use crate::alloc::alloc::{handle_alloc_error, Layout}; use crate::scopeguard::{guard, ScopeGuard}; use crate::TryReserveError; use core::iter::FusedIterator; use core::marker::PhantomData; use core::mem; use core::mem::MaybeUninit; use core::ptr::NonNull; use core::{hint, ptr}; cfg_if! { // Use the SSE2 implementation if possible: it allows us to scan 16 buckets // at once instead of 8. We don't bother with AVX since it would require // runtime dispatch and wouldn't gain us much anyways: the probability of // finding a match drops off drastically after the first few buckets. // // I attempted an implementation on ARM using NEON instructions, but it // turns out that most NEON instructions have multi-cycle latency, which in // the end outweighs any gains over the generic implementation. if #[cfg(all( target_feature = "sse2", any(target_arch = "x86", target_arch = "x86_64"), not(miri) ))] { mod sse2; use sse2 as imp; } else if #[cfg(all(target_arch = "aarch64", target_feature = "neon"))] { mod neon; use neon as imp; } else { mod generic; use generic as imp; } } mod alloc; pub(crate) use self::alloc::{do_alloc, Allocator, Global}; mod bitmask; use self::bitmask::BitMaskIter; use self::imp::Group; // Branch prediction hint. This is currently only available on nightly but it // consistently improves performance by 10-15%. #[cfg(not(feature = "nightly"))] use core::convert::identity as likely; #[cfg(not(feature = "nightly"))] use core::convert::identity as unlikely; #[cfg(feature = "nightly")] use core::intrinsics::{likely, unlikely}; // Use strict provenance functions if available. #[cfg(feature = "nightly")] use core::ptr::invalid_mut; // Implement it with a cast otherwise. #[cfg(not(feature = "nightly"))] #[inline(always)] fn invalid_mut(addr: usize) -> *mut T { addr as *mut T } #[inline] unsafe fn offset_from(to: *const T, from: *const T) -> usize { to.offset_from(from) as usize } /// Whether memory allocation errors should return an error or abort. #[derive(Copy, Clone)] enum Fallibility { Fallible, Infallible, } impl Fallibility { /// Error to return on capacity overflow. #[cfg_attr(feature = "inline-more", inline)] fn capacity_overflow(self) -> TryReserveError { match self { Fallibility::Fallible => TryReserveError::CapacityOverflow, Fallibility::Infallible => panic!("Hash table capacity overflow"), } } /// Error to return on allocation error. #[cfg_attr(feature = "inline-more", inline)] fn alloc_err(self, layout: Layout) -> TryReserveError { match self { Fallibility::Fallible => TryReserveError::AllocError { layout }, Fallibility::Infallible => handle_alloc_error(layout), } } } trait SizedTypeProperties: Sized { const IS_ZERO_SIZED: bool = mem::size_of::() == 0; const NEEDS_DROP: bool = mem::needs_drop::(); } impl SizedTypeProperties for T {} /// Control byte value for an empty bucket. const EMPTY: u8 = 0b1111_1111; /// Control byte value for a deleted bucket. const DELETED: u8 = 0b1000_0000; /// Checks whether a control byte represents a full bucket (top bit is clear). #[inline] fn is_full(ctrl: u8) -> bool { ctrl & 0x80 == 0 } /// Checks whether a control byte represents a special value (top bit is set). #[inline] fn is_special(ctrl: u8) -> bool { ctrl & 0x80 != 0 } /// Checks whether a special control value is EMPTY (just check 1 bit). #[inline] fn special_is_empty(ctrl: u8) -> bool { debug_assert!(is_special(ctrl)); ctrl & 0x01 != 0 } /// Primary hash function, used to select the initial bucket to probe from. #[inline] #[allow(clippy::cast_possible_truncation)] fn h1(hash: u64) -> usize { // On 32-bit platforms we simply ignore the higher hash bits. hash as usize } // Constant for h2 function that grabing the top 7 bits of the hash. const MIN_HASH_LEN: usize = if mem::size_of::() < mem::size_of::() { mem::size_of::() } else { mem::size_of::() }; /// Secondary hash function, saved in the low 7 bits of the control byte. #[inline] #[allow(clippy::cast_possible_truncation)] fn h2(hash: u64) -> u8 { // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit // value, some hash functions (such as FxHash) produce a usize result // instead, which means that the top 32 bits are 0 on 32-bit platforms. // So we use MIN_HASH_LEN constant to handle this. let top7 = hash >> (MIN_HASH_LEN * 8 - 7); (top7 & 0x7f) as u8 // truncation } /// Probe sequence based on triangular numbers, which is guaranteed (since our /// table size is a power of two) to visit every group of elements exactly once. /// /// A triangular probe has us jump by 1 more group every time. So first we /// jump by 1 group (meaning we just continue our linear scan), then 2 groups /// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. /// /// Proof that the probe will visit every group in the table: /// struct ProbeSeq { pos: usize, stride: usize, } impl ProbeSeq { #[inline] fn move_next(&mut self, bucket_mask: usize) { // We should have found an empty bucket by now and ended the probe. debug_assert!( self.stride <= bucket_mask, "Went past end of probe sequence" ); self.stride += Group::WIDTH; self.pos += self.stride; self.pos &= bucket_mask; } } /// Returns the number of buckets needed to hold the given number of items, /// taking the maximum load factor into account. /// /// Returns `None` if an overflow occurs. // Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258 #[cfg_attr(target_os = "emscripten", inline(never))] #[cfg_attr(not(target_os = "emscripten"), inline)] fn capacity_to_buckets(cap: usize) -> Option { debug_assert_ne!(cap, 0); // For small tables we require at least 1 empty bucket so that lookups are // guaranteed to terminate if an element doesn't exist in the table. if cap < 8 { // We don't bother with a table size of 2 buckets since that can only // hold a single element. Instead we skip directly to a 4 bucket table // which can hold 3 elements. return Some(if cap < 4 { 4 } else { 8 }); } // Otherwise require 1/8 buckets to be empty (87.5% load) // // Be careful when modifying this, calculate_layout relies on the // overflow check here. let adjusted_cap = cap.checked_mul(8)? / 7; // Any overflows will have been caught by the checked_mul. Also, any // rounding errors from the division above will be cleaned up by // next_power_of_two (which can't overflow because of the previous division). Some(adjusted_cap.next_power_of_two()) } /// Returns the maximum effective capacity for the given bucket mask, taking /// the maximum load factor into account. #[inline] fn bucket_mask_to_capacity(bucket_mask: usize) -> usize { if bucket_mask < 8 { // For tables with 1/2/4/8 buckets, we always reserve one empty slot. // Keep in mind that the bucket mask is one less than the bucket count. bucket_mask } else { // For larger tables we reserve 12.5% of the slots as empty. ((bucket_mask + 1) / 8) * 7 } } /// Helper which allows the max calculation for ctrl_align to be statically computed for each T /// while keeping the rest of `calculate_layout_for` independent of `T` #[derive(Copy, Clone)] struct TableLayout { size: usize, ctrl_align: usize, } impl TableLayout { #[inline] const fn new() -> Self { let layout = Layout::new::(); Self { size: layout.size(), ctrl_align: if layout.align() > Group::WIDTH { layout.align() } else { Group::WIDTH }, } } #[inline] fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> { debug_assert!(buckets.is_power_of_two()); let TableLayout { size, ctrl_align } = self; // Manual layout calculation since Layout methods are not yet stable. let ctrl_offset = size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1); let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?; // We need an additional check to ensure that the allocation doesn't // exceed `isize::MAX` (https://github.com/rust-lang/rust/pull/95295). if len > isize::MAX as usize - (ctrl_align - 1) { return None; } Some(( unsafe { Layout::from_size_align_unchecked(len, ctrl_align) }, ctrl_offset, )) } } /// A reference to an empty bucket into which an can be inserted. pub struct InsertSlot { index: usize, } /// A reference to a hash table bucket containing a `T`. /// /// This is usually just a pointer to the element itself. However if the element /// is a ZST, then we instead track the index of the element in the table so /// that `erase` works properly. pub struct Bucket { // Actually it is pointer to next element than element itself // this is needed to maintain pointer arithmetic invariants // keeping direct pointer to element introduces difficulty. // Using `NonNull` for variance and niche layout ptr: NonNull, } // This Send impl is needed for rayon support. This is safe since Bucket is // never exposed in a public API. unsafe impl Send for Bucket {} impl Clone for Bucket { #[inline] fn clone(&self) -> Self { Self { ptr: self.ptr } } } impl Bucket { /// Creates a [`Bucket`] that contain pointer to the data. /// The pointer calculation is performed by calculating the /// offset from given `base` pointer (convenience for /// `base.as_ptr().sub(index)`). /// /// `index` is in units of `T`; e.g., an `index` of 3 represents a pointer /// offset of `3 * size_of::()` bytes. /// /// If the `T` is a ZST, then we instead track the index of the element /// in the table so that `erase` works properly (return /// `NonNull::new_unchecked((index + 1) as *mut T)`) /// /// # Safety /// /// If `mem::size_of::() != 0`, then the safety rules are directly derived /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and the safety /// rules of [`NonNull::new_unchecked`] function. /// /// Thus, in order to uphold the safety contracts for the [`<*mut T>::sub`] method /// and [`NonNull::new_unchecked`] function, as well as for the correct /// logic of the work of this crate, the following rules are necessary and /// sufficient: /// /// * the `base` pointer must not be `dangling` and must points to the /// end of the first `value element` from the `data part` of the table, i.e. /// must be the pointer that returned by [`RawTable::data_end`] or by /// [`RawTableInner::data_end`]; /// /// * `index` must not be greater than `RawTableInner.bucket_mask`, i.e. /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` /// must be no greater than the number returned by the function /// [`RawTable::buckets`] or [`RawTableInner::buckets`]. /// /// If `mem::size_of::() == 0`, then the only requirement is that the /// `index` must not be greater than `RawTableInner.bucket_mask`, i.e. /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` /// must be no greater than the number returned by the function /// [`RawTable::buckets`] or [`RawTableInner::buckets`]. /// /// [`Bucket`]: crate::raw::Bucket /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1 /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked /// [`RawTable::data_end`]: crate::raw::RawTable::data_end /// [`RawTableInner::data_end`]: RawTableInner::data_end /// [`RawTable::buckets`]: crate::raw::RawTable::buckets /// [`RawTableInner::buckets`]: RawTableInner::buckets #[inline] unsafe fn from_base_index(base: NonNull, index: usize) -> Self { // If mem::size_of::() != 0 then return a pointer to an `element` in // the data part of the table (we start counting from "0", so that // in the expression T[last], the "last" index actually one less than the // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"): // // `from_base_index(base, 1).as_ptr()` returns a pointer that // points here in the data part of the table // (to the start of T1) // | // | `base: NonNull` must point here // | (to the end of T0 or to the start of C0) // v v // [Padding], Tlast, ..., |T1|, T0, |C0, C1, ..., Clast // ^ // `from_base_index(base, 1)` returns a pointer // that points here in the data part of the table // (to the end of T1) // // where: T0...Tlast - our stored data; C0...Clast - control bytes // or metadata for data. let ptr = if T::IS_ZERO_SIZED { // won't overflow because index must be less than length (bucket_mask) // and bucket_mask is guaranteed to be less than `isize::MAX` // (see TableLayout::calculate_layout_for method) invalid_mut(index + 1) } else { base.as_ptr().sub(index) }; Self { ptr: NonNull::new_unchecked(ptr), } } /// Calculates the index of a [`Bucket`] as distance between two pointers /// (convenience for `base.as_ptr().offset_from(self.ptr.as_ptr()) as usize`). /// The returned value is in units of T: the distance in bytes divided by /// [`core::mem::size_of::()`]. /// /// If the `T` is a ZST, then we return the index of the element in /// the table so that `erase` works properly (return `self.ptr.as_ptr() as usize - 1`). /// /// This function is the inverse of [`from_base_index`]. /// /// # Safety /// /// If `mem::size_of::() != 0`, then the safety rules are directly derived /// from the safety rules for [`<*const T>::offset_from`] method of `*const T`. /// /// Thus, in order to uphold the safety contracts for [`<*const T>::offset_from`] /// method, as well as for the correct logic of the work of this crate, the /// following rules are necessary and sufficient: /// /// * `base` contained pointer must not be `dangling` and must point to the /// end of the first `element` from the `data part` of the table, i.e. /// must be a pointer that returns by [`RawTable::data_end`] or by /// [`RawTableInner::data_end`]; /// /// * `self` also must not contain dangling pointer; /// /// * both `self` and `base` must be created from the same [`RawTable`] /// (or [`RawTableInner`]). /// /// If `mem::size_of::() == 0`, this function is always safe. /// /// [`Bucket`]: crate::raw::Bucket /// [`from_base_index`]: crate::raw::Bucket::from_base_index /// [`RawTable::data_end`]: crate::raw::RawTable::data_end /// [`RawTableInner::data_end`]: RawTableInner::data_end /// [`RawTable`]: crate::raw::RawTable /// [`RawTableInner`]: RawTableInner /// [`<*const T>::offset_from`]: https://doc.rust-lang.org/nightly/core/primitive.pointer.html#method.offset_from #[inline] unsafe fn to_base_index(&self, base: NonNull) -> usize { // If mem::size_of::() != 0 then return an index under which we used to store the // `element` in the data part of the table (we start counting from "0", so // that in the expression T[last], the "last" index actually is one less than the // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"). // For example for 5th element in table calculation is performed like this: // // mem::size_of::() // | // | `self = from_base_index(base, 5)` that returns pointer // | that points here in tha data part of the table // | (to the end of T5) // | | `base: NonNull` must point here // v | (to the end of T0 or to the start of C0) // /???\ v v // [Padding], Tlast, ..., |T10|, ..., T5|, T4, T3, T2, T1, T0, |C0, C1, C2, C3, C4, C5, ..., C10, ..., Clast // \__________ __________/ // \/ // `bucket.to_base_index(base)` = 5 // (base.as_ptr() as usize - self.ptr.as_ptr() as usize) / mem::size_of::() // // where: T0...Tlast - our stored data; C0...Clast - control bytes or metadata for data. if T::IS_ZERO_SIZED { // this can not be UB self.ptr.as_ptr() as usize - 1 } else { offset_from(base.as_ptr(), self.ptr.as_ptr()) } } /// Acquires the underlying raw pointer `*mut T` to `data`. /// /// # Note /// /// If `T` is not [`Copy`], do not use `*mut T` methods that can cause calling the /// destructor of `T` (for example the [`<*mut T>::drop_in_place`] method), because /// for properly dropping the data we also need to clear `data` control bytes. If we /// drop data, but do not clear `data control byte` it leads to double drop when /// [`RawTable`] goes out of scope. /// /// If you modify an already initialized `value`, so [`Hash`] and [`Eq`] on the new /// `T` value and its borrowed form *must* match those for the old `T` value, as the map /// will not re-evaluate where the new value should go, meaning the value may become /// "lost" if their location does not reflect their state. /// /// [`RawTable`]: crate::raw::RawTable /// [`<*mut T>::drop_in_place`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.drop_in_place /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html /// /// # Examples /// /// ``` /// # #[cfg(feature = "raw")] /// # fn test() { /// use core::hash::{BuildHasher, Hash}; /// use hashbrown::raw::{Bucket, RawTable}; /// /// type NewHashBuilder = core::hash::BuildHasherDefault; /// /// fn make_hash(hash_builder: &S, key: &K) -> u64 { /// use core::hash::Hasher; /// let mut state = hash_builder.build_hasher(); /// key.hash(&mut state); /// state.finish() /// } /// /// let hash_builder = NewHashBuilder::default(); /// let mut table = RawTable::new(); /// /// let value = ("a", 100); /// let hash = make_hash(&hash_builder, &value.0); /// /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0)); /// /// let bucket: Bucket<(&str, i32)> = table.find(hash, |(k1, _)| k1 == &value.0).unwrap(); /// /// assert_eq!