 { limb_num -= 1; let w = exponent.as_limbs()[limb_num].0; let mut window_num = if limb_num == starting_limb { starting_window + 1 } else { Limb::BITS / WINDOW }; while window_num > 0 { window_num -= 1; let mut idx = (w >> (window_num * WINDOW)) & WINDOW_MASK; if limb_num == starting_limb && window_num == starting_window { idx &= starting_window_mask; } else { let mut i = 0; while i < WINDOW { i += 1; z = square_montgomery_form(&z, modulus, mod_neg_inv); } } // Constant-time lookup in the array of powers let mut power = powers[0]; let mut i = 1; while i < 1 << WINDOW { let choice = Limb::ct_eq(Limb(i as Word), Limb(idx)); power = Uint::::ct_select(&power, &powers[i], choice); i += 1; } z = mul_montgomery_form(&z, &power, modulus, mod_neg_inv); } } z }