(unsafe { &*bucket.as_ptr() }, &("a", 100)); /// # } /// # fn main() { /// # #[cfg(feature = "raw")] /// # test() /// # } /// ``` #[inline] pub fn as_ptr(&self) -> *mut T { if T::IS_ZERO_SIZED { // Just return an arbitrary ZST pointer which is properly aligned // invalid pointer is good enough for ZST invalid_mut(mem::align_of::()) } else { unsafe { self.ptr.as_ptr().sub(1) } } } /// Create a new [`Bucket`] that is offset from the `self` by the given /// `offset`. The pointer calculation is performed by calculating the /// offset from `self` pointer (convenience for `self.ptr.as_ptr().sub(offset)`). /// This function is used for iterators. /// /// `offset` is in units of `T`; e.g., a `offset` of 3 represents a pointer /// offset of `3 * size_of::()` bytes. /// /// # Safety /// /// If `mem::size_of::() != 0`, then the safety rules are directly derived /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and safety /// rules of [`NonNull::new_unchecked`] function. /// /// Thus, in order to uphold the safety contracts for [`<*mut T>::sub`] method /// and [`NonNull::new_unchecked`] function, as well as for the correct /// logic of the work of this crate, the following rules are necessary and /// sufficient: /// /// * `self` contained pointer must not be `dangling`; /// /// * `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`, /// i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other /// words, `self.to_base_index() + ofset + 1` must be no greater than the number returned /// by the function [`RawTable::buckets`] or [`RawTableInner::buckets`]. /// /// If `mem::size_of::() == 0`, then the only requirement is that the /// `self.to_base_index() + ofset` must not be greater than `RawTableInner.bucket_mask`, /// i.e. `(self.to_base_index() + ofset) <= RawTableInner.bucket_mask` or, in other words, /// `self.to_base_index() + ofset + 1` must be no greater than the number returned by the /// function [`RawTable::buckets`] or [`RawTableInner::buckets`]. /// /// [`Bucket`]: crate::raw::Bucket /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1 /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked /// [`RawTable::buckets`]: crate::raw::RawTable::buckets /// [`RawTableInner::buckets`]: RawTableInner::buckets #[inline] unsafe fn next_n(&self, offset: usize) -> Self { let ptr = if T::IS_ZERO_SIZED { // invalid pointer is good enough for ZST invalid_mut(self.ptr.as_ptr() as usize + offset) } else { self.ptr.as_ptr().sub(offset) }; Self { ptr: NonNull::new_unchecked(ptr), } } /// Executes the destructor (if any) of the pointed-to `data`. /// /// # Safety /// /// See [`ptr::drop_in_place`] for safety concerns. /// /// You should use [`RawTable::erase`] instead of this function, /// or be careful with calling this function directly, because for /// properly dropping the data we need also clear `data` control bytes. /// If we drop data, but do not erase `data control byte` it leads to /// double drop when [`RawTable`] goes out of scope. /// /// [`ptr::drop_in_place`]: https://doc.rust-lang.org/core/ptr/fn.drop_in_place.html /// [`RawTable`]: crate::raw::RawTable /// [`RawTable::erase`]: crate::raw::RawTable::erase #[cfg_attr(feature = "inline-more", inline)] pub(crate) unsafe fn drop(&self) { self.as_ptr().drop_in_place(); } /// Reads the `value` from `self` without moving it. This leaves the /// memory in `self` unchanged. /// /// # Safety /// /// See [`ptr::read`] for safety concerns. /// /// You should use [`RawTable::remove`] instead of this function, /// or be careful with calling this function directly, because compiler /// calls its destructor when readed `value` goes out of scope. It /// can cause double dropping when [`RawTable`] goes out of scope, /// because of not erased `data control byte`. /// /// [`ptr::read`]: https://doc.rust-lang.org/core/ptr/fn.read.html /// [`RawTable`]: crate::raw::RawTable /// [`RawTable::remove`]: crate::raw::RawTable::remove #[inline] pub(crate) unsafe fn read(&self) -> T { self.as_ptr().read() } /// Overwrites a memory location with the given `value` without reading /// or dropping the old value (like [`ptr::write`] function). /// /// # Safety /// /// See [`ptr::write`] for safety concerns. /// /// # Note /// /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match /// those for the old `T` value, as the map will not re-evaluate where the new /// value should go, meaning the value may become "lost" if their location /// does not reflect their state. /// /// [`ptr::write`]: https://doc.rust-lang.org/core/ptr/fn.write.html /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html #[inline] pub(crate) unsafe fn write(&self, val: T) { self.as_ptr().write(val); } /// Returns a shared immutable reference to the `value`. /// /// # Safety /// /// See [`NonNull::as_ref`] for safety concerns. /// /// [`NonNull::as_ref`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_ref /// /// # Examples /// /// ``` /// # #[cfg(feature = "raw")] /// # fn test() { /// use core::hash::{BuildHasher, Hash}; /// use hashbrown::raw::{Bucket, RawTable}; /// /// type NewHashBuilder = core::hash::BuildHasherDefault; /// /// fn make_hash(hash_builder: &S, key: &K) -> u64 { /// use core::hash::Hasher; /// let mut state = hash_builder.build_hasher(); /// key.hash(&mut state); /// state.finish() /// } /// /// let hash_builder = NewHashBuilder::default(); /// let mut table = RawTable::new(); /// /// let value: (&str, String) = ("A pony", "is a small horse".to_owned()); /// let hash = make_hash(&hash_builder, &value.0); /// /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0)); /// /// let bucket: Bucket<(&str, String)> = table.find(hash, |(k, _)| k == &value.0).unwrap(); /// /// assert_eq!( /// unsafe { bucket.as_ref() }, /// &("A pony", "is a small horse".to_owned()) /// ); /// # } /// # fn main() { /// # #[cfg(feature = "raw")] /// # test() /// # } /// ``` #[inline] pub unsafe fn as_ref<'a>(&self) -> &'a T { &*self.as_ptr() } /// Returns a unique mutable reference to the `value`. /// /// # Safety /// /// See [`NonNull::as_mut`] for safety concerns. /// /// # Note /// /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match /// those for the old `T` value, as the map will not re-evaluate where the new /// value should go, meaning the value may become "lost" if their location /// does not reflect their state. /// /// [`NonNull::as_mut`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_mut /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html /// /// # Examples /// /// ``` /// # #[cfg(feature = "raw")] /// # fn test() { /// use core::hash::{BuildHasher, Hash}; /// use hashbrown::raw::{Bucket, RawTable}; /// /// type NewHashBuilder = core::hash::BuildHasherDefault; /// /// fn make_hash(hash_builder: &S, key: &K) -> u64 { /// use core::hash::Hasher; /// let mut state = hash_builder.build_hasher(); /// key.hash(&mut state); /// state.finish() /// } /// /// let hash_builder = NewHashBuilder::default(); /// let mut table = RawTable::new(); /// /// let value: (&str, String) = ("A pony", "is a small horse".to_owned()); /// let hash = make_hash(&hash_builder, &value.0); /// /// table.insert(hash, value.clone(), |val| make_hash(&hash_builder, &val.0)); /// /// let bucket: Bucket<(&str, String)> = table.find(hash, |(k, _)| k == &value.0).unwrap(); /// /// unsafe { /// bucket /// .as_mut() /// .1 /// .push_str(" less than 147 cm at the withers") /// }; /// assert_eq!( /// unsafe { bucket.as_ref() }, /// &( /// "A pony", /// "is a small horse less than 147 cm at the withers".to_owned() /// ) /// ); /// # } /// # fn main() { /// # #[cfg(feature = "raw")] /// # test() /// # } /// ``` #[inline] pub unsafe fn as_mut<'a>(&self) -> &'a mut T { &mut *self.as_ptr() } /// Copies `size_of` bytes from `other` to `self`. The source /// and destination may *not* overlap. /// /// # Safety /// /// See [`ptr::copy_nonoverlapping`] for safety concerns. /// /// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values /// in the region beginning at `*self` and the region beginning at `*other` can /// [violate memory safety]. /// /// # Note /// /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match /// those for the old `T` value, as the map will not re-evaluate where the new /// value should go, meaning the value may become "lost" if their location /// does not reflect their state. /// /// [`ptr::copy_nonoverlapping`]: https://doc.rust-lang.org/core/ptr/fn.copy_nonoverlapping.html /// [`read`]: https://doc.rust-lang.org/core/ptr/fn.read.html /// [violate memory safety]: https://doc.rust-lang.org/std/ptr/fn.read.html#ownership-of-the-returned-value /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html #[cfg(feature = "raw")] #[inline] pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) { self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1); } } /// A raw hash table with an unsafe API. pub struct RawTable { table: RawTableInner, alloc: A, // Tell dropck that we own instances of T. marker: PhantomData, } /// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless /// of how many different key-value types are used. struct RawTableInner { // Mask to get an index from a hash value. The value is one less than the // number of buckets in the table. bucket_mask: usize, // [Padding], T1, T2, ..., Tlast, C1, C2, ... // ^ points here ctrl: NonNull, // Number of elements that can be inserted before we need to grow the table growth_left: usize, // Number of elements in the table, only really used by len() items: usize, } impl RawTable { /// Creates a new empty hash table without allocating any memory. /// /// In effect this returns a table with exactly 1 bucket. However we can /// leave the data pointer dangling since that bucket is never written to /// due to our load factor forcing us to always have at least 1 free bucket. #[inline] pub const fn new() -> Self { Self { table: RawTableInner::NEW, alloc: Global, marker: PhantomData, } } /// Attempts to allocate a new hash table with at least enough capacity /// for inserting the given number of elements without reallocating. #[cfg(feature = "raw")] pub fn try_with_capacity(capacity: usize) -> Result { Self::try_with_capacity_in(capacity, Global) } /// Allocates a new hash table with at least enough capacity for inserting /// the given number of elements without reallocating. pub fn with_capacity(capacity: usize) -> Self { Self::with_capacity_in(capacity, Global) } } impl RawTable { const TABLE_LAYOUT: TableLayout = TableLayout::new::(); /// Creates a new empty hash table without allocating any memory, using the /// given allocator. /// /// In effect this returns a table with exactly 1 bucket. However we can /// leave the data pointer dangling since that bucket is never written to /// due to our load factor forcing us to always have at least 1 free bucket. #[inline] pub const fn new_in(alloc: A) -> Self { Self { table: RawTableInner::NEW, alloc, marker: PhantomData, } } /// Allocates a new hash table with the given number of buckets. /// /// The control bytes are left uninitialized. #[cfg_attr(feature = "inline-more", inline)] unsafe fn new_uninitialized( alloc: A, buckets: usize, fallibility: Fallibility, ) -> Result { debug_assert!(buckets.is_power_of_two()); Ok(Self { table: RawTableInner::new_uninitialized( &alloc, Self::TABLE_LAYOUT, buckets, fallibility, )?, alloc, marker: PhantomData, }) } /// Attempts to allocate a new hash table using the given allocator, with at least enough /// capacity for inserting the given number of elements without reallocating. #[cfg(feature = "raw")] pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result { Ok(Self { table: RawTableInner::fallible_with_capacity( &alloc, Self::TABLE_LAYOUT, capacity, Fallibility::Fallible, )?, alloc, marker: PhantomData, }) } /// Allocates a new hash table using the given allocator, with at least enough capacity for /// inserting the given number of elements without reallocating. pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { Self { table: RawTableInner::with_capacity(&alloc, Self::TABLE_LAYOUT, capacity), alloc, marker: PhantomData, } } /// Returns a reference to the underlying allocator. #[inline] pub fn allocator(&self) -> &A { &self.alloc } /// Returns pointer to one past last element of data table. #[inline] pub unsafe fn data_end(&self) -> NonNull { NonNull::new_unchecked(self.table.ctrl.as_ptr().cast()) } /// Returns pointer to start of data table. #[inline] #[cfg(any(feature = "raw", feature = "nightly"))] pub unsafe fn data_start(&self) -> NonNull { NonNull::new_unchecked(self.data_end().as_ptr().wrapping_sub(self.buckets())) } /// Return the information about memory allocated by the table. /// /// `RawTable` allocates single memory block to store both data and metadata. /// This function returns allocation size and alignment and the beginning of the area. /// These are the arguments which will be passed to `dealloc` when the table is dropped. /// /// This function might be useful for memory profiling. #[inline] #[cfg(feature = "raw")] pub fn allocation_info(&self) -> (NonNull, Layout) { // SAFETY: We use the same `table_layout` that was used to allocate // this table. unsafe { self.table.allocation_info_or_zero(Self::TABLE_LAYOUT) } } /// Returns the index of a bucket from a `Bucket`. #[inline] pub unsafe fn bucket_index(&self, bucket: &Bucket) -> usize { bucket.to_base_index(self.data_end()) } /// Returns a pointer to an element in the table. #[inline] pub unsafe fn bucket(&self, index: usize) -> Bucket { debug_assert_ne!(self.table.bucket_mask, 0); debug_assert!(index < self.buckets()); Bucket::from_base_index(self.data_end(), index) } /// Erases an element from the table without dropping it. #[cfg_attr(feature = "inline-more", inline)] unsafe fn erase_no_drop(&mut self, item: &Bucket) { let index = self.bucket_index(item); self.table.erase(index); } /// Erases an element from the table, dropping it in place. #[cfg_attr(feature = "inline-more", inline)] #[allow(clippy::needless_pass_by_value)] pub unsafe fn erase(&mut self, item: Bucket) { // Erase the element from the table first since drop might panic. self.erase_no_drop(&item); item.drop(); } /// Finds and erases an element from the table, dropping it in place. /// Returns true if an element was found. #[cfg(feature = "raw")] #[cfg_attr(feature = "inline-more", inline)] pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool { // Avoid `Option::map` because it bloats LLVM IR. if let Some(bucket) = self.find(hash, eq) { unsafe { self.erase(bucket); } true } else { false } } /// Removes an element from the table, returning it. /// /// This also returns an `InsertSlot` pointing to the newly free bucket. #[cfg_attr(feature = "inline-more", inline)] #[allow(clippy::needless_pass_by_value)] pub unsafe fn remove(&mut self, item: Bucket) -> (T, InsertSlot) { self.erase_no_drop(&item); ( item.read(), InsertSlot { index: self.bucket_index(&item), }, ) } /// Finds and removes an element from the table, returning it. #[cfg_attr(feature = "inline-more", inline)] pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option { // Avoid `Option::map` because it bloats LLVM IR. match self.find(hash, eq) { Some(bucket) => Some(unsafe { self.remove(bucket).0 }), None => None, } } /// Marks all table buckets as empty without dropping their contents. #[cfg_attr(feature = "inline-more", inline)] pub fn clear_no_drop(&mut self) { self.table.clear_no_drop(); } /// Removes all elements from the table without freeing the backing memory. #[cfg_attr(feature = "inline-more", inline)] pub fn clear(&mut self) { if self.is_empty() { // Special case empty table to avoid surprising O(capacity) time. return; } // Ensure that the table is reset even if one of the drops panic let mut self_ = guard(self, |self_| self_.clear_no_drop()); unsafe { // SAFETY: ScopeGuard sets to zero the `items` field of the table // even in case of panic during the dropping of the elements so // that there will be no double drop of the elements. self_.table.drop_elements::(); } } /// Shrinks the table to fit `max(self.len(), min_size)` elements. #[cfg_attr(feature = "inline-more", inline)] pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) { // Calculate the minimal number of elements that we need to reserve // space for. let min_size = usize::max(self.table.items, min_size); if min_size == 0 { let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW); unsafe { // SAFETY: // 1. We call the function only once; // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] // and [`TableLayout`] that were used to allocate this table. // 3. If any elements' drop function panics, then there will only be a memory leak, // because we have replaced the inner table with a new one. old_inner.drop_inner_table::(&self.alloc, Self::TABLE_LAYOUT); } return; } // Calculate the number of buckets that we need for this number of // elements. If the calculation overflows then the requested bucket // count must be larger than what we have right and nothing needs to be // done. let min_buckets = match capacity_to_buckets(min_size) { Some(buckets) => buckets, None => return, }; // If we have more buckets than we need, shrink the table. if min_buckets < self.buckets() { // Fast path if the table is empty if self.table.items == 0 { let new_inner = RawTableInner::with_capacity(&self.alloc, Self::TABLE_LAYOUT, min_size); let mut old_inner = mem::replace(&mut self.table, new_inner); unsafe { // SAFETY: // 1. We call the function only once; // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] // and [`TableLayout`] that were used to allocate this table. // 3. If any elements' drop function panics, then there will only be a memory leak, // because we have replaced the inner table with a new one. old_inner.drop_inner_table::(&self.alloc, Self::TABLE_LAYOUT); } } else { // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. unsafe { // SAFETY: // 1. We know for sure that `min_size >= self.table.items`. // 2. The [`RawTableInner`] must already have properly initialized control bytes since // we will never expose RawTable::new_uninitialized in a public API. if self .resize(min_size, hasher, Fallibility::Infallible) .is_err() { // SAFETY: The result of calling the `resize` function cannot be an error // because `fallibility == Fallibility::Infallible. hint::unreachable_unchecked() } } } } } /// Ensures that at least `additional` items can be inserted into the table /// without reallocation. #[cfg_attr(feature = "inline-more", inline)] pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) { if unlikely(additional > self.table.growth_left) { // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. unsafe { // SAFETY: The [`RawTableInner`] must already have properly initialized control // bytes since we will never expose RawTable::new_uninitialized in a public API. if self .reserve_rehash(additional, hasher, Fallibility::Infallible) .is_err() { // SAFETY: All allocation errors will be caught inside `RawTableInner::reserve_rehash`. hint::unreachable_unchecked() } } } } /// Tries to ensure that at least `additional` items can be inserted into /// the table without reallocation. #[cfg_attr(feature = "inline-more", inline)] pub fn try_reserve( &mut self, additional: usize, hasher: impl Fn(&T) -> u64, ) -> Result<(), TryReserveError> { if additional > self.table.growth_left { // SAFETY: The [`RawTableInner`] must already have properly initialized control // bytes since we will never expose RawTable::new_uninitialized in a public API. unsafe { self.reserve_rehash(additional, hasher, Fallibility::Fallible) } } else { Ok(()) } } /// Out-of-line slow path for `reserve` and `try_reserve`. /// /// # Safety /// /// The [`RawTableInner`] must have properly initialized control bytes, /// otherwise calling this function results in [`undefined behavior`] /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[cold] #[inline(never)] unsafe fn reserve_rehash( &mut self, additional: usize, hasher: impl Fn(&T) -> u64, fallibility: Fallibility, ) -> Result<(), TryReserveError> { unsafe { // SAFETY: // 1. We know for sure that `alloc` and `layout` matches the [`Allocator`] and // [`TableLayout`] that were used to allocate this table. // 2. The `drop` function is the actual drop function of the elements stored in // the table. // 3. The caller ensures that the control bytes of the `RawTableInner` // are already initialized. self.table.reserve_rehash_inner( &self.alloc, additional, &|table, index| hasher(table.bucket::(index).as_ref()), fallibility, Self::TABLE_LAYOUT, if T::NEEDS_DROP { Some(mem::transmute(ptr::drop_in_place:: as unsafe fn(*mut T))) } else { None }, ) } } /// Allocates a new table of a different size and moves the contents of the /// current table into it. /// /// # Safety /// /// The [`RawTableInner`] must have properly initialized control bytes, /// otherwise calling this function results in [`undefined behavior`] /// /// The caller of this function must ensure that `capacity >= self.table.items` /// otherwise: /// /// * If `self.table.items != 0`, calling of this function with `capacity` /// equal to 0 (`capacity == 0`) results in [`undefined behavior`]. /// /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and /// `self.table.items > capacity_to_buckets(capacity)` /// calling this function results in [`undefined behavior`]. /// /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and /// `self.table.items > capacity_to_buckets(capacity)` /// calling this function are never return (will go into an /// infinite loop). /// /// See [`RawTableInner::find_insert_slot`] for more information. /// /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html unsafe fn resize( &mut self, capacity: usize, hasher: impl Fn(&T) -> u64, fallibility: Fallibility, ) -> Result<(), TryReserveError> { // SAFETY: // 1. The caller of this function guarantees that `capacity >= self.table.items`. // 2. We know for sure that `alloc` and `layout` matches the [`Allocator`] and // [`TableLayout`] that were used to allocate this table. // 3. The caller ensures that the control bytes of the `RawTableInner` // are already initialized. self.table.resize_inner( &self.alloc, capacity, &|table, index| hasher(table.bucket::(index).as_ref()), fallibility, Self::TABLE_LAYOUT, ) } /// Inserts a new element into the table, and returns its raw bucket. /// /// This does not check if the given element already exists in the table. #[cfg_attr(feature = "inline-more", inline)] pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket { unsafe { // SAFETY: // 1. The [`RawTableInner`] must already have properly initialized control bytes since // we will never expose `RawTable::new_uninitialized` in a public API. // // 2. We reserve additional space (if necessary) right after calling this function. let mut slot = self.table.find_insert_slot(hash); // We can avoid growing the table once we have reached our load factor if we are replacing // a tombstone. This works since the number of EMPTY slots does not change in this case. // // SAFETY: The function is guaranteed to return [`InsertSlot`] that contains an index // in the range `0..=self.buckets()`. let old_ctrl = *self.table.ctrl(slot.index); if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) { self.reserve(1, hasher); // SAFETY: We know for sure that `RawTableInner` has control bytes // initialized and that there is extra space in the table. slot = self.table.find_insert_slot(hash); } self.insert_in_slot(hash, slot, value) } } /// Attempts to insert a new element without growing the table and return its raw bucket. /// /// Returns an `Err` containing the given element if inserting it would require growing the /// table. /// /// This does not check if the given element already exists in the table. #[cfg(feature = "raw")] #[cfg_attr(feature = "inline-more", inline)] pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result, T> { unsafe { match self.table.prepare_insert_no_grow(hash) { Ok(index) => { let bucket = self.bucket(index); bucket.write(value); Ok(bucket) } Err(()) => Err(value), } } } /// Inserts a new element into the table, and returns a mutable reference to it. /// /// This does not check if the given element already exists in the table. #[cfg_attr(feature = "inline-more", inline)] pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T { unsafe { self.insert(hash, value, hasher).as_mut() } } /// Inserts a new element into the table, without growing the table. /// /// There must be enough space in the table to insert the new element. /// /// This does not check if the given element already exists in the table. #[cfg_attr(feature = "inline-more", inline)] #[cfg(any(feature = "raw", feature = "rustc-internal-api"))] pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket { let (index, old_ctrl) = self.table.prepare_insert_slot(hash); let bucket = self.table.bucket(index); // If we are replacing a DELETED entry then we don't need to update // the load counter. self.table.growth_left -= special_is_empty(old_ctrl) as usize; bucket.write(value); self.table.items += 1; bucket } /// Temporary removes a bucket, applying the given function to the removed /// element and optionally put back the returned value in the same bucket. /// /// Returns `true` if the bucket still contains an element /// /// This does not check if the given bucket is actually occupied. #[cfg_attr(feature = "inline-more", inline)] pub unsafe fn replace_bucket_with(&mut self, bucket: Bucket, f: F) -> bool where F: FnOnce(T) -> Option, { let index = self.bucket_index(&bucket); let old_ctrl = *self.table.ctrl(index); debug_assert!(self.is_bucket_full(index)); let old_growth_left = self.table.growth_left; let item = self.remove(bucket).0; if let Some(new_item) = f(item) { self.table.growth_left = old_growth_left; self.table.set_ctrl(index, old_ctrl); self.table.items += 1; self.bucket(index).write(new_item); true } else { false } } /// Searches for an element in the table. If the element is not found, /// returns `Err` with the position of a slot where an element with the /// same hash could be inserted. /// /// This function may resize the table if additional space is required for /// inserting an element. #[inline] pub fn find_or_find_insert_slot( &mut self, hash: u64, mut eq: impl FnMut(&T) -> bool, hasher: impl Fn(&T) -> u64, ) -> Result, InsertSlot> { self.reserve(1, hasher); unsafe { // SAFETY: // 1. We know for sure that there is at least one empty `bucket` in the table. // 2. The [`RawTableInner`] must already have properly initialized control bytes since we will // never expose `RawTable::new_uninitialized` in a public API. // 3. The `find_or_find_insert_slot_inner` function returns the `index` of only the full bucket, // which is in the range `0..self.buckets()` (since there is at least one empty `bucket` in // the table), so calling `self.bucket(index)` and `Bucket::as_ref` is safe. match self .table .find_or_find_insert_slot_inner(hash, &mut |index| eq(self.bucket(index).as_ref())) { // SAFETY: See explanation above. Ok(index) => Ok(self.bucket(index)), Err(slot) => Err(slot), } } } /// Inserts a new element into the table in the given slot, and returns its /// raw bucket. /// /// # Safety /// /// `slot` must point to a slot previously returned by /// `find_or_find_insert_slot`, and no mutation of the table must have /// occurred since that call. #[inline] pub unsafe fn insert_in_slot(&mut self, hash: u64, slot: InsertSlot, value: T) -> Bucket { let old_ctrl = *self.table.ctrl(slot.index); self.table.record_item_insert_at(slot.index, old_ctrl, hash); let bucket = self.bucket(slot.index); bucket.write(value); bucket } /// Searches for an element in the table. #[inline] pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option> { unsafe { // SAFETY: // 1. The [`RawTableInner`] must already have properly initialized control bytes since we // will never expose `RawTable::new_uninitialized` in a public API. // 1. The `find_inner` function returns the `index` of only the full bucket, which is in // the range `0..self.buckets()`, so calling `self.bucket(index)` and `Bucket::as_ref` // is safe. let result = self .table .find_inner(hash, &mut |index| eq(self.bucket(index).as_ref())); // Avoid `Option::map` because it bloats LLVM IR. match result { // SAFETY: See explanation above. Some(index) => Some(self.bucket(index)), None => None, } } } /// Gets a reference to an element in the table. #[inline] pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> { // Avoid `Option::map` because it bloats LLVM IR. match self.find(hash, eq) { Some(bucket) => Some(unsafe { bucket.as_ref() }), None => None, } } /// Gets a mutable reference to an element in the table. #[inline] pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> { // Avoid `Option::map` because it bloats LLVM IR. match self.find(hash, eq) { Some(bucket) => Some(unsafe { bucket.as_mut() }), None => None, } } /// Attempts to get mutable references to `N` entries in the table at once. /// /// Returns an array of length `N` with the results of each query. /// /// At most one mutable reference will be returned to any entry. `None` will be returned if any /// of the hashes are duplicates. `None` will be returned if the hash is not found. /// /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to /// the `i`th key to be looked up. pub fn get_many_mut( &mut self, hashes: [u64; N], eq: impl FnMut(usize, &T) -> bool, ) -> Option<[&'_ mut T; N]> { unsafe { let ptrs = self.get_many_mut_pointers(hashes, eq)?; for (i, &cur) in ptrs.iter().enumerate() { if ptrs[..i].iter().any(|&prev| ptr::eq::(prev, cur)) { return None; } } // All bucket are distinct from all previous buckets so we're clear to return the result // of the lookup. // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. Some(mem::transmute_copy(&ptrs)) } } pub unsafe fn get_many_unchecked_mut( &mut self, hashes: [u64; N], eq: impl FnMut(usize, &T) -> bool, ) -> Option<[&'_ mut T; N]> { let ptrs = self.get_many_mut_pointers(hashes, eq)?; Some(mem::transmute_copy(&ptrs)) } unsafe fn get_many_mut_pointers( &mut self, hashes: [u64; N], mut eq: impl FnMut(usize, &T) -> bool, ) -> Option<[*mut T; N]> { // TODO use `MaybeUninit::uninit_array` here instead once that's stable. let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit(); let outs_ptr = outs.as_mut_ptr(); for (i, &hash) in hashes.iter().enumerate() { let cur = self.find(hash, |k| eq(i, k))?; *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut(); } // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. Some(outs.assume_init()) } /// Returns the number of elements the map can hold without reallocating. /// /// This number is a lower bound; the table might be able to hold /// more, but is guaranteed to be able to hold at least this many. #[inline] pub fn capacity(&self) -> usize { self.table.items + self.table.growth_left } /// Returns the number of elements in the table. #[inline] pub fn len(&self) -> usize { self.table.items } /// Returns `true` if the table contains no elements. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the number of buckets in the table. #[inline] pub fn buckets(&self) -> usize { self.table.bucket_mask + 1 } /// Checks whether the bucket at `index` is full. /// /// # Safety /// /// The caller must ensure `index` is less than the number of buckets. #[inline] pub unsafe fn is_bucket_full(&self, index: usize) -> bool { self.table.is_bucket_full(index) } /// Returns an iterator over every element in the table. It is up to /// the caller to ensure that the `RawTable` outlives the `RawIter`. /// Because we cannot make the `next` method unsafe on the `RawIter` /// struct, we have to make the `iter` method unsafe. #[inline] pub unsafe fn iter(&self) -> RawIter { // SAFETY: // 1. The caller must uphold the safety contract for `iter` method. // 2. The [`RawTableInner`] must already have properly initialized control bytes since // we will never expose RawTable::new_uninitialized in a public API. self.table.iter() } /// Returns an iterator over occupied buckets that could match a given hash. /// /// `RawTable` only stores 7 bits of the hash value, so this iterator may /// return items that have a hash value different than the one provided. You /// should always validate the returned values before using them. /// /// It is up to the caller to ensure that the `RawTable` outlives the /// `RawIterHash`. Because we cannot make the `next` method unsafe on the /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe. #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "raw")] pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash { RawIterHash::new(self, hash) } /// Returns an iterator which removes all elements from the table without /// freeing the memory. #[cfg_attr(feature = "inline-more", inline)] pub fn drain(&mut self) -> RawDrain<'_, T, A> { unsafe { let iter = self.iter(); self.drain_iter_from(iter) } } /// Returns an iterator which removes all elements from the table without /// freeing the memory. /// /// Iteration starts at the provided iterator's current location. /// /// It is up to the caller to ensure that the iterator is valid for this /// `RawTable` and covers all items that remain in the table. #[cfg_attr(feature = "inline-more", inline)] pub unsafe fn drain_iter_from(&mut self, iter: RawIter) -> RawDrain<'_, T, A> { debug_assert_eq!(iter.len(), self.len()); RawDrain { iter, table: mem::replace(&mut self.table, RawTableInner::NEW), orig_table: NonNull::from(&mut self.table), marker: PhantomData, } } /// Returns an iterator which consumes all elements from the table. /// /// Iteration starts at the provided iterator's current location. /// /// It is up to the caller to ensure that the iterator is valid for this /// `RawTable` and covers all items that remain in the table. pub unsafe fn into_iter_from(self, iter: RawIter) -> RawIntoIter { debug_assert_eq!(iter.len(), self.len()); let allocation = self.into_allocation(); RawIntoIter { iter, allocation, marker: PhantomData, } } /// Converts the table into a raw allocation. The contents of the table /// should be dropped using a `RawIter` before freeing the allocation. #[cfg_attr(feature = "inline-more", inline)] pub(crate) fn into_allocation(self) -> Option<(NonNull, Layout, A)> { let alloc = if self.table.is_empty_singleton() { None } else { // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. let (layout, ctrl_offset) = match Self::TABLE_LAYOUT.calculate_layout_for(self.table.buckets()) { Some(lco) => lco, None => unsafe { hint::unreachable_unchecked() }, }; Some(( unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) }, layout, unsafe { ptr::read(&self.alloc) }, )) }; mem::forget(self); alloc } } unsafe impl Send for RawTable where T: Send, A: Send, { } unsafe impl Sync for RawTable where T: Sync, A: Sync, { } impl RawTableInner { const NEW: Self = RawTableInner::new(); /// Creates a new empty hash table without allocating any memory. /// /// In effect this returns a table with exactly 1 bucket. However we can /// leave the data pointer dangling since that bucket is never accessed /// due to our load factor forcing us to always have at least 1 free bucket. #[inline] const fn new() -> Self { Self { // Be careful to cast the entire slice to a raw pointer. ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) }, bucket_mask: 0, items: 0, growth_left: 0, } } } impl RawTableInner { /// Allocates a new [`RawTableInner`] with the given number of buckets. /// The control bytes and buckets are left uninitialized. /// /// # Safety /// /// The caller of this function must ensure that the `buckets` is power of two /// and also initialize all control bytes of the length `self.bucket_mask + 1 + /// Group::WIDTH` with the [`EMPTY`] bytes. /// /// See also [`Allocator`] API for other safety concerns. /// /// [`Allocator`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html #[cfg_attr(feature = "inline-more", inline)] unsafe fn new_uninitialized( alloc: &A, table_layout: TableLayout, buckets: usize, fallibility: Fallibility, ) -> Result where A: Allocator, { debug_assert!(buckets.is_power_of_two()); // Avoid `Option::ok_or_else` because it bloats LLVM IR. let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) { Some(lco) => lco, None => return Err(fallibility.capacity_overflow()), }; let ptr: NonNull = match do_alloc(alloc, layout) { Ok(block) => block.cast(), Err(_) => return Err(fallibility.alloc_err(layout)), }; // SAFETY: null pointer will be caught in above check let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset)); Ok(Self { ctrl, bucket_mask: buckets - 1, items: 0, growth_left: bucket_mask_to_capacity(buckets - 1), }) } /// Attempts to allocate a new [`RawTableInner`] with at least enough /// capacity for inserting the given number of elements without reallocating. /// /// All the control bytes are initialized with the [`EMPTY`] bytes. #[inline] fn fallible_with_capacity( alloc: &A, table_layout: TableLayout, capacity: usize, fallibility: Fallibility, ) -> Result where A: Allocator, { if capacity == 0 { Ok(Self::NEW) } else { // SAFETY: We checked that we could successfully allocate the new table, and then // initialized all control bytes with the constant `EMPTY` byte. unsafe { let buckets = capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?; let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?; // SAFETY: We checked that the table is allocated and therefore the table already has // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for) // so writing `self.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe. result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes()); Ok(result) } } } /// Allocates a new [`RawTableInner`] with at least enough capacity for inserting /// the given number of elements without reallocating. /// /// Panics if the new capacity exceeds [`isize::MAX`] bytes and [`abort`] the program /// in case of allocation error. Use [`fallible_with_capacity`] instead if you want to /// handle memory allocation failure. /// /// All the control bytes are initialized with the [`EMPTY`] bytes. /// /// [`fallible_with_capacity`]: RawTableInner::fallible_with_capacity /// [`abort`]: https://doc.rust-lang.org/alloc/alloc/fn.handle_alloc_error.html fn with_capacity(alloc: &A, table_layout: TableLayout, capacity: usize) -> Self where A: Allocator, { // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. match Self::fallible_with_capacity(alloc, table_layout, capacity, Fallibility::Infallible) { Ok(table_inner) => table_inner, // SAFETY: All allocation errors will be caught inside `RawTableInner::new_uninitialized`. Err(_) => unsafe { hint::unreachable_unchecked() }, } } /// Fixes up an insertion slot returned by the [`RawTableInner::find_insert_slot_in_group`] method. /// /// In tables smaller than the group width (`self.buckets() < Group::WIDTH`), trailing control /// bytes outside the range of the table are filled with [`EMPTY`] entries. These will unfortunately /// trigger a match of [`RawTableInner::find_insert_slot_in_group`] function. This is because /// the `Some(bit)` returned by `group.match_empty_or_deleted().lowest_set_bit()` after masking /// (`(probe_seq.pos + bit) & self.bucket_mask`) may point to a full bucket that is already occupied. /// We detect this situation here and perform a second scan starting at the beginning of the table. /// This second scan is guaranteed to find an empty slot (due to the load factor) before hitting the /// trailing control bytes (containing [`EMPTY`] bytes). /// /// If this function is called correctly, it is guaranteed to return [`InsertSlot`] with an /// index of an empty or deleted bucket in the range `0..self.buckets()` (see `Warning` and /// `Safety`). /// /// # Warning /// /// The table must have at least 1 empty or deleted `bucket`, otherwise if the table is less than /// the group width (`self.buckets() < Group::WIDTH`) this function returns an index outside of the /// table indices range `0..self.buckets()` (`0..=self.bucket_mask`). Attempt to write data at that /// index will cause immediate [`undefined behavior`]. /// /// # Safety /// /// The safety rules are directly derived from the safety rules for [`RawTableInner::ctrl`] method. /// Thus, in order to uphold those safety contracts, as well as for the correct logic of the work /// of this crate, the following rules are necessary and sufficient: /// /// * The [`RawTableInner`] must have properly initialized control bytes otherwise calling this /// function results in [`undefined behavior`]. /// /// * This function must only be used on insertion slots found by [`RawTableInner::find_insert_slot_in_group`] /// (after the `find_insert_slot_in_group` function, but before insertion into the table). /// /// * The `index` must not be greater than the `self.bucket_mask`, i.e. `(index + 1) <= self.buckets()` /// (this one is provided by the [`RawTableInner::find_insert_slot_in_group`] function). /// /// Calling this function with an index not provided by [`RawTableInner::find_insert_slot_in_group`] /// may result in [`undefined behavior`] even if the index satisfies the safety rules of the /// [`RawTableInner::ctrl`] function (`index < self.bucket_mask + 1 + Group::WIDTH`). /// /// [`RawTableInner::ctrl`]: RawTableInner::ctrl /// [`RawTableInner::find_insert_slot_in_group`]: RawTableInner::find_insert_slot_in_group /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn fix_insert_slot(&self, mut index: usize) -> InsertSlot { // SAFETY: The caller of this function ensures that `index` is in the range `0..=self.bucket_mask`. if unlikely(self.is_bucket_full(index)) { debug_assert!(self.bucket_mask < Group::WIDTH); // SAFETY: // // * Since the caller of this function ensures that the control bytes are properly // initialized and `ptr = self.ctrl(0)` points to the start of the array of control // bytes, therefore: `ctrl` is valid for reads, properly aligned to `Group::WIDTH` // and points to the properly initialized control bytes (see also // `TableLayout::calculate_layout_for` and `ptr::read`); // // * Because the caller of this function ensures that the index was provided by the // `self.find_insert_slot_in_group()` function, so for for tables larger than the // group width (self.buckets() >= Group::WIDTH), we will never end up in the given // branch, since `(probe_seq.pos + bit) & self.bucket_mask` in `find_insert_slot_in_group` // cannot return a full bucket index. For tables smaller than the group width, calling // the `unwrap_unchecked` function is also safe, as the trailing control bytes outside // the range of the table are filled with EMPTY bytes (and we know for sure that there // is at least one FULL bucket), so this second scan either finds an empty slot (due to // the load factor) or hits the trailing control bytes (containing EMPTY). index = Group::load_aligned(self.ctrl(0)) .match_empty_or_deleted() .lowest_set_bit() .unwrap_unchecked(); } InsertSlot { index } } /// Finds the position to insert something in a group. /// /// **This may have false positives and must be fixed up with `fix_insert_slot` /// before it's used.** /// /// The function is guaranteed to return the index of an empty or deleted [`Bucket`] /// in the range `0..self.buckets()` (`0..=self.bucket_mask`). #[inline] fn find_insert_slot_in_group(&self, group: &Group, probe_seq: &ProbeSeq) -> Option { let bit = group.match_empty_or_deleted().lowest_set_bit(); if likely(bit.is_some()) { // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. Some((probe_seq.pos + bit.unwrap()) & self.bucket_mask) } else { None } } /// Searches for an element in the table, or a potential slot where that element could /// be inserted (an empty or deleted [`Bucket`] index). /// /// This uses dynamic dispatch to reduce the amount of code generated, but that is /// eliminated by LLVM optimizations. /// /// This function does not make any changes to the `data` part of the table, or any /// changes to the `items` or `growth_left` field of the table. /// /// The table must have at least 1 empty or deleted `bucket`, otherwise, if the /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`, this function /// will never return (will go into an infinite loop) for tables larger than the group /// width, or return an index outside of the table indices range if the table is less /// than the group width. /// /// This function is guaranteed to provide the `eq: &mut dyn FnMut(usize) -> bool` /// function with only `FULL` buckets' indices and return the `index` of the found /// element (as `Ok(index)`). If the element is not found and there is at least 1 /// empty or deleted [`Bucket`] in the table, the function is guaranteed to return /// [InsertSlot] with an index in the range `0..self.buckets()`, but in any case, /// if this function returns [`InsertSlot`], it will contain an index in the range /// `0..=self.buckets()`. /// /// # Safety /// /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling /// this function results in [`undefined behavior`]. /// /// Attempt to write data at the [`InsertSlot`] returned by this function when the table is /// less than the group width and if there was not at least one empty or deleted bucket in /// the table will cause immediate [`undefined behavior`]. This is because in this case the /// function will return `self.bucket_mask + 1` as an index due to the trailing [`EMPTY] /// control bytes outside the table range. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn find_or_find_insert_slot_inner( &self, hash: u64, eq: &mut dyn FnMut(usize) -> bool, ) -> Result { let mut insert_slot = None; let h2_hash = h2(hash); let mut probe_seq = self.probe_seq(hash); loop { // SAFETY: // * Caller of this function ensures that the control bytes are properly initialized. // // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` // of the table due to masking with `self.bucket_mask` and also because mumber of // buckets is a power of two (see `self.probe_seq` function). // // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to // call `Group::load` due to the extended control bytes range, which is // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control // byte will never be read for the allocated table); // // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` // bytes, which is safe (see RawTableInner::new). let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; for bit in group.match_byte(h2_hash) { let index = (probe_seq.pos + bit) & self.bucket_mask; if likely(eq(index)) { return Ok(index); } } // We didn't find the element we were looking for in the group, try to get an // insertion slot from the group if we don't have one yet. if likely(insert_slot.is_none()) { insert_slot = self.find_insert_slot_in_group(&group, &probe_seq); } // Only stop the search if the group contains at least one empty element. // Otherwise, the element that we are looking for might be in a following group. if likely(group.match_empty().any_bit_set()) { // We must have found a insert slot by now, since the current group contains at // least one. For tables smaller than the group width, there will still be an // empty element in the current (and only) group due to the load factor. unsafe { // SAFETY: // * Caller of this function ensures that the control bytes are properly initialized. // // * We use this function with the slot / index found by `self.find_insert_slot_in_group` return Err(self.fix_insert_slot(insert_slot.unwrap_unchecked())); } } probe_seq.move_next(self.bucket_mask); } } /// Searches for an empty or deleted bucket which is suitable for inserting a new /// element and sets the hash for that slot. Returns an index of that slot and the /// old control byte stored in the found index. /// /// This function does not check if the given element exists in the table. Also, /// this function does not check if there is enough space in the table to insert /// a new element. Caller of the funtion must make ensure that the table has at /// least 1 empty or deleted `bucket`, otherwise this function will never return /// (will go into an infinite loop) for tables larger than the group width, or /// return an index outside of the table indices range if the table is less than /// the group width. /// /// If there is at least 1 empty or deleted `bucket` in the table, the function is /// guaranteed to return an `index` in the range `0..self.buckets()`, but in any case, /// if this function returns an `index` it will be in the range `0..=self.buckets()`. /// /// This function does not make any changes to the `data` parts of the table, /// or any changes to the the `items` or `growth_left` field of the table. /// /// # Safety /// /// The safety rules are directly derived from the safety rules for the /// [`RawTableInner::set_ctrl_h2`] and [`RawTableInner::find_insert_slot`] methods. /// Thus, in order to uphold the safety contracts for that methods, as well as for /// the correct logic of the work of this crate, you must observe the following rules /// when calling this function: /// /// * The [`RawTableInner`] has already been allocated and has properly initialized /// control bytes otherwise calling this function results in [`undefined behavior`]. /// /// * The caller of this function must ensure that the "data" parts of the table /// will have an entry in the returned index (matching the given hash) right /// after calling this function. /// /// Attempt to write data at the `index` returned by this function when the table is /// less than the group width and if there was not at least one empty or deleted bucket in /// the table will cause immediate [`undefined behavior`]. This is because in this case the /// function will return `self.bucket_mask + 1` as an index due to the trailing [`EMPTY] /// control bytes outside the table range. /// /// The caller must independently increase the `items` field of the table, and also, /// if the old control byte was [`EMPTY`], then decrease the table's `growth_left` /// field, and do not change it if the old control byte was [`DELETED`]. /// /// See also [`Bucket::as_ptr`] method, for more information about of properly removing /// or saving `element` from / into the [`RawTable`] / [`RawTableInner`]. /// /// [`Bucket::as_ptr`]: Bucket::as_ptr /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// [`RawTableInner::ctrl`]: RawTableInner::ctrl /// [`RawTableInner::set_ctrl_h2`]: RawTableInner::set_ctrl_h2 /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot #[inline] unsafe fn prepare_insert_slot(&mut self, hash: u64) -> (usize, u8) { // SAFETY: Caller of this function ensures that the control bytes are properly initialized. let index: usize = self.find_insert_slot(hash).index; // SAFETY: // 1. The `find_insert_slot` function either returns an `index` less than or // equal to `self.buckets() = self.bucket_mask + 1` of the table, or never // returns if it cannot find an empty or deleted slot. // 2. The caller of this function guarantees that the table has already been // allocated let old_ctrl = *self.ctrl(index); self.set_ctrl_h2(index, hash); (index, old_ctrl) } /// Searches for an empty or deleted bucket which is suitable for inserting /// a new element, returning the `index` for the new [`Bucket`]. /// /// This function does not make any changes to the `data` part of the table, or any /// changes to the `items` or `growth_left` field of the table. /// /// The table must have at least 1 empty or deleted `bucket`, otherwise this function /// will never return (will go into an infinite loop) for tables larger than the group /// width, or return an index outside of the table indices range if the table is less /// than the group width. /// /// If there is at least 1 empty or deleted `bucket` in the table, the function is /// guaranteed to return [`InsertSlot`] with an index in the range `0..self.buckets()`, /// but in any case, if this function returns [`InsertSlot`], it will contain an index /// in the range `0..=self.buckets()`. /// /// # Safety /// /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling /// this function results in [`undefined behavior`]. /// /// Attempt to write data at the [`InsertSlot`] returned by this function when the table is /// less than the group width and if there was not at least one empty or deleted bucket in /// the table will cause immediate [`undefined behavior`]. This is because in this case the /// function will return `self.bucket_mask + 1` as an index due to the trailing [`EMPTY] /// control bytes outside the table range. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn find_insert_slot(&self, hash: u64) -> InsertSlot { let mut probe_seq = self.probe_seq(hash); loop { // SAFETY: // * Caller of this function ensures that the control bytes are properly initialized. // // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` // of the table due to masking with `self.bucket_mask` and also because mumber of // buckets is a power of two (see `self.probe_seq` function). // // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to // call `Group::load` due to the extended control bytes range, which is // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control // byte will never be read for the allocated table); // // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` // bytes, which is safe (see RawTableInner::new). let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; let index = self.find_insert_slot_in_group(&group, &probe_seq); if likely(index.is_some()) { // SAFETY: // * Caller of this function ensures that the control bytes are properly initialized. // // * We use this function with the slot / index found by `self.find_insert_slot_in_group` unsafe { return self.fix_insert_slot(index.unwrap_unchecked()); } } probe_seq.move_next(self.bucket_mask); } } /// Searches for an element in a table, returning the `index` of the found element. /// This uses dynamic dispatch to reduce the amount of code generated, but it is /// eliminated by LLVM optimizations. /// /// This function does not make any changes to the `data` part of the table, or any /// changes to the `items` or `growth_left` field of the table. /// /// The table must have at least 1 empty `bucket`, otherwise, if the /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`, /// this function will also never return (will go into an infinite loop). /// /// This function is guaranteed to provide the `eq: &mut dyn FnMut(usize) -> bool` /// function with only `FULL` buckets' indices and return the `index` of the found /// element as `Some(index)`, so the index will always be in the range /// `0..self.buckets()`. /// /// # Safety /// /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling /// this function results in [`undefined behavior`]. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline(always)] unsafe fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option { let h2_hash = h2(hash); let mut probe_seq = self.probe_seq(hash); loop { // SAFETY: // * Caller of this function ensures that the control bytes are properly initialized. // // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` // of the table due to masking with `self.bucket_mask`. // // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to // call `Group::load` due to the extended control bytes range, which is // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control // byte will never be read for the allocated table); // // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` // bytes, which is safe (see RawTableInner::new_in). let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; for bit in group.match_byte(h2_hash) { // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. let index = (probe_seq.pos + bit) & self.bucket_mask; if likely(eq(index)) { return Some(index); } } if likely(group.match_empty().any_bit_set()) { return None; } probe_seq.move_next(self.bucket_mask); } } /// Prepares for rehashing data in place (that is, without allocating new memory). /// Converts all full index `control bytes` to `DELETED` and all `DELETED` control /// bytes to `EMPTY`, i.e. performs the following conversion: /// /// - `EMPTY` control bytes -> `EMPTY`; /// - `DELETED` control bytes -> `EMPTY`; /// - `FULL` control bytes -> `DELETED`. /// /// This function does not make any changes to the `data` parts of the table, /// or any changes to the the `items` or `growth_left` field of the table. /// /// # Safety /// /// You must observe the following safety rules when calling this function: /// /// * The [`RawTableInner`] has already been allocated; /// /// * The caller of this function must convert the `DELETED` bytes back to `FULL` /// bytes when re-inserting them into their ideal position (which was impossible /// to do during the first insert due to tombstones). If the caller does not do /// this, then calling this function may result in a memory leak. /// /// * The [`RawTableInner`] must have properly initialized control bytes otherwise /// calling this function results in [`undefined behavior`]. /// /// Calling this function on a table that has not been allocated results in /// [`undefined behavior`]. /// /// See also [`Bucket::as_ptr`] method, for more information about of properly removing /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. /// /// [`Bucket::as_ptr`]: Bucket::as_ptr /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[allow(clippy::mut_mut)] #[inline] unsafe fn prepare_rehash_in_place(&mut self) { // Bulk convert all full control bytes to DELETED, and all DELETED control bytes to EMPTY. // This effectively frees up all buckets containing a DELETED entry. // // SAFETY: // 1. `i` is guaranteed to be within bounds since we are iterating from zero to `buckets - 1`; // 2. Even if `i` will be `i == self.bucket_mask`, it is safe to call `Group::load_aligned` // due to the extended control bytes range, which is `self.bucket_mask + 1 + Group::WIDTH`; // 3. The caller of this function guarantees that [`RawTableInner`] has already been allocated; // 4. We can use `Group::load_aligned` and `Group::store_aligned` here since we start from 0 // and go to the end with a step equal to `Group::WIDTH` (see TableLayout::calculate_layout_for). for i in (0..self.buckets()).step_by(Group::WIDTH) { let group = Group::load_aligned(self.ctrl(i)); let group = group.convert_special_to_empty_and_full_to_deleted(); group.store_aligned(self.ctrl(i)); } // Fix up the trailing control bytes. See the comments in set_ctrl // for the handling of tables smaller than the group width. // // SAFETY: The caller of this function guarantees that [`RawTableInner`] // has already been allocated if unlikely(self.buckets() < Group::WIDTH) { // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes, // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to // `Group::WIDTH` is safe self.ctrl(0) .copy_to(self.ctrl(Group::WIDTH), self.buckets()); } else { // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of // control bytes,so copying `Group::WIDTH` bytes with offset equal // to `self.buckets() == self.bucket_mask + 1` is safe self.ctrl(0) .copy_to(self.ctrl(self.buckets()), Group::WIDTH); } } /// Returns an iterator over every element in the table. /// /// # Safety /// /// If any of the following conditions are violated, the result /// is [`undefined behavior`]: /// /// * The caller has to ensure that the `RawTableInner` outlives the /// `RawIter`. Because we cannot make the `next` method unsafe on /// the `RawIter` struct, we have to make the `iter` method unsafe. /// /// * The [`RawTableInner`] must have properly initialized control bytes. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn iter(&self) -> RawIter { // SAFETY: // 1. Since the caller of this function ensures that the control bytes // are properly initialized and `self.data_end()` points to the start // of the array of control bytes, therefore: `ctrl` is valid for reads, // properly aligned to `Group::WIDTH` and points to the properly initialized // control bytes. // 2. `data` bucket index in the table is equal to the `ctrl` index (i.e. // equal to zero). // 3. We pass the exact value of buckets of the table to the function. // // `ctrl` points here (to the start // of the first control byte `CT0`) // ∨ // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, Group::WIDTH // \________ ________/ // \/ // `n = buckets - 1`, i.e. `RawIndexTableInner::buckets() - 1` // // where: T0...T_n - our stored data; // CT0...CT_n - control bytes or metadata for `data`. let data = Bucket::from_base_index(self.data_end(), 0); RawIter { // SAFETY: See explanation above iter: RawIterRange::new(self.ctrl.as_ptr(), data, self.buckets()), items: self.items, } } /// Executes the destructors (if any) of the values stored in the table. /// /// # Note /// /// This function does not erase the control bytes of the table and does /// not make any changes to the `items` or `growth_left` fields of the /// table. If necessary, the caller of this function must manually set /// up these table fields, for example using the [`clear_no_drop`] function. /// /// Be careful during calling this function, because drop function of /// the elements can panic, and this can leave table in an inconsistent /// state. /// /// # Safety /// /// If `T` is a type that should be dropped and **the table is not empty**, /// calling this function more than once results in [`undefined behavior`]. /// /// If `T` is not [`Copy`], attempting to use values stored in the table after /// calling this function may result in [`undefined behavior`]. /// /// It is safe to call this function on a table that has not been allocated, /// on a table with uninitialized control bytes, and on a table with no actual /// data but with `Full` control bytes if `self.items == 0`. /// /// See also [`Bucket::drop`] / [`Bucket::as_ptr`] methods, for more information /// about of properly removing or saving `element` from / into the [`RawTable`] / /// [`RawTableInner`]. /// /// [`Bucket::drop`]: Bucket::drop /// [`Bucket::as_ptr`]: Bucket::as_ptr /// [`clear_no_drop`]: RawTableInner::clear_no_drop /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html unsafe fn drop_elements(&mut self) { // Check that `self.items != 0`. Protects against the possibility // of creating an iterator on an table with uninitialized control bytes. if T::NEEDS_DROP && self.items != 0 { // SAFETY: We know for sure that RawTableInner will outlive the // returned `RawIter` iterator, and the caller of this function // must uphold the safety contract for `drop_elements` method. for item in self.iter::() { // SAFETY: The caller must uphold the safety contract for // `drop_elements` method. item.drop(); } } } /// Executes the destructors (if any) of the values stored in the table and than /// deallocates the table. /// /// # Note /// /// Calling this function automatically makes invalid (dangling) all instances of /// buckets ([`Bucket`]) and makes invalid (dangling) the `ctrl` field of the table. /// /// This function does not make any changes to the `bucket_mask`, `items` or `growth_left` /// fields of the table. If necessary, the caller of this function must manually set /// up these table fields. /// /// # Safety /// /// If any of the following conditions are violated, the result is [`undefined behavior`]: /// /// * Calling this function more than once; /// /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used /// to allocate this table. /// /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that /// was used to allocate this table. /// /// The caller of this function should pay attention to the possibility of the /// elements' drop function panicking, because this: /// /// * May leave the table in an inconsistent state; /// /// * Memory is never deallocated, so a memory leak may occur. /// /// Attempt to use the `ctrl` field of the table (dereference) after calling this /// function results in [`undefined behavior`]. /// /// It is safe to call this function on a table that has not been allocated, /// on a table with uninitialized control bytes, and on a table with no actual /// data but with `Full` control bytes if `self.items == 0`. /// /// See also [`RawTableInner::drop_elements`] or [`RawTableInner::free_buckets`] /// for more information. /// /// [`RawTableInner::drop_elements`]: RawTableInner::drop_elements /// [`RawTableInner::free_buckets`]: RawTableInner::free_buckets /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html unsafe fn drop_inner_table(&mut self, alloc: &A, table_layout: TableLayout) { if !self.is_empty_singleton() { unsafe { // SAFETY: The caller must uphold the safety contract for `drop_inner_table` method. self.drop_elements::(); // SAFETY: // 1. We have checked that our table is allocated. // 2. The caller must uphold the safety contract for `drop_inner_table` method. self.free_buckets(alloc, table_layout); } } } #[inline] unsafe fn bucket(&self, index: usize) -> Bucket { debug_assert_ne!(self.bucket_mask, 0); debug_assert!(index < self.buckets()); Bucket::from_base_index(self.data_end(), index) } #[inline] unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 { debug_assert_ne!(self.bucket_mask, 0); debug_assert!(index < self.buckets()); let base: *mut u8 = self.data_end().as_ptr(); base.sub((index + 1) * size_of) } #[inline] unsafe fn data_end(&self) -> NonNull { NonNull::new_unchecked(self.ctrl.as_ptr().cast()) } /// Returns an iterator-like object for a probe sequence on the table. /// /// This iterator never terminates, but is guaranteed to visit each bucket /// group exactly once. The loop using `probe_seq` must terminate upon /// reaching a group containing an empty bucket. #[inline] fn probe_seq(&self, hash: u64) -> ProbeSeq { ProbeSeq { // This is the same as `hash as usize % self.buckets()` because the number // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. pos: h1(hash) & self.bucket_mask, stride: 0, } } /// Returns the index of a bucket for which a value must be inserted if there is enough rooom /// in the table, otherwise returns error #[cfg(feature = "raw")] #[inline] unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result { let index = self.find_insert_slot(hash).index; let old_ctrl = *self.ctrl(index); if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) { Err(()) } else { self.record_item_insert_at(index, old_ctrl, hash); Ok(index) } } #[inline] unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) { self.growth_left -= usize::from(special_is_empty(old_ctrl)); self.set_ctrl_h2(index, hash); self.items += 1; } #[inline] fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool { let probe_seq_pos = self.probe_seq(hash).pos; let probe_index = |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH; probe_index(i) == probe_index(new_i) } /// Sets a control byte to the hash, and possibly also the replicated control byte at /// the end of the array. /// /// This function does not make any changes to the `data` parts of the table, /// or any changes to the the `items` or `growth_left` field of the table. /// /// # Safety /// /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl`] /// method. Thus, in order to uphold the safety contracts for the method, you must observe the /// following rules when calling this function: /// /// * The [`RawTableInner`] has already been allocated; /// /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must /// be no greater than the number returned by the function [`RawTableInner::buckets`]. /// /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. /// /// See also [`Bucket::as_ptr`] method, for more information about of properly removing /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. /// /// [`RawTableInner::set_ctrl`]: RawTableInner::set_ctrl /// [`RawTableInner::buckets`]: RawTableInner::buckets /// [`Bucket::as_ptr`]: Bucket::as_ptr /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn set_ctrl_h2(&mut self, index: usize, hash: u64) { // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl_h2`] self.set_ctrl(index, h2(hash)); } /// Replaces the hash in the control byte at the given index with the provided one, /// and possibly also replicates the new control byte at the end of the array of control /// bytes, returning the old control byte. /// /// This function does not make any changes to the `data` parts of the table, /// or any changes to the the `items` or `growth_left` field of the table. /// /// # Safety /// /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl_h2`] /// and [`RawTableInner::ctrl`] methods. Thus, in order to uphold the safety contracts for both /// methods, you must observe the following rules when calling this function: /// /// * The [`RawTableInner`] has already been allocated; /// /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must /// be no greater than the number returned by the function [`RawTableInner::buckets`]. /// /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. /// /// See also [`Bucket::as_ptr`] method, for more information about of properly removing /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. /// /// [`RawTableInner::set_ctrl_h2`]: RawTableInner::set_ctrl_h2 /// [`RawTableInner::buckets`]: RawTableInner::buckets /// [`Bucket::as_ptr`]: Bucket::as_ptr /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn replace_ctrl_h2(&mut self, index: usize, hash: u64) -> u8 { // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::replace_ctrl_h2`] let prev_ctrl = *self.ctrl(index); self.set_ctrl_h2(index, hash); prev_ctrl } /// Sets a control byte, and possibly also the replicated control byte at /// the end of the array. /// /// This function does not make any changes to the `data` parts of the table, /// or any changes to the the `items` or `growth_left` field of the table. /// /// # Safety /// /// You must observe the following safety rules when calling this function: /// /// * The [`RawTableInner`] has already been allocated; /// /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must /// be no greater than the number returned by the function [`RawTableInner::buckets`]. /// /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. /// /// See also [`Bucket::as_ptr`] method, for more information about of properly removing /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. /// /// [`RawTableInner::buckets`]: RawTableInner::buckets /// [`Bucket::as_ptr`]: Bucket::as_ptr /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn set_ctrl(&mut self, index: usize, ctrl: u8) { // Replicate the first Group::WIDTH control bytes at the end of // the array without using a branch. If the tables smaller than // the group width (self.buckets() < Group::WIDTH), // `index2 = Group::WIDTH + index`, otherwise `index2` is: // // - If index >= Group::WIDTH then index == index2. // - Otherwise index2 == self.bucket_mask + 1 + index. // // The very last replicated control byte is never actually read because // we mask the initial index for unaligned loads, but we write it // anyways because it makes the set_ctrl implementation simpler. // // If there are fewer buckets than Group::WIDTH then this code will // replicate the buckets at the end of the trailing group. For example // with 2 buckets and a group size of 4, the control bytes will look // like this: // // Real | Replicated // --------------------------------------------- // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] | // --------------------------------------------- // This is the same as `(index.wrapping_sub(Group::WIDTH)) % self.buckets() + Group::WIDTH` // because the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH; // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl`] *self.ctrl(index) = ctrl; *self.ctrl(index2) = ctrl; } /// Returns a pointer to a control byte. /// /// # Safety /// /// For the allocated [`RawTableInner`], the result is [`Undefined Behavior`], /// if the `index` is greater than the `self.bucket_mask + 1 + Group::WIDTH`. /// In that case, calling this function with `index == self.bucket_mask + 1 + Group::WIDTH` /// will return a pointer to the end of the allocated table and it is useless on its own. /// /// Calling this function with `index >= self.bucket_mask + 1 + Group::WIDTH` on a /// table that has not been allocated results in [`Undefined Behavior`]. /// /// So to satisfy both requirements you should always follow the rule that /// `index < self.bucket_mask + 1 + Group::WIDTH` /// /// Calling this function on [`RawTableInner`] that are not already allocated is safe /// for read-only purpose. /// /// See also [`Bucket::as_ptr()`] method, for more information about of properly removing /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. /// /// [`Bucket::as_ptr()`]: Bucket::as_ptr() /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn ctrl(&self, index: usize) -> *mut u8 { debug_assert!(index < self.num_ctrl_bytes()); // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::ctrl`] self.ctrl.as_ptr().add(index) } #[inline] fn buckets(&self) -> usize { self.bucket_mask + 1 } /// Checks whether the bucket at `index` is full. /// /// # Safety /// /// The caller must ensure `index` is less than the number of buckets. #[inline] unsafe fn is_bucket_full(&self, index: usize) -> bool { debug_assert!(index < self.buckets()); is_full(*self.ctrl(index)) } #[inline] fn num_ctrl_bytes(&self) -> usize { self.bucket_mask + 1 + Group::WIDTH } #[inline] fn is_empty_singleton(&self) -> bool { self.bucket_mask == 0 } /// Attempts to allocate a new hash table with at least enough capacity /// for inserting the given number of elements without reallocating, /// and return it inside ScopeGuard to protect against panic in the hash /// function. /// /// # Note /// /// It is recommended (but not required): /// /// * That the new table's `capacity` be greater than or equal to `self.items`. /// /// * The `alloc` is the same [`Allocator`] as the `Allocator` used /// to allocate this table. /// /// * The `table_layout` is the same [`TableLayout`] as the `TableLayout` used /// to allocate this table. /// /// If `table_layout` does not match the `TableLayout` that was used to allocate /// this table, then using `mem::swap` with the `self` and the new table returned /// by this function results in [`undefined behavior`]. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[allow(clippy::mut_mut)] #[inline] fn prepare_resize<'a, A>( &self, alloc: &'a A, table_layout: TableLayout, capacity: usize, fallibility: Fallibility, ) -> Result, TryReserveError> where A: Allocator, { debug_assert!(self.items <= capacity); // Allocate and initialize the new table. let new_table = RawTableInner::fallible_with_capacity(alloc, table_layout, capacity, fallibility)?; // The hash function may panic, in which case we simply free the new // table without dropping any elements that may have been copied into // it. // // This guard is also used to free the old table on success, see // the comment at the bottom of this function. Ok(guard(new_table, move |self_| { if !self_.is_empty_singleton() { // SAFETY: // 1. We have checked that our table is allocated. // 2. We know for sure that the `alloc` and `table_layout` matches the // [`Allocator`] and [`TableLayout`] used to allocate this table. unsafe { self_.free_buckets(alloc, table_layout) }; } })) } /// Reserves or rehashes to make room for `additional` more elements. /// /// This uses dynamic dispatch to reduce the amount of /// code generated, but it is eliminated by LLVM optimizations when inlined. /// /// # Safety /// /// If any of the following conditions are violated, the result is /// [`undefined behavior`]: /// /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used /// to allocate this table. /// /// * The `layout` must be the same [`TableLayout`] as the `TableLayout` /// used to allocate this table. /// /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of /// the elements stored in the table. /// /// * The [`RawTableInner`] must have properly initialized control bytes. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[allow(clippy::inline_always)] #[inline(always)] unsafe fn reserve_rehash_inner( &mut self, alloc: &A, additional: usize, hasher: &dyn Fn(&mut Self, usize) -> u64, fallibility: Fallibility, layout: TableLayout, drop: Option, ) -> Result<(), TryReserveError> where A: Allocator, { // Avoid `Option::ok_or_else` because it bloats LLVM IR. let new_items = match self.items.checked_add(additional) { Some(new_items) => new_items, None => return Err(fallibility.capacity_overflow()), }; let full_capacity = bucket_mask_to_capacity(self.bucket_mask); if new_items <= full_capacity / 2 { // Rehash in-place without re-allocating if we have plenty of spare // capacity that is locked up due to DELETED entries. // SAFETY: // 1. We know for sure that `[`RawTableInner`]` has already been allocated // (since new_items <= full_capacity / 2); // 2. The caller ensures that `drop` function is the actual drop function of // the elements stored in the table. // 3. The caller ensures that `layout` matches the [`TableLayout`] that was // used to allocate this table. // 4. The caller ensures that the control bytes of the `RawTableInner` // are already initialized. self.rehash_in_place(hasher, layout.size, drop); Ok(()) } else { // Otherwise, conservatively resize to at least the next size up // to avoid churning deletes into frequent rehashes. // // SAFETY: // 1. We know for sure that `capacity >= self.items`. // 2. The caller ensures that `alloc` and `layout` matches the [`Allocator`] and // [`TableLayout`] that were used to allocate this table. // 3. The caller ensures that the control bytes of the `RawTableInner` // are already initialized. self.resize_inner( alloc, usize::max(new_items, full_capacity + 1), hasher, fallibility, layout, ) } } /// Returns an iterator over full buckets indices in the table. /// /// # Safety /// /// Behavior is undefined if any of the following conditions are violated: /// /// * The caller has to ensure that the `RawTableInner` outlives the /// `FullBucketsIndices`. Because we cannot make the `next` method /// unsafe on the `FullBucketsIndices` struct, we have to make the /// `full_buckets_indices` method unsafe. /// /// * The [`RawTableInner`] must have properly initialized control bytes. #[inline(always)] unsafe fn full_buckets_indices(&self) -> FullBucketsIndices { // SAFETY: // 1. Since the caller of this function ensures that the control bytes // are properly initialized and `self.ctrl(0)` points to the start // of the array of control bytes, therefore: `ctrl` is valid for reads, // properly aligned to `Group::WIDTH` and points to the properly initialized // control bytes. // 2. The value of `items` is equal to the amount of data (values) added // to the table. // // `ctrl` points here (to the start // of the first control byte `CT0`) // ∨ // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, Group::WIDTH // \________ ________/ // \/ // `n = buckets - 1`, i.e. `RawIndexTableInner::buckets() - 1` // // where: T0...T_n - our stored data; // CT0...CT_n - control bytes or metadata for `data`. let ctrl = NonNull::new_unchecked(self.ctrl(0)); FullBucketsIndices { // Load the first group // SAFETY: See explanation above. current_group: Group::load_aligned(ctrl.as_ptr()).match_full().into_iter(), group_first_index: 0, ctrl, items: self.items, } } /// Allocates a new table of a different size and moves the contents of the /// current table into it. /// /// This uses dynamic dispatch to reduce the amount of /// code generated, but it is eliminated by LLVM optimizations when inlined. /// /// # Safety /// /// If any of the following conditions are violated, the result is /// [`undefined behavior`]: /// /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used /// to allocate this table; /// /// * The `layout` must be the same [`TableLayout`] as the `TableLayout` /// used to allocate this table; /// /// * The [`RawTableInner`] must have properly initialized control bytes. /// /// The caller of this function must ensure that `capacity >= self.items` /// otherwise: /// /// * If `self.items != 0`, calling of this function with `capacity == 0` /// results in [`undefined behavior`]. /// /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and /// `self.items > capacity_to_buckets(capacity)` calling this function /// results in [`undefined behavior`]. /// /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and /// `self.items > capacity_to_buckets(capacity)` calling this function /// are never return (will go into an infinite loop). /// /// Note: It is recommended (but not required) that the new table's `capacity` /// be greater than or equal to `self.items`. In case if `capacity <= self.items` /// this function can never return. See [`RawTableInner::find_insert_slot`] for /// more information. /// /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[allow(clippy::inline_always)] #[inline(always)] unsafe fn resize_inner( &mut self, alloc: &A, capacity: usize, hasher: &dyn Fn(&mut Self, usize) -> u64, fallibility: Fallibility, layout: TableLayout, ) -> Result<(), TryReserveError> where A: Allocator, { // SAFETY: We know for sure that `alloc` and `layout` matches the [`Allocator`] and [`TableLayout`] // that were used to allocate this table. let mut new_table = self.prepare_resize(alloc, layout, capacity, fallibility)?; // SAFETY: We know for sure that RawTableInner will outlive the // returned `FullBucketsIndices` iterator, and the caller of this // function ensures that the control bytes are properly initialized. for full_byte_index in self.full_buckets_indices() { // This may panic. let hash = hasher(self, full_byte_index); // SAFETY: // We can use a simpler version of insert() here since: // 1. There are no DELETED entries. // 2. We know there is enough space in the table. // 3. All elements are unique. // 4. The caller of this function guarantees that `capacity > 0` // so `new_table` must already have some allocated memory. // 5. We set `growth_left` and `items` fields of the new table // after the loop. // 6. We insert into the table, at the returned index, the data // matching the given hash immediately after calling this function. let (new_index, _) = new_table.prepare_insert_slot(hash); // SAFETY: // // * `src` is valid for reads of `layout.size` bytes, since the // table is alive and the `full_byte_index` is guaranteed to be // within bounds (see `FullBucketsIndices::next_impl`); // // * `dst` is valid for writes of `layout.size` bytes, since the // caller ensures that `table_layout` matches the [`TableLayout`] // that was used to allocate old table and we have the `new_index` // returned by `prepare_insert_slot`. // // * Both `src` and `dst` are properly aligned. // // * Both `src` and `dst` point to different region of memory. ptr::copy_nonoverlapping( self.bucket_ptr(full_byte_index, layout.size), new_table.bucket_ptr(new_index, layout.size), layout.size, ); } // The hash function didn't panic, so we can safely set the // `growth_left` and `items` fields of the new table. new_table.growth_left -= self.items; new_table.items = self.items; // We successfully copied all elements without panicking. Now replace // self with the new table. The old table will have its memory freed but // the items will not be dropped (since they have been moved into the // new table). // SAFETY: The caller ensures that `table_layout` matches the [`TableLayout`] // that was used to allocate this table. mem::swap(self, &mut new_table); Ok(()) } /// Rehashes the contents of the table in place (i.e. without changing the /// allocation). /// /// If `hasher` panics then some the table's contents may be lost. /// /// This uses dynamic dispatch to reduce the amount of /// code generated, but it is eliminated by LLVM optimizations when inlined. /// /// # Safety /// /// If any of the following conditions are violated, the result is [`undefined behavior`]: /// /// * The `size_of` must be equal to the size of the elements stored in the table; /// /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of /// the elements stored in the table. /// /// * The [`RawTableInner`] has already been allocated; /// /// * The [`RawTableInner`] must have properly initialized control bytes. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[allow(clippy::inline_always)] #[cfg_attr(feature = "inline-more", inline(always))] #[cfg_attr(not(feature = "inline-more"), inline)] unsafe fn rehash_in_place( &mut self, hasher: &dyn Fn(&mut Self, usize) -> u64, size_of: usize, drop: Option, ) { // If the hash function panics then properly clean up any elements // that we haven't rehashed yet. We unfortunately can't preserve the // element since we lost their hash and have no way of recovering it // without risking another panic. self.prepare_rehash_in_place(); let mut guard = guard(self, move |self_| { if let Some(drop) = drop { for i in 0..self_.buckets() { if *self_.ctrl(i) == DELETED { self_.set_ctrl(i, EMPTY); drop(self_.bucket_ptr(i, size_of)); self_.items -= 1; } } } self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items; }); // At this point, DELETED elements are elements that we haven't // rehashed yet. Find them and re-insert them at their ideal // position. 'outer: for i in 0..guard.buckets() { if *guard.ctrl(i) != DELETED { continue; } let i_p = guard.bucket_ptr(i, size_of); 'inner: loop { // Hash the current item let hash = hasher(*guard, i); // Search for a suitable place to put it // // SAFETY: Caller of this function ensures that the control bytes // are properly initialized. let new_i = guard.find_insert_slot(hash).index; // Probing works by scanning through all of the control // bytes in groups, which may not be aligned to the group // size. If both the new and old position fall within the // same unaligned group, then there is no benefit in moving // it and we can just continue to the next item. if likely(guard.is_in_same_group(i, new_i, hash)) { guard.set_ctrl_h2(i, hash); continue 'outer; } let new_i_p = guard.bucket_ptr(new_i, size_of); // We are moving the current item to a new position. Write // our H2 to the control byte of the new position. let prev_ctrl = guard.replace_ctrl_h2(new_i, hash); if prev_ctrl == EMPTY { guard.set_ctrl(i, EMPTY); // If the target slot is empty, simply move the current // element into the new slot and clear the old control // byte. ptr::copy_nonoverlapping(i_p, new_i_p, size_of); continue 'outer; } else { // If the target slot is occupied, swap the two elements // and then continue processing the element that we just // swapped into the old slot. debug_assert_eq!(prev_ctrl, DELETED); ptr::swap_nonoverlapping(i_p, new_i_p, size_of); continue 'inner; } } } guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items; mem::forget(guard); } /// Deallocates the table without dropping any entries. /// /// # Note /// /// This function must be called only after [`drop_elements`](RawTable::drop_elements), /// else it can lead to leaking of memory. Also calling this function automatically /// makes invalid (dangling) all instances of buckets ([`Bucket`]) and makes invalid /// (dangling) the `ctrl` field of the table. /// /// # Safety /// /// If any of the following conditions are violated, the result is [`Undefined Behavior`]: /// /// * The [`RawTableInner`] has already been allocated; /// /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used /// to allocate this table. /// /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that was used /// to allocate this table. /// /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. /// /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate #[inline] unsafe fn free_buckets(&mut self, alloc: &A, table_layout: TableLayout) where A: Allocator, { // SAFETY: The caller must uphold the safety contract for `free_buckets` // method. let (ptr, layout) = self.allocation_info(table_layout); alloc.deallocate(ptr, layout); } /// Returns a pointer to the allocated memory and the layout that was used to /// allocate the table. /// /// # Safety /// /// Caller of this function must observe the following safety rules: /// /// * The [`RawTableInner`] has already been allocated, otherwise /// calling this function results in [`undefined behavior`] /// /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` /// that was used to allocate this table. Failure to comply with this condition /// may result in [`undefined behavior`]. /// /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate #[inline] unsafe fn allocation_info(&self, table_layout: TableLayout) -> (NonNull, Layout) { debug_assert!( !self.is_empty_singleton(), "this function can only be called on non-empty tables" ); // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) { Some(lco) => lco, None => unsafe { hint::unreachable_unchecked() }, }; ( // SAFETY: The caller must uphold the safety contract for `allocation_info` method. unsafe { NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)) }, layout, ) } /// Returns a pointer to the allocated memory and the layout that was used to /// allocate the table. If [`RawTableInner`] has not been allocated, this /// function return `dangling` pointer and `()` (unit) layout. /// /// # Safety /// /// The `table_layout` must be the same [`TableLayout`] as the `TableLayout` /// that was used to allocate this table. Failure to comply with this condition /// may result in [`undefined behavior`]. /// /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate #[cfg(feature = "raw")] unsafe fn allocation_info_or_zero(&self, table_layout: TableLayout) -> (NonNull, Layout) { if self.is_empty_singleton() { (NonNull::dangling(), Layout::new::<()>()) } else { // SAFETY: // 1. We have checked that our table is allocated. // 2. The caller ensures that `table_layout` matches the [`TableLayout`] // that was used to allocate this table. unsafe { self.allocation_info(table_layout) } } } /// Marks all table buckets as empty without dropping their contents. #[inline] fn clear_no_drop(&mut self) { if !self.is_empty_singleton() { unsafe { self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes()); } } self.items = 0; self.growth_left = bucket_mask_to_capacity(self.bucket_mask); } /// Erases the [`Bucket`]'s control byte at the given index so that it does not /// triggered as full, decreases the `items` of the table and, if it can be done, /// increases `self.growth_left`. /// /// This function does not actually erase / drop the [`Bucket`] itself, i.e. it /// does not make any changes to the `data` parts of the table. The caller of this /// function must take care to properly drop the `data`, otherwise calling this /// function may result in a memory leak. /// /// # Safety /// /// You must observe the following safety rules when calling this function: /// /// * The [`RawTableInner`] has already been allocated; /// /// * It must be the full control byte at the given position; /// /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must /// be no greater than the number returned by the function [`RawTableInner::buckets`]. /// /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. /// /// Calling this function on a table with no elements is unspecified, but calling subsequent /// functions is likely to result in [`undefined behavior`] due to overflow subtraction /// (`self.items -= 1 cause overflow when self.items == 0`). /// /// See also [`Bucket::as_ptr`] method, for more information about of properly removing /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. /// /// [`RawTableInner::buckets`]: RawTableInner::buckets /// [`Bucket::as_ptr`]: Bucket::as_ptr /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline] unsafe fn erase(&mut self, index: usize) { debug_assert!(self.is_bucket_full(index)); // This is the same as `index.wrapping_sub(Group::WIDTH) % self.buckets()` because // the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask; // SAFETY: // - The caller must uphold the safety contract for `erase` method; // - `index_before` is guaranteed to be in range due to masking with `self.bucket_mask` let empty_before = Group::load(self.ctrl(index_before)).match_empty(); let empty_after = Group::load(self.ctrl(index)).match_empty(); // Inserting and searching in the map is performed by two key functions: // // - The `find_insert_slot` function that looks up the index of any `EMPTY` or `DELETED` // slot in a group to be able to insert. If it doesn't find an `EMPTY` or `DELETED` // slot immediately in the first group, it jumps to the next `Group` looking for it, // and so on until it has gone through all the groups in the control bytes. // // - The `find_inner` function that looks for the index of the desired element by looking // at all the `FULL` bytes in the group. If it did not find the element right away, and // there is no `EMPTY` byte in the group, then this means that the `find_insert_slot` // function may have found a suitable slot in the next group. Therefore, `find_inner` // jumps further, and if it does not find the desired element and again there is no `EMPTY` // byte, then it jumps further, and so on. The search stops only if `find_inner` function // finds the desired element or hits an `EMPTY` slot/byte. // // Accordingly, this leads to two consequences: // // - The map must have `EMPTY` slots (bytes); // // - You can't just mark the byte to be erased as `EMPTY`, because otherwise the `find_inner` // function may stumble upon an `EMPTY` byte before finding the desired element and stop // searching. // // Thus it is necessary to check all bytes after and before the erased element. If we are in // a contiguous `Group` of `FULL` or `DELETED` bytes (the number of `FULL` or `DELETED` bytes // before and after is greater than or equal to `Group::WIDTH`), then we must mark our byte as // `DELETED` in order for the `find_inner` function to go further. On the other hand, if there // is at least one `EMPTY` slot in the `Group`, then the `find_inner` function will still stumble // upon an `EMPTY` byte, so we can safely mark our erased byte as `EMPTY` as well. // // Finally, since `index_before == (index.wrapping_sub(Group::WIDTH) & self.bucket_mask) == index` // and given all of the above, tables smaller than the group width (self.buckets() < Group::WIDTH) // cannot have `DELETED` bytes. // // Note that in this context `leading_zeros` refers to the bytes at the end of a group, while // `trailing_zeros` refers to the bytes at the beginning of a group. let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH { DELETED } else { self.growth_left += 1; EMPTY }; // SAFETY: the caller must uphold the safety contract for `erase` method. self.set_ctrl(index, ctrl); self.items -= 1; } } impl Clone for RawTable { fn clone(&self) -> Self { if self.table.is_empty_singleton() { Self::new_in(self.alloc.clone()) } else { unsafe { // Avoid `Result::ok_or_else` because it bloats LLVM IR. // // SAFETY: This is safe as we are taking the size of an already allocated table // and therefore сapacity overflow cannot occur, `self.table.buckets()` is power // of two and all allocator errors will be caught inside `RawTableInner::new_uninitialized`. let mut new_table = match Self::new_uninitialized( self.alloc.clone(), self.table.buckets(), Fallibility::Infallible, ) { Ok(table) => table, Err(_) => hint::unreachable_unchecked(), }; // Cloning elements may fail (the clone function may panic). But we don't // need to worry about uninitialized control bits, since: // 1. The number of items (elements) in the table is zero, which means that // the control bits will not be readed by Drop function. // 2. The `clone_from_spec` method will first copy all control bits from // `self` (thus initializing them). But this will not affect the `Drop` // function, since the `clone_from_spec` function sets `items` only after // successfully clonning all elements. new_table.clone_from_spec(self); new_table } } } fn clone_from(&mut self, source: &Self) { if source.table.is_empty_singleton() { let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW); unsafe { // SAFETY: // 1. We call the function only once; // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] // and [`TableLayout`] that were used to allocate this table. // 3. If any elements' drop function panics, then there will only be a memory leak, // because we have replaced the inner table with a new one. old_inner.drop_inner_table::(&self.alloc, Self::TABLE_LAYOUT); } } else { unsafe { // Make sure that if any panics occurs, we clear the table and // leave it in an empty state. let mut self_ = guard(self, |self_| { self_.clear_no_drop(); }); // First, drop all our elements without clearing the control // bytes. If this panics then the scope guard will clear the // table, leaking any elements that were not dropped yet. // // This leak is unavoidable: we can't try dropping more elements // since this could lead to another panic and abort the process. // // SAFETY: If something gets wrong we clear our table right after // dropping the elements, so there is no double drop, since `items` // will be equal to zero. self_.table.drop_elements::(); // If necessary, resize our table to match the source. if self_.buckets() != source.buckets() { let new_inner = match RawTableInner::new_uninitialized( &self_.alloc, Self::TABLE_LAYOUT, source.buckets(), Fallibility::Infallible, ) { Ok(table) => table, Err(_) => hint::unreachable_unchecked(), }; // Replace the old inner with new uninitialized one. It's ok, since if something gets // wrong `ScopeGuard` will initialize all control bytes and leave empty table. let mut old_inner = mem::replace(&mut self_.table, new_inner); if !old_inner.is_empty_singleton() { // SAFETY: // 1. We have checked that our table is allocated. // 2. We know for sure that `alloc` and `table_layout` matches // the [`Allocator`] and [`TableLayout`] that were used to allocate this table. old_inner.free_buckets(&self_.alloc, Self::TABLE_LAYOUT); } } // Cloning elements may fail (the clone function may panic), but the `ScopeGuard` // inside the `clone_from_impl` function will take care of that, dropping all // cloned elements if necessary. Our `ScopeGuard` will clear the table. self_.clone_from_spec(source); // Disarm the scope guard if cloning was successful. ScopeGuard::into_inner(self_); } } } } /// Specialization of `clone_from` for `Copy` types trait RawTableClone { unsafe fn clone_from_spec(&mut self, source: &Self); } impl RawTableClone for RawTable { default_fn! { #[cfg_attr(feature = "inline-more", inline)] unsafe fn clone_from_spec(&mut self, source: &Self) { self.clone_from_impl(source); } } } #[cfg(feature = "nightly")] impl RawTableClone for RawTable { #[cfg_attr(feature = "inline-more", inline)] unsafe fn clone_from_spec(&mut self, source: &Self) { source .table .ctrl(0) .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); source .data_start() .as_ptr() .copy_to_nonoverlapping(self.data_start().as_ptr(), self.table.buckets()); self.table.items = source.table.items; self.table.growth_left = source.table.growth_left; } } impl RawTable { /// Common code for clone and clone_from. Assumes: /// - `self.buckets() == source.buckets()`. /// - Any existing elements have been dropped. /// - The control bytes are not initialized yet. #[cfg_attr(feature = "inline-more", inline)] unsafe fn clone_from_impl(&mut self, source: &Self) { // Copy the control bytes unchanged. We do this in a single pass source .table .ctrl(0) .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); // The cloning of elements may panic, in which case we need // to make sure we drop only the elements that have been // cloned so far. let mut guard = guard((0, &mut *self), |(index, self_)| { if T::NEEDS_DROP { for i in 0..=*index { if self_.is_bucket_full(i) { self_.bucket(i).drop(); } } } }); for from in source.iter() { let index = source.bucket_index(&from); let to = guard.1.bucket(index); to.write(from.as_ref().clone()); // Update the index in case we need to unwind. guard.0 = index; } // Successfully cloned all items, no need to clean up. mem::forget(guard); self.table.items = source.table.items; self.table.growth_left = source.table.growth_left; } /// Variant of `clone_from` to use when a hasher is available. #[cfg(feature = "raw")] pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) { // If we have enough capacity in the table, just clear it and insert // elements one by one. We don't do this if we have the same number of // buckets as the source since we can just copy the contents directly // in that case. if self.table.buckets() != source.table.buckets() && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len() { self.clear(); let mut guard_self = guard(&mut *self, |self_| { // Clear the partially copied table if a panic occurs, otherwise // items and growth_left will be out of sync with the contents // of the table. self_.clear(); }); unsafe { for item in source.iter() { // This may panic. let item = item.as_ref().clone(); let hash = hasher(&item); // We can use a simpler version of insert() here since: // - there are no DELETED entries. // - we know there is enough space in the table. // - all elements are unique. let (index, _) = guard_self.table.prepare_insert_slot(hash); guard_self.bucket(index).write(item); } } // Successfully cloned all items, no need to clean up. mem::forget(guard_self); self.table.items = source.table.items; self.table.growth_left -= source.table.items; } else { self.clone_from(source); } } } impl Default for RawTable { #[inline] fn default() -> Self { Self::new_in(Default::default()) } } #[cfg(feature = "nightly")] unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawTable { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // SAFETY: // 1. We call the function only once; // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] // and [`TableLayout`] that were used to allocate this table. // 3. If the drop function of any elements fails, then only a memory leak will occur, // and we don't care because we are inside the `Drop` function of the `RawTable`, // so there won't be any table left in an inconsistent state. self.table .drop_inner_table::(&self.alloc, Self::TABLE_LAYOUT); } } } #[cfg(not(feature = "nightly"))] impl Drop for RawTable { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // SAFETY: // 1. We call the function only once; // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] // and [`TableLayout`] that were used to allocate this table. // 3. If the drop function of any elements fails, then only a memory leak will occur, // and we don't care because we are inside the `Drop` function of the `RawTable`, // so there won't be any table left in an inconsistent state. self.table .drop_inner_table::(&self.alloc, Self::TABLE_LAYOUT); } } } impl IntoIterator for RawTable { type Item = T; type IntoIter = RawIntoIter; #[cfg_attr(feature = "inline-more", inline)] fn into_iter(self) -> RawIntoIter { unsafe { let iter = self.iter(); self.into_iter_from(iter) } } } /// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does /// not track an item count. pub(crate) struct RawIterRange { // Mask of full buckets in the current group. Bits are cleared from this // mask as each element is processed. current_group: BitMaskIter, // Pointer to the buckets for the current group. data: Bucket, // Pointer to the next group of control bytes, // Must be aligned to the group size. next_ctrl: *const u8, // Pointer one past the last control byte of this range. end: *const u8, } impl RawIterRange { /// Returns a `RawIterRange` covering a subset of a table. /// /// # Safety /// /// If any of the following conditions are violated, the result is /// [`undefined behavior`]: /// /// * `ctrl` must be [valid] for reads, i.e. table outlives the `RawIterRange`; /// /// * `ctrl` must be properly aligned to the group size (Group::WIDTH); /// /// * `ctrl` must point to the array of properly initialized control bytes; /// /// * `data` must be the [`Bucket`] at the `ctrl` index in the table; /// /// * the value of `len` must be less than or equal to the number of table buckets, /// and the returned value of `ctrl.as_ptr().add(len).offset_from(ctrl.as_ptr())` /// must be positive. /// /// * The `ctrl.add(len)` pointer must be either in bounds or one /// byte past the end of the same [allocated table]. /// /// * The `len` must be a power of two. /// /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[cfg_attr(feature = "inline-more", inline)] unsafe fn new(ctrl: *const u8, data: Bucket, len: usize) -> Self { debug_assert_ne!(len, 0); debug_assert_eq!(ctrl as usize % Group::WIDTH, 0); // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`] let end = ctrl.add(len); // Load the first group and advance ctrl to point to the next group // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`] let current_group = Group::load_aligned(ctrl).match_full(); let next_ctrl = ctrl.add(Group::WIDTH); Self { current_group: current_group.into_iter(), data, next_ctrl, end, } } /// Splits a `RawIterRange` into two halves. /// /// Returns `None` if the remaining range is smaller than or equal to the /// group width. #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "rayon")] pub(crate) fn split(mut self) -> (Self, Option>) { unsafe { if self.end <= self.next_ctrl { // Nothing to split if the group that we are current processing // is the last one. (self, None) } else { // len is the remaining number of elements after the group that // we are currently processing. It must be a multiple of the // group size (small tables are caught by the check above). let len = offset_from(self.end, self.next_ctrl); debug_assert_eq!(len % Group::WIDTH, 0); // Split the remaining elements into two halves, but round the // midpoint down in case there is an odd number of groups // remaining. This ensures that: // - The tail is at least 1 group long. // - The split is roughly even considering we still have the // current group to process. let mid = (len / 2) & !(Group::WIDTH - 1); let tail = Self::new( self.next_ctrl.add(mid), self.data.next_n(Group::WIDTH).next_n(mid), len - mid, ); debug_assert_eq!( self.data.next_n(Group::WIDTH).next_n(mid).ptr, tail.data.ptr ); debug_assert_eq!(self.end, tail.end); self.end = self.next_ctrl.add(mid); debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl); (self, Some(tail)) } } } /// # Safety /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate /// after yielding all elements. #[cfg_attr(feature = "inline-more", inline)] unsafe fn next_impl(&mut self) -> Option> { loop { if let Some(index) = self.current_group.next() { return Some(self.data.next_n(index)); } if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end { return None; } // We might read past self.end up to the next group boundary, // but this is fine because it only occurs on tables smaller // than the group size where the trailing control bytes are all // EMPTY. On larger tables self.end is guaranteed to be aligned // to the group size (since tables are power-of-two sized). self.current_group = Group::load_aligned(self.next_ctrl).match_full().into_iter(); self.data = self.data.next_n(Group::WIDTH); self.next_ctrl = self.next_ctrl.add(Group::WIDTH); } } } // We make raw iterators unconditionally Send and Sync, and let the PhantomData // in the actual iterator implementations determine the real Send/Sync bounds. unsafe impl Send for RawIterRange {} unsafe impl Sync for RawIterRange {} impl Clone for RawIterRange { #[cfg_attr(feature = "inline-more", inline)] fn clone(&self) -> Self { Self { data: self.data.clone(), next_ctrl: self.next_ctrl, current_group: self.current_group, end: self.end, } } } impl Iterator for RawIterRange { type Item = Bucket; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option> { unsafe { // SAFETY: We set checker flag to true. self.next_impl::() } } #[inline] fn size_hint(&self) -> (usize, Option) { // We don't have an item count, so just guess based on the range size. let remaining_buckets = if self.end > self.next_ctrl { unsafe { offset_from(self.end, self.next_ctrl) } } else { 0 }; // Add a group width to include the group we are currently processing. (0, Some(Group::WIDTH + remaining_buckets)) } } impl FusedIterator for RawIterRange {} /// Iterator which returns a raw pointer to every full bucket in the table. /// /// For maximum flexibility this iterator is not bound by a lifetime, but you /// must observe several rules when using it: /// - You must not free the hash table while iterating (including via growing/shrinking). /// - It is fine to erase a bucket that has been yielded by the iterator. /// - Erasing a bucket that has not yet been yielded by the iterator may still /// result in the iterator yielding that bucket (unless `reflect_remove` is called). /// - It is unspecified whether an element inserted after the iterator was /// created will be yielded by that iterator (unless `reflect_insert` is called). /// - The order in which the iterator yields bucket is unspecified and may /// change in the future. pub struct RawIter { pub(crate) iter: RawIterRange, items: usize, } impl RawIter { /// Refresh the iterator so that it reflects a removal from the given bucket. /// /// For the iterator to remain valid, this method must be called once /// for each removed bucket before `next` is called again. /// /// This method should be called _before_ the removal is made. It is not necessary to call this /// method if you are removing an item that this iterator yielded in the past. #[cfg(feature = "raw")] pub unsafe fn reflect_remove(&mut self, b: &Bucket) { self.reflect_toggle_full(b, false); } /// Refresh the iterator so that it reflects an insertion into the given bucket. /// /// For the iterator to remain valid, this method must be called once /// for each insert before `next` is called again. /// /// This method does not guarantee that an insertion of a bucket with a greater /// index than the last one yielded will be reflected in the iterator. /// /// This method should be called _after_ the given insert is made. #[cfg(feature = "raw")] pub unsafe fn reflect_insert(&mut self, b: &Bucket) { self.reflect_toggle_full(b, true); } /// Refresh the iterator so that it reflects a change to the state of the given bucket. #[cfg(feature = "raw")] unsafe fn reflect_toggle_full(&mut self, b: &Bucket, is_insert: bool) { if b.as_ptr() > self.iter.data.as_ptr() { // The iterator has already passed the bucket's group. // So the toggle isn't relevant to this iterator. return; } if self.iter.next_ctrl < self.iter.end && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr() { // The iterator has not yet reached the bucket's group. // We don't need to reload anything, but we do need to adjust the item count. if cfg!(debug_assertions) { // Double-check that the user isn't lying to us by checking the bucket state. // To do that, we need to find its control byte. We know that self.iter.data is // at self.iter.next_ctrl - Group::WIDTH, so we work from there: let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr()); let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset); // This method should be called _before_ a removal, or _after_ an insert, // so in both cases the ctrl byte should indicate that the bucket is full. assert!(is_full(*ctrl)); } if is_insert { self.items += 1; } else { self.items -= 1; } return; } // The iterator is at the bucket group that the toggled bucket is in. // We need to do two things: // // - Determine if the iterator already yielded the toggled bucket. // If it did, we're done. // - Otherwise, update the iterator cached group so that it won't // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket. // We'll also need to update the item count accordingly. if let Some(index) = self.iter.current_group.0.lowest_set_bit() { let next_bucket = self.iter.data.next_n(index); if b.as_ptr() > next_bucket.as_ptr() { // The toggled bucket is "before" the bucket the iterator would yield next. We // therefore don't need to do anything --- the iterator has already passed the // bucket in question. // // The item count must already be correct, since a removal or insert "prior" to // the iterator's position wouldn't affect the item count. } else { // The removed bucket is an upcoming bucket. We need to make sure it does _not_ // get yielded, and also that it's no longer included in the item count. // // NOTE: We can't just reload the group here, both since that might reflect // inserts we've already passed, and because that might inadvertently unset the // bits for _other_ removals. If we do that, we'd have to also decrement the // item count for those other bits that we unset. But the presumably subsequent // call to reflect for those buckets might _also_ decrement the item count. // Instead, we _just_ flip the bit for the particular bucket the caller asked // us to reflect. let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr()); let was_full = self.iter.current_group.flip(our_bit); debug_assert_ne!(was_full, is_insert); if is_insert { self.items += 1; } else { self.items -= 1; } if cfg!(debug_assertions) { if b.as_ptr() == next_bucket.as_ptr() { // The removed bucket should no longer be next debug_assert_ne!(self.iter.current_group.0.lowest_set_bit(), Some(index)); } else { // We should not have changed what bucket comes next. debug_assert_eq!(self.iter.current_group.0.lowest_set_bit(), Some(index)); } } } } else { // We must have already iterated past the removed item. } } unsafe fn drop_elements(&mut self) { if T::NEEDS_DROP && self.items != 0 { for item in self { item.drop(); } } } } impl Clone for RawIter { #[cfg_attr(feature = "inline-more", inline)] fn clone(&self) -> Self { Self { iter: self.iter.clone(), items: self.items, } } } impl Iterator for RawIter { type Item = Bucket; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option> { // Inner iterator iterates over buckets // so it can do unnecessary work if we already yielded all items. if self.items == 0 { return None; } let nxt = unsafe { // SAFETY: We check number of items to yield using `items` field. self.iter.next_impl::() }; debug_assert!(nxt.is_some()); self.items -= 1; nxt } #[inline] fn size_hint(&self) -> (usize, Option) { (self.items, Some(self.items)) } } impl ExactSizeIterator for RawIter {} impl FusedIterator for RawIter {} /// Iterator which returns an index of every full bucket in the table. /// /// For maximum flexibility this iterator is not bound by a lifetime, but you /// must observe several rules when using it: /// - You must not free the hash table while iterating (including via growing/shrinking). /// - It is fine to erase a bucket that has been yielded by the iterator. /// - Erasing a bucket that has not yet been yielded by the iterator may still /// result in the iterator yielding index of that bucket. /// - It is unspecified whether an element inserted after the iterator was /// created will be yielded by that iterator. /// - The order in which the iterator yields indices of the buckets is unspecified /// and may change in the future. pub(crate) struct FullBucketsIndices { // Mask of full buckets in the current group. Bits are cleared from this // mask as each element is processed. current_group: BitMaskIter, // Initial value of the bytes' indices of the current group (relative // to the start of the control bytes). group_first_index: usize, // Pointer to the current group of control bytes, // Must be aligned to the group size (Group::WIDTH). ctrl: NonNull, // Number of elements in the table. items: usize, } impl FullBucketsIndices { /// Advances the iterator and returns the next value. /// /// # Safety /// /// If any of the following conditions are violated, the result is /// [`Undefined Behavior`]: /// /// * The [`RawTableInner`] / [`RawTable`] must be alive and not moved, /// i.e. table outlives the `FullBucketsIndices`; /// /// * It never tries to iterate after getting all elements. /// /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html #[inline(always)] unsafe fn next_impl(&mut self) -> Option { loop { if let Some(index) = self.current_group.next() { // The returned `self.group_first_index + index` will always // be in the range `0..self.buckets()`. See explanation below. return Some(self.group_first_index + index); } // SAFETY: The caller of this function ensures that: // // 1. It never tries to iterate after getting all the elements; // 2. The table is alive and did not moved; // 3. The first `self.ctrl` pointed to the start of the array of control bytes. // // Taking the above into account, we always stay within the bounds, because: // // 1. For tables smaller than the group width (self.buckets() <= Group::WIDTH), // we will never end up in the given branch, since we should have already // yielded all the elements of the table. // // 2. For tables larger than the group width. The the number of buckets is a // power of two (2 ^ n), Group::WIDTH is also power of two (2 ^ k). Sinse // `(2 ^ n) > (2 ^ k)`, than `(2 ^ n) % (2 ^ k) = 0`. As we start from the // the start of the array of control bytes, and never try to iterate after // getting all the elements, the last `self.ctrl` will be equal to // the `self.buckets() - Group::WIDTH`, so `self.current_group.next()` // will always contains indices within the range `0..Group::WIDTH`, // and subsequent `self.group_first_index + index` will always return a // number less than `self.buckets()`. self.ctrl = NonNull::new_unchecked(self.ctrl.as_ptr().add(Group::WIDTH)); // SAFETY: See explanation above. self.current_group = Group::load_aligned(self.ctrl.as_ptr()) .match_full() .into_iter(); self.group_first_index += Group::WIDTH; } } } impl Iterator for FullBucketsIndices { type Item = usize; /// Advances the iterator and returns the next value. It is up to /// the caller to ensure that the `RawTable` outlives the `FullBucketsIndices`, /// because we cannot make the `next` method unsafe. #[inline(always)] fn next(&mut self) -> Option { // Return if we already yielded all items. if self.items == 0 { return None; } let nxt = unsafe { // SAFETY: // 1. We check number of items to yield using `items` field. // 2. The caller ensures that the table is alive and has not moved. self.next_impl() }; debug_assert!(nxt.is_some()); self.items -= 1; nxt } #[inline(always)] fn size_hint(&self) -> (usize, Option) { (self.items, Some(self.items)) } } impl ExactSizeIterator for FullBucketsIndices {} impl FusedIterator for FullBucketsIndices {} /// Iterator which consumes a table and returns elements. pub struct RawIntoIter { iter: RawIter, allocation: Option<(NonNull, Layout, A)>, marker: PhantomData, } impl RawIntoIter { #[cfg_attr(feature = "inline-more", inline)] pub fn iter(&self) -> RawIter { self.iter.clone() } } unsafe impl Send for RawIntoIter where T: Send, A: Send, { } unsafe impl Sync for RawIntoIter where T: Sync, A: Sync, { } #[cfg(feature = "nightly")] unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawIntoIter { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // Drop all remaining elements self.iter.drop_elements(); // Free the table if let Some((ptr, layout, ref alloc)) = self.allocation { alloc.deallocate(ptr, layout); } } } } #[cfg(not(feature = "nightly"))] impl Drop for RawIntoIter { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // Drop all remaining elements self.iter.drop_elements(); // Free the table if let Some((ptr, layout, ref alloc)) = self.allocation { alloc.deallocate(ptr, layout); } } } } impl Iterator for RawIntoIter { type Item = T; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option { unsafe { Some(self.iter.next()?.read()) } } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl ExactSizeIterator for RawIntoIter {} impl FusedIterator for RawIntoIter {} /// Iterator which consumes elements without freeing the table storage. pub struct RawDrain<'a, T, A: Allocator = Global> { iter: RawIter, // The table is moved into the iterator for the duration of the drain. This // ensures that an empty table is left if the drain iterator is leaked // without dropping. table: RawTableInner, orig_table: NonNull, // We don't use a &'a mut RawTable because we want RawDrain to be // covariant over T. marker: PhantomData<&'a RawTable>, } impl RawDrain<'_, T, A> { #[cfg_attr(feature = "inline-more", inline)] pub fn iter(&self) -> RawIter { self.iter.clone() } } unsafe impl Send for RawDrain<'_, T, A> where T: Send, A: Send, { } unsafe impl Sync for RawDrain<'_, T, A> where T: Sync, A: Sync, { } impl Drop for RawDrain<'_, T, A> { #[cfg_attr(feature = "inline-more", inline)] fn drop(&mut self) { unsafe { // Drop all remaining elements. Note that this may panic. self.iter.drop_elements(); // Reset the contents of the table now that all elements have been // dropped. self.table.clear_no_drop(); // Move the now empty table back to its original location. self.orig_table .as_ptr() .copy_from_nonoverlapping(&self.table, 1); } } } impl Iterator for RawDrain<'_, T, A> { type Item = T; #[cfg_attr(feature = "inline-more", inline)] fn next(&mut self) -> Option { unsafe { let item = self.iter.next()?; Some(item.read()) } } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl ExactSizeIterator for RawDrain<'_, T, A> {} impl FusedIterator for RawDrain<'_, T, A> {} /// Iterator over occupied buckets that could match a given hash. /// /// `RawTable` only stores 7 bits of the hash value, so this iterator may return /// items that have a hash value different than the one provided. You should /// always validate the returned values before using them. /// /// For maximum flexibility this iterator is not bound by a lifetime, but you /// must observe several rules when using it: /// - You must not free the hash table while iterating (including via growing/shrinking). /// - It is fine to erase a bucket that has been yielded by the iterator. /// - Erasing a bucket that has not yet been yielded by the iterator may still /// result in the iterator yielding that bucket. /// - It is unspecified whether an element inserted after the iterator was /// created will be yielded by that iterator. /// - The order in which the iterator yields buckets is unspecified and may /// change in the future. pub struct RawIterHash { inner: RawIterHashInner, _marker: PhantomData, } struct RawIterHashInner { // See `RawTableInner`'s corresponding fields for details. // We can't store a `*const RawTableInner` as it would get // invalidated by the user calling `&mut` methods on `RawTable`. bucket_mask: usize, ctrl: NonNull, // The top 7 bits of the hash. h2_hash: u8, // The sequence of groups to probe in the search. probe_seq: ProbeSeq, group: Group, // The elements within the group with a matching h2-hash. bitmask: BitMaskIter, } impl RawIterHash { #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "raw")] unsafe fn new(table: &RawTable, hash: u64) -> Self { RawIterHash { inner: RawIterHashInner::new(&table.table, hash), _marker: PhantomData, } } } impl RawIterHashInner { #[cfg_attr(feature = "inline-more", inline)] #[cfg(feature = "raw")] unsafe fn new(table: &RawTableInner, hash: u64) -> Self { let h2_hash = h2(hash); let probe_seq = table.probe_seq(hash); let group = Group::load(table.ctrl(probe_seq.pos)); let bitmask = group.match_byte(h2_hash).into_iter(); RawIterHashInner { bucket_mask: table.bucket_mask, ctrl: table.ctrl, h2_hash, probe_seq, group, bitmask, } } } impl Iterator for RawIterHash { type Item = Bucket; fn next(&mut self) -> Option> { unsafe { match self.inner.next() { Some(index) => { // Can't use `RawTable::bucket` here as we don't have // an actual `RawTable` reference to use. debug_assert!(index <= self.inner.bucket_mask); let bucket = Bucket::from_base_index(self.inner.ctrl.cast(), index); Some(bucket) } None => None, } } } } impl Iterator for RawIterHashInner { type Item = usize; fn next(&mut self) -> Option { unsafe { loop { if let Some(bit) = self.bitmask.next() { let index = (self.probe_seq.pos + bit) & self.bucket_mask; return Some(index); } if likely(self.group.match_empty().any_bit_set()) { return None; } self.probe_seq.move_next(self.bucket_mask); // Can't use `RawTableInner::ctrl` here as we don't have // an actual `RawTableInner` reference to use. let index = self.probe_seq.pos; debug_assert!(index < self.bucket_mask + 1 + Group::WIDTH); let group_ctrl = self.ctrl.as_ptr().add(index); self.group = Group::load(group_ctrl); self.bitmask = self.group.match_byte(self.h2_hash).into_iter(); } } } } #[cfg(test)] mod test_map { use super::*; fn rehash_in_place(table: &mut RawTable, hasher: impl Fn(&T) -> u64) { unsafe { table.table.rehash_in_place( &|table, index| hasher(table.bucket::(index).as_ref()), mem::size_of::(), if mem::needs_drop::() { Some(mem::transmute(ptr::drop_in_place:: as unsafe fn(*mut T))) } else { None }, ); } } #[test] fn rehash() { let mut table = RawTable::new(); let hasher = |i: &u64| *i; for i in 0..100 { table.insert(i, i, hasher); } for i in 0..100 { unsafe { assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); } assert!(table.find(i + 100, |x| *x == i + 100).is_none()); } rehash_in_place(&mut table, hasher); for i in 0..100 { unsafe { assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); } assert!(table.find(i + 100, |x| *x == i + 100).is_none()); } } /// CHECKING THAT WE ARE NOT TRYING TO READ THE MEMORY OF /// AN UNINITIALIZED TABLE DURING THE DROP #[test] fn test_drop_uninitialized() { use ::alloc::vec::Vec; let table = unsafe { // SAFETY: The `buckets` is power of two and we're not // trying to actually use the returned RawTable. RawTable::<(u64, Vec)>::new_uninitialized(Global, 8, Fallibility::Infallible) .unwrap() }; drop(table); } /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS` /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES. #[test] fn test_drop_zero_items() { use ::alloc::vec::Vec; unsafe { // SAFETY: The `buckets` is power of two and we're not // trying to actually use the returned RawTable. let table = RawTable::<(u64, Vec)>::new_uninitialized(Global, 8, Fallibility::Infallible) .unwrap(); // WE SIMULATE, AS IT WERE, A FULL TABLE. // SAFETY: We checked that the table is allocated and therefore the table already has // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for) // so writing `table.table.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe. table .table .ctrl(0) .write_bytes(EMPTY, table.table.num_ctrl_bytes()); // SAFETY: table.capacity() is guaranteed to be smaller than table.buckets() table.table.ctrl(0).write_bytes(0, table.capacity()); // Fix up the trailing control bytes. See the comments in set_ctrl // for the handling of tables smaller than the group width. if table.buckets() < Group::WIDTH { // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes, // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to // `Group::WIDTH` is safe table .table .ctrl(0) .copy_to(table.table.ctrl(Group::WIDTH), table.table.buckets()); } else { // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of // control bytes,so copying `Group::WIDTH` bytes with offset equal // to `self.buckets() == self.bucket_mask + 1` is safe table .table .ctrl(0) .copy_to(table.table.ctrl(table.table.buckets()), Group::WIDTH); } drop(table); } } /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS` /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES. #[test] fn test_catch_panic_clone_from() { use ::alloc::sync::Arc; use ::alloc::vec::Vec; use allocator_api2::alloc::{AllocError, Allocator, Global}; use core::sync::atomic::{AtomicI8, Ordering}; use std::thread; struct MyAllocInner { drop_count: Arc, } #[derive(Clone)] struct MyAlloc { _inner: Arc, } impl Drop for MyAllocInner { fn drop(&mut self) { println!("MyAlloc freed."); self.drop_count.fetch_sub(1, Ordering::SeqCst); } } unsafe impl Allocator for MyAlloc { fn allocate(&self, layout: Layout) -> std::result::Result, AllocError> { let g = Global; g.allocate(layout) } unsafe fn deallocate(&self, ptr: NonNull, layout: Layout) { let g = Global; g.deallocate(ptr, layout) } } const DISARMED: bool = false; const ARMED: bool = true; struct CheckedCloneDrop { panic_in_clone: bool, dropped: bool, need_drop: Vec, } impl Clone for CheckedCloneDrop { fn clone(&self) -> Self { if self.panic_in_clone { panic!("panic in clone") } Self { panic_in_clone: self.panic_in_clone, dropped: self.dropped, need_drop: self.need_drop.clone(), } } } impl Drop for CheckedCloneDrop { fn drop(&mut self) { if self.dropped { panic!("double drop"); } self.dropped = true; } } let dropped: Arc = Arc::new(AtomicI8::new(2)); let mut table = RawTable::new_in(MyAlloc { _inner: Arc::new(MyAllocInner { drop_count: dropped.clone(), }), }); for (idx, panic_in_clone) in core::iter::repeat(DISARMED).take(7).enumerate() { let idx = idx as u64; table.insert( idx, ( idx, CheckedCloneDrop { panic_in_clone, dropped: false, need_drop: vec![idx], }, ), |(k, _)| *k, ); } assert_eq!(table.len(), 7); thread::scope(|s| { let result = s.spawn(|| { let armed_flags = [ DISARMED, DISARMED, ARMED, DISARMED, DISARMED, DISARMED, DISARMED, ]; let mut scope_table = RawTable::new_in(MyAlloc { _inner: Arc::new(MyAllocInner { drop_count: dropped.clone(), }), }); for (idx, &panic_in_clone) in armed_flags.iter().enumerate() { let idx = idx as u64; scope_table.insert( idx, ( idx, CheckedCloneDrop { panic_in_clone, dropped: false, need_drop: vec![idx + 100], }, ), |(k, _)| *k, ); } table.clone_from(&scope_table); }); assert!(result.join().is_err()); }); // Let's check that all iterators work fine and do not return elements // (especially `RawIterRange`, which does not depend on the number of // elements in the table, but looks directly at the control bytes) // // SAFETY: We know for sure that `RawTable` will outlive // the returned `RawIter / RawIterRange` iterator. assert_eq!(table.len(), 0); assert_eq!(unsafe { table.iter().count() }, 0); assert_eq!(unsafe { table.iter().iter.count() }, 0); for idx in 0..table.buckets() { let idx = idx as u64; assert!( table.find(idx, |(k, _)| *k == idx).is_none(), "Index: {idx}" ); } // All allocator clones should already be dropped. assert_eq!(dropped.load(Ordering::SeqCst), 1); } }